Electronic Supplementary Materials

Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts

Isabelle M. Vea ^{1,2} and David A. Grimaldi²

 ¹ Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th street, New York, NY 10024
² Division of Invertebrate Zoology, American Museum of Natural History, Central

Park West at 79th street, New York, NY 10024

Additional Materials and Methods Section:

(a) Material, DNA isolation and sequencing

Specimens used for molecular sequencing were either preserved in 100%, 70% ethanol, or acetone. Total genomic DNA was extracted using a DNeasy tissue extraction kit (Qiagen, Valencia, CA, USA), following the manufacturer's instructions, except for the following: whole specimens were left in lysis buffer and proteinase K overnight, two elutions of 50 μ L were obtained at the end of the extraction, and the cuticle of each specimen was retrieved from the extraction column for slide preparation and identification.

Three nuclear markers were selected based on previous molecular studies on Coccomorpha: partial 18S, two regions of 28S (D2-3 and D10) and a region of EF-1 alpha. Table S1 provides the list of primers used for the amplification of the four regions as well the references from which they were selected; Genbank accession numbers are available on Table S2. PCR amplifications were performed with a Mastercycler ep Gradient S (Eppendorf) and consisted of 25 μ L reactions with Illustra Ready-To-Go PCR beads (GE Healthcare), 1 μ L of each primer (x10 dilution) and 2 to 4 μ m of DNA template, depending on the quantity of DNA retrieved from the extraction. For 18S and 28S fragments, PCR conditions followed that of Hardy et al. [1]. The EF-1a fragment was amplified using two sets of primers covering two overlapping regions, which resulted in a fragment of ~ 1080 bp. Conditions for PCR follow that of [2,3]. PCR products were purified using AMPure magnetic beads (Agencourt) and cycle-sequenced with the BigDye 1.1 Terminator Reaction Mix (Applied Biosystems, Inc.) and the same set of primers as PCR reactions. This protocol allowed a faster cycle sequencing program and used less BigDye. Cycle sequenced products were purified using CleanSeq (Agencourt) or ethanol precipitation. Sequencing was performed using an ABI 3730xl DNA Analyzer. Sequences were then compiled and edited using Geneious 5.1.7 [4] and saved in separate Fasta files for further analyses with additional sequences retrieved from Genbank. Sequence alignments were performed using MAFFT [5] through the Geneious platform. Introns from EF-1a were removed after alignment and the gene was partitioned by codon position (1st and 2nd as one partition and 3rd as one partition). The best-fit model of nucleotide substitution for each of the three markers was assessed using jModeltest 2.1.4 [6] and the best models under the Bayesian Information Criterion (BIC) were: TIM3ef+I+G for 18S. TVM+I+G for both 28S regions combined. TPM2+I+G for the partition including the 1st and 2nd codon positions of EF-1a, and HKY+G for the partition including the 3rd codon position of EF-1a. As TIM3ef, TVM and TPM models are not implemented in MrBayes, we used the GTR model for these cases.

Table S1. List of	primers for each	genetic marker and	l reference used	in this study
-------------------	------------------	--------------------	------------------	---------------

Region	Primer sequences	Reference
18S (2880-Br)	CTG GTT GAT CCT GCC AGT AG	[7]
	CCG CGG CTG CTG GCA CCA GA	
28S (D2-D3)	GAG AGT TMA ASA GTA CGT GAA AC	[2]
s3360-28b	TCG GAA GGA ACC AGC TAC TA	
28S (D9-D10)	GTA GCC AAA TGC CTC GTC A	[8]
	CAC AAT GA TAG GAA GAG CC	
EF-1a (2103–2342c)	CAC ATY AAC ATT GTC GTS ATY GG	[9]
	CTT GAT GAA ATC YCT GTG TCC	
EF-1a (40.6F-52R)	ATY GAR AAR TTY GAR AAR GAR GC	[10]
	CCD ATY TTR TAN ACR TCY TG	

(b) Taxon sampling and data coverage

Our study used the morphological matrix from Vea and Grimaldi [11], which included 174 morphological characters of male and female and was coded for 69 Recent taxa and 43 extinct taxa. In addition to this sampling, we added nine Recent for in which molecular data were available. These are: *Matsucoccus microcicatrices*, *Puto superbus*, *P. albicans*,

