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Figure S1. Response to two small molecule FGFR inhibitors (AZD4547 
and PD173074) in non-tumour derived epithelial cell lines. (Related to 
Figure 2). A) Response of the normal epithelium-derived cell line MCF10A to 
eight concentrations of AZD4547 and PD173074. B) Response of the normal 
epithelium-derived cell line MCF12A to eight concentrations of AZD4547. Error 
bars represent standard error of the mean from three independent 
experiments. 
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Figure S2. Kinase dependencies associated with ovarian clear cell carcinoma. (Related to 
Figure 2). Boxplots illustrating the dependency of 11 ovarian clear cell (OCC) models on 
CAMK2N1, GRK4 and MAP3K9 relative to ovarian carcinoma models classified as other subtypes. 
See also Supplementary Table S1F. In each box plot the top and bottom of the box represents the 
third and first quartiles and the box band represents the median (second quartile); whiskers extend 
to 1.5 times the interquartile distance from the box. 
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Figure S3. Validation of DYRK1A dependency in RB1 mutant osteosarcoma cell lines. (Related to Figure 
3). A) Boxplot summarising Z-scores of osteosarcoma models treated with siRNAs targeting DYRK1A and 
grouped according to RB1 mutation status. B) DYRK1A siRNA smart pool deconvolution in RB1 wt and mutant 
osteosarcoma models. P-values shown for each siRNA and the pool of siRNAs (siPool) are the result of 
applying median permutation tests to the siRNA Z-scores comparing the mutant and wild type groups. C) 
Detection of RB1, p16 (CDKN2A) and actin in osteosarcoma cell lines using western blotting and 
immunostaining of proteins. D) CAL51 and MCF7 cells treated with individual siRNAs targeting DYRK1A 
together with a pool of the same siRNAs, non-targeting negative control siRNAs (siCON1, siCON2) or 
untreated cells were harvested 72 h post transfection. DYRK1A and Actin protein abundance was evaluated 
using western blotting and immunostain detection. E) Expression of DYRK1A vs GAPDH mRNA in CAL51 and 
MCF7 cells treated with siRNAs. Relative expression values were normalized to the median of the untreated 
samples. Explanation as for D. 
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Figure S4. Boxplots showing kinase dependencies associated with driver gene mutations. 
(Related to Figure 3). A) Genetic dependencies associated with ERBB2 amplification within breast 
and esophageal cancer histotypes. B) Genetic dependencies associated with CCND1 amplification 
within breast and esophageal cancer histotypes. C) Dependency of STK11 (LKB1) mutant cell lines to 
siRNA designed to target the Signal Recognition Particle 72 gene SRP72 in the complete panel of cell 
lines and within the lung cancer panel. In each box plot the top and bottom of the box represents the 
third and first quartiles and the box band represents the median (second quartile); whiskers extend to 
1.5 times the interquartile distance from the box. 



Figure S5. Network dependency maps for driver genes and pathways. (Related to Figure 4 and Figure 5). 
Functional interaction networks showing high-confidence STRING interactions between KGDs associated with 11 
driver genes and 9 pathways. Only those networks that are more densely connected than expected are shown. See 
also Supplementary Table S1L 



Table S1. Datasets used in the study and analysis result tables. The sheet named ‘explanation of 
the tables’ details the contents. 



 

 

Supplemental Experimental Procedures 
 
Cell lines and siRNA 
The majority of tumor cell lines were obtained from the American Type Culture Collection, European 
Collection of Cell Cultures and Deutsche Sammlung von Mikroorganismen und Zellkulturen. Head and 
neck cancer cell line models were obtained from Susanne Gollin and Theresa Whiteside (University of 
Pittsburgh), Tom Carey (University of Michigan) and Hans Joenje (VU Medical Centre, NL). All cell lines 
were maintained as per the supplier's instructions. STR typing of 10 loci was performed on each cell line 
using the GenePrint 10 system (Promega) and used to confirm the identity of cell lines prior to storage. 
Cell lines were transfected with siRNA SMARTpools (Dharmacon) using Dharmafect 3, Dharmafect 4 
(Dharmacon), Oligofectamine, Lipofectamine 2000 or RNAi max (Invitrogen) transfection reagents. 
siPLK1 (Dharmacon) was used as a positive control on each screen plate. Negative controls were 
siCON1, siCON2 (Dharmacon) and Allstar (Qiagen) and were included on every screening plate. 
 
