
 

Effect of OTF attenuation on single-slice SR-SIM reconstruction 

 

 
Supplementary Figure 1: Actin filaments in U2OS cells, labelled with Phalloidin-Atto488, measured on 

a DeltaVision|OMX, excited at 488 nm wavelength. (a) Wide-field, (b) Wiener-filtered wide-field, (c) 

reconstruction using a standard 2D OTF, (d) reconstruction using the attenuated OTF (strength 0.995, 

FWHM 2 cycles/micron). Due to the 2D OTFs missing cone problem, background artifacts emerge 

when reconstructing with an unmodified OTF (c). For 3-beam data (where the bands overlap each 

others missing cones) and for 2-beam data (trading lateral resolution improvement for a larger 

overlap) the missing cones can be filled from other bands through the OTF attenuation, and the 

artifacts are mitigated (d). Thus, the reconstruction gains optical sectioning. Scale bar 5 μm, inset 2.0 

μm. 

  



 

SR-SIM of actin filaments in liver sinusoidal endothelial cells  

 
Supplementary Figure 2: Actin filaments in liver sinusoidal endothelial cells (LSECs). 

DeltaVision|OMX, excited at 488 nm wavelength. (a) Wide-field, (b) Wiener-filtered wide-field, (c) 

single-slice reconstruction by fairSIM,  (d) same slice from full 3D reconstruction by manufacturer 

software. Note that because the single slice reconstruction in (c) is less restricted in the axial 

direction, it appears to provide more detail than the 3D reconstruction in (d). This is, however, 

mitigated e.g. when showing the full 3D data as an intensity projection (not shown). Scale bar 5 μm, 

inset 1.6 μm. 

  



 

SR-SIM of U2OS osteosarcoma cells stained for tubulin 

 

Supplementary Figure 3: Tubulin stain (Alexa 488) in U2OS osteosarcoma cells, DeltaVision|OMX, 

excited at 488 nm wavelength. (a) Wide-field, (b) Wiener-filtered wide-field, (c) single-slice 

reconstruction by fairSIM, (d) same slice from full 3D reconstruction by manufacturer software. Note 

the significant background reduction through the use of optical sectioning (attenuation strength 

0.998, FWHM 1.5 cycles/μm). Scale bar 5 μm, inset 2.0 μm. 



 

SR-SIM of mitochondria in U2OS cells 

 
Supplementary Figure 4: Mitrochondria (Mito-Tracker) in U2OS cells, DeltaVision|OMX, excited at 

568 nm wavelength. (a) Wide-field, (b) Wiener-filtered wide-field , (c) single-slice reconstruction by 

fairSIM, (d) same slice from full 3D reconstruction by manufacturer software. Please note, that the 

single-slice reconstruction suffers from large background and noise levels, but parameter extraction 

and reconstruction is still possible. Scale bar 5 μm, inset 2.0 μm. 



 

SR-SIM of actin filaments in U2OS cells 

 

Supplementary Figure 5: Actin filaments in U2OS cells, measured on a Zeiss Elyra S1, excited at 488 

nm wavelength. Wide-field, (b) Wiener-filtered wide-field , (c) single-slice reconstruction by fairSIM, 

(d) same slice from full 3D reconstruction by manufacturer software. Scale bar 5 μm, inset 1.6 μm. 

Raw datasets1 courtesy of Marcus Behringer and Markus Sauer, University of Würzburg. 



 

SR-SIM of mitochondria in U2OS cells 

 

Supplementary Figure 6: Mitochondria in U2OS cells, measured on a Zeiss Elyra S1, excited at 565 nm 

wavelength. Wide-field, (b) Wiener-filtered wide-field , (c) single-slice reconstruction by fairSIM, (d) 

same slice from full 3D reconstruction by manufacturer software. Scale bar 5 μm, inset 1.6 μm. Raw 

datasets1 courtesy of Marcus Behringer and Markus Sauer, University of Würzburg. 



 

 TIRF-SIM of tubulin in cells 

 

Supplementary Figure 7: Tubulin filaments, measured on a 2D TIRF SIM setup, reconstruction of 9 

raw data frames (3 angles, 3 phases), excited at 488nm wavelength. Wide-field, (b) Wiener-filtered 

wide-field , (c) single-slice reconstruction by fairSIM, which is able to successfully extract the 

reconstruction parameters from TIRF datasets. Scale bar 5µm, inset 1.6µm. Raw datasets2, 3 courtesy 

of Peter Kner, University of Georgia. 