Eumargarodes laingi, Bambusaspis miliaris, Kuwania sp., Crypticerya genistae, Marchalina hellenica, and Phoenicococcus marlatti. Our final taxon sampling had varied data coverage as presented in Figure S1. All fossil taxa had only male morphology coded, while 43 out of the 78 Recent taxa had all three types of

Figure S1: Diagram of data coverage for the combined molecular and morphological dataset. Grey areas represent coded data, white areas are missing data.

data (male morphology, female morphology and molecular sequence).

The combined matrices of Recent only and Recent and fossil sets are available as nexus files in GitHub. The original matrix from Vea and Grimaldi [11] is available in Morphobank under Project 1013. The final taxon sampling with GenBank accession numbers for molecular sequences is available in Table S2.

Table S2. Recent taxon sampling including GenBank accession numbers for molecular sequences (New accession numbers from this study are in bold), and percentage of scored morphological characters for male and female (Taxa with newly coded morphological characters not in Vea and Grimaldi (2015) with a *).

	Family	Species for morphology	Coded char. Male (%)	Coded char. Female (%)	Species for molecular data	18S	28S D2	28S D10	EF-1a	Material Depository or collected locality
1	Aclerdidae	Aclerda arundinariae	98.39	100	Aclerda sp.	AY426060		AY427412		NA
2	Adelgidae	Adelges tsugae	89.52	20	A.tsugae	KT199045			KT199096	Black Rock Forest, NY, USA
3	Adelgidae	Pineus strobi	90.32	100	P.strobi				EF073262	NA
4	Aphididae	Acyrthosiphon pisum	96.77	94	A.pisum	KT199046			KT199097	Crete, Greece
5	Aphididae	Eucallipterus tiliae	96.77	6	E.tiliae					NA
6	Aphididae	Rhopalosiphum padi	64.52	100	R.padi	U27825				NA
*7	Asterolecaniidae				Bambusaspis.miliaris		GU998966			NA
8	Beesoniidae	Beesonia dipterocarpi	90.32	100	B.napiformis	AY795511				NA
9	Besesoniidae	Gallacoccus secundus	88.71	100	G.heckrothi	AY795512				NA
10	Callipappidae	Callipappus sp.	100	96						NA
11	Cerococcidae	Cerococcus artemisiae	94.35	94						NA
12	Coccidae	Ceroplastes japonicus	100	98	Ceroplastes sp.	KT199043	KT199065		KT199094	AMNH-AMCC 200571
13	Coccidae	Coccus hesperidum	99.19	100	C.hesperidum	JX556916	JX645350		GU349853	NA
14	Coccidae	Eulecanium tiliae	100	96	Eulecanium kunoense	KT199036			KT199091	California State Collection of Arthropods
15	Coelostomidiidae	Coelostomidia pilosa	99.19	98	C.pilosa	KT199042	KT199064			NZAC02014796
16	Coelostomidiidae	Coelostomidia wairoensis	99.19	100	C.wairoensis	KT199041	KT199063	KT199083		NZAC02014840

