Supplementary Information

Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays

Wei-Zong Xu^{1,2,3}, Fang-Fang Ren^{1,2,3}, Jiandong Ye^{1,2}, Hai Lu^{1,3}, Lanju Liang¹, Xiaoming Huang^{1,3},

Mingkai Liu⁴, Ilya V. Shadrivov⁴, David A. Powell⁴, Guang Yu^{1,3}, Biaobing Jin¹, Rong Zhang¹, Youdou Zheng¹, Hark Hoe Tan² & Chennupati Jagadish²

 ¹School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
²Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
³Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
⁴Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia

Correspondence and requests for materials should be addressed to F.F.R. (ffren@nju.edu.cn) or H. L. (hailu@nju.edu.cn)

Figure S1. Transmission/reflection coefficient of *a*-IGZO TFT-based metamaterials with (a) connected or (b) unconnected metamaterial design. The resonance frequency red-shifts from 2.1 to 0.75 THz due to the connecting design along *y*-direction in our structure.

Figure S2. The choice of coordinate origin for calculating magnetic dipole (*M*) and electric quadruple (*Q*) moments. (a) The transmission coefficient (amplitude) calculated by fitting the multipolar expansion model with different choice of coordinate origin O_z . (b) Schematic of the coordinate origin. Here P_1 and P_2 represent the electric dipole moments of source/drain layer and gate layer, respectively. The distance between these two layers is indicated as d_0 . We found that the different choice of coordinate origin O_z for calculating *M* and *Q* results only in a small difference to the transmitted field, while the electric dipole moment (*P*) unambiguously remains dominant to the scattered radiation. Therefore, we simply show the results in Figs. 2c-2e by choosing the origin at the middle of these two metal layers.

Figure S3. Experimental setup for characterizing the tunable THz metamaterial.