  



 

Illustration of SR-SIM band overlap 

 

Supplementary Figure 8: Common region of two SIM bands. Left: Power spectra of band 𝑆̃0 (green), 

shifted band 𝑆̃2 (blue) and the common region (magenta), defined here by ℎ(𝑘⃗ ), ℎ(𝑘⃗  +  𝑝 )  >  0.05, 

i.e. both bands’ OTFs are above a certain threshold. Right: Composite spatial representation of only 

frequencies from the common region, with 𝑆0 (green) and 𝑆2 (blue), base dataset U2OS actin. See 

Supplementary Note 1 for how the cross-correlation of this band overlap is used in the SR-SIM 

parameter estimation process. 

 

 



 

Supplementary Note 1: Parameter estimation and reconstruction 

In super-resolved structured illumination microscopy a sample is illuminated with a series of 

harmonic illumination intensity patterns. The image sequence 𝐷𝑛(𝑟 ) acquired by the 

microscope is given by1 

𝐷𝑛(𝑟 ) = ∑  [𝑆(𝑟 ) 𝑎𝑚 exp{𝑖𝑚(2𝜋𝑝 𝑟 + 𝜙𝑛)} ]  ⊗ ℎ̃(𝑟 ).

𝑀

𝑚=−𝑀

 

Here 𝑆(𝑟 ) denotes the fluorophores’ response to light, i.e. the property to be measured. M 

denotes the number of harmonics, so 𝑀 =  1 for two-beam, and 𝑀 =  2 for three-beam 

illumination. 𝑝  is the modulation light wave vector, i.e. the pattern orientation and spacing. 

𝜙𝑛 denotes the phase,  𝑎𝑚 the modulation depth of the pattern. ℎ̃(𝑟 ) is the point-spread 

function, which causes the resolution limit. Switching to Fourier space, each harmonic 

illumination pattern transforms to delta-peaks at 𝛿(±𝑚𝑝 ) and, using their folding and 

translation properties 

𝐷̃𝑛(𝑘⃗ ) = ∑ exp{𝑖𝑚𝜙𝑛} 𝑎𝑚 𝑆̃(𝑘⃗ − 𝑚𝑝 ) ⋅ ℎ(𝑘⃗ )

𝑀

𝑚=−𝑀

 

is obtained.  The translation of 𝑆̃ to 𝑘⃗ − 𝑚𝑝 , caused by the delta-peaks’ position at 𝛿(𝑚𝑝 ), is 

what allows previously unobservable frequencies in 𝑆̃ to move into the support of ℎ(𝑘⃗ ), thus 

yielding the resolution improvement in SIM. The component 𝑆̃𝑚(𝑘⃗ ) = 𝑆(𝑘⃗ − 𝑚𝑝 ) is 

referred to as the 𝑚’th band. Bands are symmetric by construction, i.e. 𝑆−𝑚 contains the 

same information as 𝑆𝑚. Now, acquiring 𝑁 measurements of 𝐷𝑛(𝑘⃗ ), with varying (usually 

equi-distant) phases 𝜙𝑛, but fixed 𝑝 , allows to rewrite the equation to matrix form as 

𝑫̃(𝑘⃗ ) = 𝑴𝑪(𝑘⃗ ) 

with vectors 

𝑫̃(𝑘⃗ ) = [ 𝐷1(𝑘⃗ ), … , 𝐷𝑁(𝑘⃗ )], 

𝑪(𝑘⃗ ) = [ 𝐶−𝑀(𝑘⃗ ),… , 𝐶0(𝑘⃗ ), … , 𝐶𝑀(𝑘⃗ )] 

           = [𝐶(𝑘⃗ + 𝑚𝑝 ), … , 𝐶(𝑘⃗ ), … , 𝐶(𝑘⃗ − 𝑚𝑝 )] 

and where 

𝑴𝑛𝑚 = 𝑎𝑚 exp 𝑖𝑚𝜙𝑛   and   𝐶(𝑘⃗ ) = 𝑆̃(𝑘⃗ ) ℎ(𝑘⃗ ) 

With a sufficient number (𝑁 ≥ 𝑀) of known phases 𝜙𝑛, 𝑴 can be inverted2, so with 

 𝑪(𝑘⃗ ) = 𝑴−1 𝑫̃(𝑘⃗ ) 

all bands 𝑆̃𝑚(𝑘⃗ ) in 𝑪(𝑘⃗ ) can be extracted. This step is referred to as band separation. 

                                                           
1 Mathematical naming conventions largely follow the ones used by Heintzmann et. al. 
2 For an over-defined matrix (𝑁 >  𝑀), the Moore-Penrose pseudo-inverse is used to invert 𝑴. 