	Family	Species for morphology	Coded char. Male (%)	Coded char. Female (%)	Species for molecular data	18S	28S D2	28S D10	EF-1a	Material Depository or collected locality
17	Coelostomidiidae	Ultracoelostoma assimile	98.39	98						NA
18	Conchaspididae	Conchaspis lata	98.39	100						NA
19	Dactylopiidae	Dactylopius coccus	100	100	D.coccus					NA
20	Dactylopiidae	Dactylopius confusus	99.19	100	D.confusus	KT199039	KT199061	KT199081	KT199093	AMNH-AMCC 200598
21	Diaspididae	Aonidiella aurantii	100	100	A.aurantii	U06475	JQ434503			NA
22	Diaspididae	Chiocaspis salicis	100	100	C.salicis		GU349105			NA
23	Diaspididae	Parlatoria oleae	99.19	100	P.oleae		GQ325522		GQ403835	NA
24	Eriococcidae	Eriococcus coccineus	100	100	E.coccineus	AY795336	EU746831		AY795503	NA
25	Eriococcidae	Ovaticoccus agavium	100	100	O.agavium	KT199025		KT199068	KT199086	California State Collection of Arthropods
26	Eriococcidae	Tanyscelis verrucula	87.9	98	T.verrucula	EU746803	EU746839		EU746899	NA
27	Eriococidae	Eriococcus buxi	100	98	E.buxi	AY795513			AY795493	NA
28	Kermesidae	Kermes quercus	96.77	98	K.quercus		JX436145			NA
29	Kermesidae	Kermes sp.	94.35	0						NA
30	Kerriidae	Tachardina aurantiaca	100	100						NA
*31	Kuwaniidae		0	0	Kuwania sp.	KT199032	KT199055	KT199074		Tsukuba, Ibaraki, Japan
32	Kuwaniidae	Neosteingelia texana	100	100	N.texana	KT199028	KT199052	KT199071		AMNH-AMCC 200597
33	Lecanodiaspididae	Lecanodiaspis baculifera	91.13	100	L.baculifera	KT199031	KT199054	KT199073	KT199089	California State Collection of Arthropods

	Family	Species for morphology	Coded char. Male (%)	Coded char. Female (%)	Species for molecular data	185	28S D2	28S D10	EF-1a	Material Depository or collected locality
*34	Marchalinidae	Marchalina hellenica	0	100	M.hellenica	KT199030	EU087818		KT199088	AMNH-AMCC 200564
35	Margarodidae	Dimargarodes meridionalis	97.58	98						NA
36	Margarodidae	Dimargarodes tanganyicus	98.39	98						NA
*37	Margarodidae	Eumargarodes laingi	0	98	E.laingi	KT199035	KT199058	KT199078		AMNH-AMCC 200602
38	Margarodidae	Hetermargarodes americanus	100	98						NA
39	Margarodidae	Porphyrophora hamelii	100	100						NA
*40	Matsucoccidae				Matsucoccus microcicatrices	KF053072	KF040554	KF040584		NA
41	Matsucoccidae	Matsucoccus bisetosus	81.45	100						NA
42	Matsucoccidae	Matsucoccus feytaudi	97.58	100						NA
43	Matsucoccidae	Matsucoccus josephi	100	100						NA
44	Matsucoccidae	Matsucoccus matsumurae	95.97	100	Matsucoccus sp.	KT199029	KT199053	KT199072		AMNH-AMCC 200591
*45	Monophlebidae	Crypticerya genistae	0	98	C.genistae	KT199040	KT199062	KT199082		AMNH-AMCC 200599
46	Monophlebidae	Drosicha corpulenta	98.39	100	D.corpulenta	KT199038	KT199060	KT199080	KT199092	Tsukuba, Ibaraki, Japan
47	Monophlebidae	Drosicha dalbergiae	99.19	100						NA
48	Monophlebidae	Drosicha pinicola	99.19	100	D.pinicola	KT199037	KT199059	KT199079		Tsukuba, Ibaraki, Japan
49	Monophlebidae	Gigantococcus maximus	98.39	100	G.maximus	EU087721		EU087835		NA

	Family	Species for morphology	Coded char. Male (%)	Coded char. Female (%)	Species for molecular data	18S	28S D2	28S D10	EF-1a	Material Depository or collected locality
50	Monophlebidae	Icerya purchasi	100	98	I.purchasi	KT199034	KT199057	KT199077	AY429408	AMNH-AMCC 200576
51	Monophlebidae	Icerya seychellarum	100	100	I.seychellarum	KT199033		KT199076	KT199090	Nakagamigun, Okinawa, Japan
52	Monophlebidae	Palaeococcus fuscipennis	97.58	98						NA
53	Ortheziidae	Insignorthezia insignis	96.77	100	Insignorthezia sp.	HQ893784	KT199056	KT199075		AMNH-AMCC 192453
54	Ortheziidae	Newsteadia floccosa	99.19	100	N.floccosa	KT199027	KT199051	KT199070		MNHN14795
55	Ortheziidae	Orthezia urticae	99.19	100	Orthezia sp.	KT199026	KT199050	KT199069	KT199087	AMNH-AMCC
56	Ortheziidae	Praelongorthezia praelonga	96.77	98						NA
57	Phenacoleachiidae	Phenacoleachia species a	99.19	100						NA
58	Phenacoleachiidae	Phenacoleachia species b	97.58	0						NA
*59	Phoenicococcidae	Phoenicococcus marlatti	0	100	P.marlatti	KT199024	KT199049			AMNH-AMCC 200592
60	Pityococcidae	Pityococcus sp.	99.19	100						NA
61	Pseudococcidae	Antonina graminis (female)/ A. crawii (male)	99.19	100	A.graminis	KT199044	KT199060	KT199084	KT199095	AMNH-AMCC 200595
62	Pseudococcidae	Ceroputo pilosellae	98.39	96						NA
63	Pseudococcidae	Coccidohystrix insolitus	96.77	100						NA
64	Pseudococcidae	Dysmicoccus grassii	98.39	100	D.alazon	JF965398	JQ651254	JF965409	AY427279	NA
65	Pseudococcidae	Ferrisia virgata	99.19	98	<i>F.virgata</i>	AY426079	AY179468	AY427373		NA

	Family	Species for morphology	Coded char. Male (%)	Coded char. Female (%)	Species for molecular data	185	28S D2	28S D10	EF-1a	Material Depository or collected locality
66	Pseudococcidae	Planococcus citri	100	100	P.citri	JF965405		AY427375	AY427264	NA
67	Pseudococcidae	Pseudococcus longispinus	98.39	199	P.longispinus	KT199023	KT199048	AY427400	KT199085	New York, NY, USA
68	Pseudococcidae	Pseudococcus maritimus	76.61	100	P.maritimus	AY426043	AY427312	AY427384	AY427265	NA
*69	Putoidae				P.albicans	AY426051	AY427838	AY427408	AY427301	NA
70	Putoidae	Puto kozstarabi	98.39	100						NA
71	Putoidae	Puto mexicanus	95.97	100						NA
*72	Putoidae	Puto superbus	0	100	P.superbus	KT199022	KT199047	KT199067		Katowice Forest Park, Poland
73	Putoidae	Puto yuccae	100	100	P.yuccae	AY426052	AY427339			NA
74	Steingeliidae	Steingelia gorodetskia	99.19	100						NA
75	Stictococcidae	Stictococcus vayssievei	88.71	98	S.sjostedti	AY795509			AY795494	NA
76	Stigmacoccidae	Stigmacoccus asper	99.19	98						NA
77	Xylococcidae	Xylococculus betulae	99.19	100						NA
78	Xylococcidae	Xylococcus japonicus	99.19	98						NA

(c) Divergence time analyses

All analyses were run in MrBayes 3.2.6 through the Cipres Science Gateway Portal [12]. Four replicates of 10 to 80 million generations were run at an initial temperature of 0.2 for preliminary analyses (non-clock and strict-clock) and 0.1 for the divergence time estimate analyses. Convergence was considered achieved when the average standard deviation of split frequency was below 0.05. All trees were summarized using the command sumt in MrBayes with the option contype=allcompat. We chose to summarize the trees using all compatibility method because of the amount of missing data (fossils and a number of Recent terminals do not have molecular sequences) that tend to reduce significantly the posterior probabilities.

Preliminary analyses

A non-clock and strict-clock analyses were first performed with Coccoidea as a topology constraint in order to define prior values for the IGR model and the clock rate. For details on command lines, see the codebook available publicly in Github (<u>https://github.com/</u>

zourloubidou/Coccomorpha-divergence-time.md).

IGR model

The non-clock and strict-clock topologies were used as inputs to determine the prior distribution values for the IGR model and clock rate using the R script from Ronquist et al. [13].