 

Afterwards, the bands 𝑆̃𝑚(𝑘⃗ ) are moved to their correct position ±𝑚𝑝  in Fourier space, 

added up and transformed back to a high resolution image in real space. The image 

assembly in Fourier space is usually performed through a Wiener filter: 

𝑆̃𝑆𝑅(𝑘⃗ ) =  
 ∑ ℎ∗(𝑘⃗ + 𝑚𝑝 ) ⋅ 𝐶𝑚(𝑘⃗ + 𝑚𝑝 )𝑀

𝑚=−𝑀

𝜔2 + ∑  ℎ2(𝑘⃗ + 𝑚𝑝 )𝑀
𝑚=−𝑀

 𝐴(𝑘⃗ ) 

The filtering compensates for the frequency dampening introduced by ℎ(𝑘⃗ ), the parameter 

𝜔 dampens the degree of compensation especially in regions where ℎ is low. It should thus 

be set in accordance to the SNR of the input data. 𝐴(𝑘⃗ ) is the apodization, compensating for 

ringing artifacts. 

A SIM reconstruction thus amounts to Fourier-transforming the input, carrying out band-

separation, shifting the bands to 𝑚𝑝 , summing them up through (e.g.) a Wiener filter, and 

transforming the result back to a high resolution image. The resolution gain is given by the 

length |𝑀𝑝 |, which is approximately3 limited to the same cut-off as ℎ(𝑘⃗ ) for linear SIM4. 

Thus, SIM typically doubles the resolution in comparison to a wide-field measurement. 

Parameter estimation: 
The SIM reconstruction introduced so far needs correct parameters (pattern spacing and 

orientation 𝑝 , phases 𝜙𝑛) to be carried out, which are typically5 extracted from the input 

data. A reliable algorithm to obtain this estimation is often much more involved than the 

reconstruction itself. The method employed be fairSIM follows the method by Gustaffson et. 

al.4. Because the original publication provides little detail on the parameter estimation, we 

briefly lay out the mathematical background here. In general, the use of cross- and 

autocorrelation of frequency components for SIM parameter estimation is documented in a 

number of recent publications4, 5, 6. 

Assuming equi-distant phases 𝜙𝑚
′  , differing from correct phases 𝜙𝑚 = 𝜙𝑚

′ + 𝜙Δ only by a 

global offset 𝜙Δ, the band-separation step is carried out. 

For linear SIM6, the separated and OTF-corrected bands 𝑆̃𝑚 will have common, overlapping 

regions (see Supplementary Fig. 8 for an illustration).With 𝑘⃗ ′ denoting only components 

within these regions, 𝑆̃𝑚(𝑘⃗ ′ + 𝑚𝑝 ) and 𝑆̃0(𝑘⃗ 
′) should only differ by a constant, complex 

factor 𝑎𝑚
′ . As 

𝑆̃𝑚(𝑘⃗ ′ + 𝑚𝑝 ) = 𝑎𝑚
′ ⋅ 𝑆̃0(𝑘⃗ 

′) 

only holds for the correct shift vector 𝑝 , the cross-correlation 

                                                           
3 For an exact number, wavelength change (Stokes-shift) has to be taken into account, and TIRF illumination 
will further shift the limit somewhat. 
4 Non-linear SIM completely circumvents the limit by using effects such as photo-switching, depletion, or two-
photon excitation. 
5 Stable systems, especially SLM-based, should yield rather constant reconstruction parameters over time. 
However, retrieving a parameter estimate from data should often be much easier than characterizing them 
from the experimental properties. It might then be used to run multiple reconstructions. 
6 For non-linear SIM, at least neighboring bands 𝑆𝑚−1, 𝑆𝑚 will overlap (otherwise, frequencies are missing from 
the reconstruction), thus the process can be carried out iteratively. 



 

𝒞(𝑝 ) = [ 𝑆̃𝑚 ⋆  𝑆̃0 ](𝑝 ) = ∑𝑆̃𝑚
∗ (𝑘⃗ ′ + 𝑚𝑝 ) 𝑆̃0(𝑘⃗ 

′)

𝑘⃗ ′

  

again with summation ∑ (…𝑘⃗ ′ ) limited to a region common to both band, will reach a 

maximum at the correct 𝑝 . This can be used in an iterative search to find 𝑝 , and 

implemented effectively, to sub-pixel precision, via the Fourier shift theorem. FairSIM 

provides visual feedback of this fit process, so the user can check it for plausibility. 

Now, at the correct 𝑝 , the equivalence given above holds, so 𝑎𝑚
′  is found as 

𝑎𝑚
′ =  

𝒞(𝑝 )

|𝑆̃0
2|

𝑘⃗ ′

= 
∑ 𝑆̃𝑚

∗ (𝑘⃗ ′ + 𝑚𝑝 ) 𝑆̃0(𝑘⃗ 
′)𝑘⃗ ′

∑ 𝑆̃0
2(𝑘⃗ ′)𝑘⃗ ′

 

and yields both, the global phase offset 𝜙Δ = arg(𝑎′) and – in principle – the pattern 

modulation depth 𝑎𝑚 = |𝑎′|. 
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