Mean TH	Variance	sigma	age of root in million years	#substitution per million year	mu	Median variance branch length	parameter for igrvar
0.560715	0.002692	0.051884487	240	0.002336313	-6.06052744 7	0.03899406	25.64493156

Divergence-time estimate analyses

Both node-dating and tip-dating analyses used a relaxed clock following the IGR model from Ronquist et al. [13]. For the node-dating analyses, we used the Recent only dataset (fossil terminals were defined in a variable using the command line "taxset fossils =" and excluded from prior to analysis using the command line "remove fossils;"), for which node age priors were set for the root, the ingroup and 10 families following an off set exponential distribution. All details on node calibration can be found in Table S3. For the tip-dating method, we used the Recent+fossil dataset and performed fixed prior ages on all fossil terminals (Table S4 for details on ages) as well as an offset exponential distribution for the root prior. In order to assess if any of node prior and the root prior distribution (either in the node-dating analysis or the tip-dating where a prior distribution was defined for the root) could influence the age estimates in MrBayes, we performed various analyses with both node-dating and tip-dating approaches as follow:

- Node-dating method: 10 additional node-dating analyses were performed using all node priors and excluding one node prior at a time, as well as one analysis excluding the root prior, and one analysis changing the distribution of the root to lognormal (mean=240, SD=10).
- Tip-dating method: two additional analyses were performed with for the first one excluding the root prior, and the second changing the root prior distribution to lognormal (mean=240, SD=10).

All topologies with age estimates resulting from these analyses are available in TreeBASE (temporary link for reviewers: http://purl.org/phylo/treebase/phylows/study/TB2:S17496?x-access-code=4cff04a26ac567ac00b91ec3451e380d&format=html)

Table S3. Node calibration priors used for the node-calibrated analyses

Node	Family	Age prior	Fossil taxon	Reference	Remarks
1	root	offsetexp(240 ,250)	<i>Vosegus triassicus</i> Szwedo & Nel	[14]	The minimum age of the root was defined based on the wing impression of the oldest Aphidomorpha described in a rock deposit from the Vosges, France (early Anisian, Middle Triassic,~240 Ma).
2	Coccomorpha	offsetexp(140 ,240)	<i>Eomatsucoccus casei</i> Koteja	[15]	This calibration is based on the oldest definitive Coccoidea, belonging to the extant family Matsucoccidae. The minimum age was defined at 140 Ma as MrBayes did not allow to perform the analysis when the minimum age was set at the same age as a more inclusive node.
3	Coccidae	offsetexp(98, 110)	<i>Rosahendersonia</i> prisca Vea & Grimaldi	[11]	<i>Rosahendersonia prisca</i> was described from Burmese amber and is the oldest record of Coccidae. <i>R. prisca</i> is in the total evidence analysis taxon sampling.
4	Diaspididae	offsetexp(50, 100)	Normarkicoccus cambayae	[11]	<i>Normarkicoccus</i> sp. was described in the Diaspididae based on multiple characters, despite the presence of some plesiomorphic features such as the absence of a long penial sheath. This is the oldest Diaspididae fossil record from Cambay amber. <i>Normarkicoccus cambayae</i> is in the total evidence analysis taxon sampling.
5	Kermesidae	offsetexp(45, 100)	<i>Sucinikermes kulickae</i> Koteja	[16]	Sucinikermes was described in Baltic amber based on an instar nymph and was assigned to the Kermesidae based on known living Kermesidae instars. Sucinikermes kulickae is not the total evidence analysis taxon sampling.
6	Kuwaniidae	offsetexp(45, 100)	<i>Hoffeinsia foldi</i> Koteja	[17]	<i>Hoffeinsia</i> sp. was described in Baltic amber. <i>Hoffeinsia</i> is not in the total evidence analysis taxon sampling.
7	Margarodidae	offsetexp(50, 100)	Heteromargarodes hukamsinghi Vea & Grimaldi	[11]	<i>Heteromargarodes</i> is a living genus, for which the only fossil species of the family was described in Cambay amber. <i>Heteromargarodes hukamsinghi</i> is in the total evidence analysis taxon sampling.

8	Matsucoccidae	offsetexp(135 ,140)	<i>Eomatsucoccus casei</i> Koteja	[15]	Eomatsucoccus casei is the oldest definitive Coccoidea described in the fossil record. Is in the total evidence analysis taxon sampling.
9	Ortheziidae	offsetexp(135 ,140)	Cretorthezia hammanaica Koteja & Azar	[18]	<i>Crethorthezia hammanaica</i> was described in Lebanese amber based on a macropterous male. C. hammanaica is in the total evidence analysis taxon sampling.
10	Pseudococcidae	offsetexp(135 ,140)	<i>Williamsicoccus megalops</i> Vea & Grimaldi	[11]	<i>Williamsicoccus</i> was described in Lebanese amber based on a macropterous male. <i>Williamsicoccus megalops</i> is in the total evidence analysis taxon sampling.
11	Putoidae	offsetexp(45, 100)	Undescribed <i>Puto</i> sp. in Baltic amber	Koteja's amber collection, Silesia University	Definitive <i>Puto</i> males are found in Baltic ambers but yet to be described.
12	Xylococcidae	offsetexp(135 ,140)	<i>Baisococcus victoriae</i> Koteja	[19]	<i>Baisococcus victoriae</i> was described from a rock impression of a macropterous male and was subsequently classified in the Xylococcidae family by Koteja (2000). However, based on the state of conservation and the limited number of characters observable on the specimen, this taxon was not used in the total evidence analysis.

Table S4. Extinct taxon sampling with age priors used in the total evidence divergence time analyses and % of coded characters. Fossil deposits abbreviations: Al: Alaska; Bu: Burmese, Le: Lebanese, Ba: Baltic; Bi: Bitterfield; Ca: Canada; Cb: Cambay, Ch: Charentes; NJ: New Jersey; Ta: Taimyr.

	Family	Taxon	Fossil deposit	Fixed age priors	Age prior with uniform distribution	% of coded characters
1	Albicoccidae	Albicoccus dimai Koteja	Bu	98	98; 99.5	35.63
2	Apticoccidae	Apticoccus minutus Koteja & Azar	Le	135	120;135	45.98
3	Apticoccidae	Apticoccus longitenuis Koteja & Azar	Le	135	120;135	43.68
4	Apticoccidae	<i>Apticoccus fortis</i> Koteja & Azar	Le	135	120;135	45.4
5	Arnoldidae	Arnoldus capitatus Koteja	Ва	45	43;48.5	43.68
6	Burmacoccidae	Burmacoccus danyi Koteja	Bu	98	98; 99.5	39.08
7	Coccidae	<i>Rosahendersonia prisca</i> Vea & Grimaldi	Bu	98	98; 99.5	44.83
8	Diaspididae	<i>Normarkicoccus cambayae</i> Vea & Grimaldi	Сb	50	50;52	38.5
9	Electrococcidae	<i>Electrococcus canadensis</i> Beardsley	Ca	100	95;105	48.8
10	Electrococcidae	<i>Turonicoccus beardsleyi</i> Koteja	NJ	92	88;94	32.18
11	Eriococcidae	Kuenowicoccus pietrzeniukae Koteja	Ва	45	43;48.5	47.7
12	Grimaldiellidae	<i>Grimaldiella gregaria</i> Koteja	NJ	92	88;94	56.9
13	Grohnidae	Grohnus eichmanni Koteja	Ва	45	43;48.5	47.7
14	Hodgsonicoccidae	<i>Hodgsonicoccus patefactus</i> Vea & Grimaldi	Le	135	120;135	51.15
15	Incertae sedis	Marmyan barbarae Koteja	Bu	98	98; 99.5	29.89
16	Incertae sedis	<i>Pedicellicoccus marginatus</i> Vea & Grimaldi	Bu	98	98; 99.5	43.68
17	Incertae sedis	Undescribed fossil from French amber	Ch	100	95;100	28.16
18	Incertae sedis	<i>Magnilens glaesaria</i> Vea & Grimaldi	Bu	98	98; 99.5	41.38
19	Incertae sedis	<i>Alacrena peculiaris</i> Vea & Grimaldi	Bu	98	98; 99.5	41.38
20	Incertae sedis	Xiphos vani Vea & Grimaldi	Le	135	120;135	51.77
21	Inkaidae	Inka minuta Koteja	Та	85	80;90	57.47
22	Jersicoccidae	Jersicoccus kurthi Koteja	NJ	92	88;94	31.03
23	Kozariidae	<i>Kozarius achronus</i> Vea & Grimaldi	Bu	98	98; 99.5	54.6
24	Kozariidae	<i>Kozarius perpetuus</i> Vea & Grimaldi	Bu	98	98; 99.5	55.17

		-				
25	Kukaspididae	<i>Kukaspis usingeri</i> Koteja & Poinar	Al	100	95;100	47.12
26	Labiococcidae	Solicoccus nascimbenei Koteja	NJ	92	88;94	47.12
27	Lebanococcidae	<i>Lebanococcus longiventris</i> Koteja & Azar	Le	135	120;135	44.83
28	Margarodidae	Heteromargarodes hukamsinghi Vea & Grimaldi	Cb	50	50;52	41.95
29	Matsucoccidae	Eomatsucoccus casei Koteja	NJ	92	88;94	36.78
30	Ortheziidae	<i>Cretorthezia hammanaica</i> Koteja and Azar	Le	135	120;135	35.63
31	Ortheziidae	Palaeonewsteadia huaniae Koteja	Ва	45	43;48.5	51.72
32	Ortheziidae	Protorthezia aurea Koteja	Ва	45	43;48.5	44.83
33	Pennygullaniidae	<i>Pennygullania electrina</i> Koteja & Azar	Le	135	120;135	43.1
34	Pityococcidae	Pityococcus moniliformalis Vea & Grimaldi	Ba	45	43;48.5	64.37
35	Pseudococcidae	<i>Williamsicoccus megalops</i> Vea & Grimaldi	Le	135	120;135	43.68
36	Pseudococcidae	<i>Gilderius eukrinops</i> Vea & Grimaldi	Bu	98	98; 99.5	46.55
37	Putoidae	Palaeotupo danielae Koteja & Azar	Le	135	120;135	45.4
38	Serafinidae	Serafinus acupiterus Koteja	Ва	45	43;48.5	57.47
39	Steingeliidae	Palaeosteingelia acrai Koteja & Azar	Le	135	120;135	54.6
40	Steingeliidae	Steingelia cretacea Koteja	NJ	92	88;94	52.3
41	Weitschatidae	Weistchatus stigmatus Koteja	Ва	45	43;48.5	64.94
42	Weitschatidae	<i>Pseudoweitschatus audebertis</i> Vea & Grimaldi	Bu	98	98; 99.5	52.3
43	Xylococcidae	Xylococcus grabenhorstii Koteja	Bi	45	40;50	52.87

Ages and LTT plots

For a quick overview of age-estimate differences among the analyses, we obtained lineage through time (LTT) plots in R version 3.1.2 (2014-10-31) [20]. For all tip-dating analyses,

fossil terminals were pruned prior to obtained the LTT plots so that they could be comparable to the node-dated topologies. Age estimates for different analyses were also plotted for comparison using the ggplot2 package.

Command lines and packages used to obtain the plots are available in Github (<u>https://github.com/zourloubidou/Coccomorpha-divergence-time/blob/master/Plots.md</u>- for reviewer access, first login at <u>http://www.github.com</u> with username: Journalreviewer, password: Githubforreview2015).

Additional results section

(a) Dataset and output files

A README file is available in GitHub that summarizes all datasets and intermediate results made available to the reader.

(b) Tip-dating analysis using Ronquist et al., 2012

Figure S2: Divergence-time estimates based on a total-evidence approach (tip-dating) including Recent and fossil terminals, using MrBayes 3.2.3 from Ronquist et al., 2012 approach, all-compatibility summary. Posterior probability: black dot: 95-100% P; grey dot: 80-94%; white dots: 50-79%. Node number represents root node prior (Supplementary Table S3). Node letters are clades mentioned in the results. Green area: period of major angiosperm radiation.

(c) Posterior age plots and LTT Plots

Figure S3: Comparison among tip-dating analyses of the posterior ages (median and 95 % HDP) for lineages with age priors used in the node-dating analysis. For the parameters used in each tip-dating analysis, refer to Table 1.

Figure S5: Effect on age estimates for the node-dating analyses when removing one of the node priors individually.

References

- Hardy, N. B., Gullan, P. J., Henderson, R. C. & Cook, L. G. 2008 Relationships among felt scale insects (Hemiptera: Coccoidea: Eriococcidae) of southern beech, Nothofagus (Nothofagaceae), with the first descriptions of Australian species of the Nothofagus-feeding genus Madarococcus Hoy. *Invert. Systematics* 22, 365. (doi: 10.1071/IS07032)
- 2. Morse, G. E. & Normark, B. B. 2005 A molecular phylogenetic study of armoured scale insects (Hemiptera: Diaspididae). *Systematic Entomology* **31**, 338–349. (doi: 10.1111/j.1365-3113.2005.00316.x)
- 3. Downie, D. A. & Gullan, P. J. 2005 Phylogenetic congruence of mealybugs and their primary endosymbionts. *Journal of Evolutionary Biology* **18**, 315–324. (doi:10.1111/j. 1420-9101.2004.00834.x)
- 4. Kearse, M. et al. 2012 Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* **28**, 1647–1649. (doi:10.1093/bioinformatics/bts199)
- 5. Katoh, K., Misawa, K., Kuma, K. I. & Miyata, T. 2002 MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research* **30**, 3059–3066. (doi:10.1093/nar/gkf436)
- 6. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. 2012 jModelTest 2: more models, new heuristics and parallel computing. *Nat Meth* **9**, 772–772. (doi:10.1038/ nmeth.2109)
- 7. Dohlen, Von, C. D. & Moran, N. A. 1995 Molecular phylogeny of the Homoptera: a paraphyletic taxon. *Journal of Molecular Evolution* **41**, 211–223. (doi:10.1007/bf00170675)
- 8. Dietrich, C. 2001 Phylogeny of the major lineages of Membracoidea (Insecta: Hemiptera: Cicadomorpha) based on 28S rDNA sequences. *Molecular Phylogenetics and Evolution* **18**, 293–305. (doi:10.1006/mpev.2000.0873)
- Cho, S., Mitchell, A., Regier, J. C., Mitter, C., Poole, R. W., Friedlander, T. P. & Zhao, S. 1995 A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1 alpha recovers morphology-based tree for heliothine moths. *Molecular Biology and Evolution* 12, 650–656.
- 10. Regier & C, J. 2007 Protocols, Concepts, and Reagents for preparing DNA sequencing templates. 1–34.
- 11. Vea, I. M. & Grimaldi, D. A. 2015 Diverse new scale insects (Hemiptera: Coccoidea) in amber from the Cretaceous and Eocene with a phylogenetic framework for fossil Coccoidea. *American Museum Novitates*, 1–80. (doi:10.1206/3823.1)
- 12. Miller, M. A., Pfeiffer, W. & Schwartz, T. 2010 Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 1–8.

- Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D. L. & Rasnitsyn, A. P. 2012 A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. *Systematic Biology* 61, 973–999. (doi:10.1093/ sysbio/sys058)
- Szwedo, J. & Nel, A. 2011 The Oldest Aphid Insect from the Middle Triassic of the Vosges, France. *Acta Palaeontologica Polonica* 56, 757–766. (doi:10.4202/app. 2010.0034)
- 15. Koteja, J. 2000 Scale insects (Homoptera, Coccinea) from upper cretaceous New Jersey amber. In *Studies on fossils in amber, with particular reference to the Cretaceous of New Jersey* (ed D. A. Grimaldi), pp. 147–229. Leiden: Backhuys Publishers.
- 16. Koteja, J. 1988 Sucinikermes kulickae gen. et sp. n. (Homoptera, Coccinea) from Baltic amber. *Polskie Pismo Entomologiczne* **58**, 525–535.
- 17. Koteja, J. 2008 Xylococcidae and related groups (Hemiptera: Coccinea) from Baltic amber. **49**, 19–56.
- 18. Koteja, J. & Azar, D. 2008 Scale insects from lower cretaceous amber of Lebanon (Hemiptera: Sternorrhyncha: Coccinea). *Alavesia* **2**, 133–167.
- 19. Koteja, J. 1989 Baisococcus victoriae gen. et sp. n.—a Lower Cretaceous coccid (Homoptera, Coccinea). *Acta Zoologica Cracoviensia* **32**, 93–106.
- 20. R Core Team 2014 R: A language and environment for statistical computing.