siRNA screening and processing 
136 cancer-derived cell lines spanning 10 different tissue types were optimised for siRNA screening. This 
involved titrating the amount of lipid transfection reagent used as well as titrating cell number used for 
reverse siRNA transfections. For each cell line we tested at least four different transfection reagents and 
selected conditions that met the following criteria: (i) compared to a mock control (no lipid or siRNA), the 
transfection of non-silencing negative control siRNA caused no more than 20 % cell inhibition; (ii) 
compared to non-silencing negative control siRNA, the transfection of PLK1–targeting siRNA caused 
more than 80% cell inhibition; (iii) cell confluency reached 70% within the range of 4-7 days. The later 
criteria allowed assays to be terminated whilst cells were in growth phase. Once optimal conditions had 
been established, each cell line was transfected with a plate-arrayed siRNA library targeting 714 kinases 
and kinase-related genes (Dharmacon). 20 breast cancer cell lines were screened in a 96 well plate 
format, while the remainder were screened in a 384 well plate format (Supplementary Table S1A). Cell 
viability was estimated using a luminescent assay detecting cellular ATP levels (CellTitre-Glo, Promega). 
Luminescence values were processed using the cellHTS2 R package (Boutros et al., 2006).  To evaluate 
the effect of each siRNA pool on cell viability, we log2 transformed the luminescence measurements and 
then centred these to the median value for each plate. The plate-centred data were scaled to the median 
absolute deviation (MAD) of the library as a whole to produce robust Z-scores (Figure 1A). All screens 
were performed in triplicate. Screens judged to have poor dynamic range (Z’ factor ! 0) (Zhang et al., 
1999) or poorly correlated replicates (r ! 0.7) were excluded during an evaluation of screen quality. 
Subsequently, we retained kinase dependency profiles for 117 cell line models for further analysis.  
 
Small molecule kinase inhibitor cell inhibition assays 
Cell lines were profiled using two FGFR inhibitors (AZD4547 and PD173074) at eight different 
concentrations (0.5, 1, 5, 10, 50, 100, 500 and 1000 nM). A majority of the panel of cell lines profiled were 
derived from breast cancer and osteosarcomas with smaller numbers of cell lines derived from tumors of 
the central nervous system, cervix, head and neck, large intestine and lung cancer. 250-500 cells were 
seeded in 384 well plates. 24 hours post seeding, drug exposure was initiated and cells were 
continuously cultured in the presence of the drugs for a period of five days, at which point cell viability 
was estimated using Cell-Titre Glo (Promega). Cells were initially plated at a density to ensure that each 
cell line was in growth phase by the end of the five day treatment, similar to (Garnett et al., 2012). 
Luminescence values were normalised to the median of the per-plate DMSO negative control wells and 
the dose-response relationships modelled using 3-parameter logistic regression provided by the drc R-
package (Ritz and Streibig, 2005). Area under the dose response curve (AUC) measurements calculated 
using this package were used as a read-out of drug sensitivity. Each cell line was assessed in triplicate. 
 
 
Annotating cell lines according to mutation status 
We annotated cell lines according to the presence of DNA mutations and copy number alterations in 
oncogenes and tumor suppressor genes. We included genes in the Cancer Gene Census (Futreal et al., 
2004), genes listed in a census of amplified and overexpressed genes in human cancer (Santarius et al., 
2010) and genes identified as candidate tumor suppressor gene (TSG) or oncogenes (OG) using the 
TUSON explorer approach described by (Davoli et al., 2013). The set of cancer genes were classified into 



 

 

a tumor suppressor (TSG)-like group and an oncogene (OG)-like group using the molecular genetic 
classification information for genes available in the Cancer Gene Census. Genes with dominant effects 
were classified an oncogenes and those with recessive effects classified as tumor suppressor genes. 
Genes that were not included in the Cancer Gene Census were classified using the TUSON Explorer 
TSG and OG q-values (a positive classification occurring where the q-score for a given gene was < 0.1). 
 
We obtained exome sequencing data for 77 cell lines from the COSMIC cell line project 
(http://cancer.sanger.ac.uk). We extended this data set with new exome sequencing data from 11 ovarian 
cancer cell lines (deposited at http://www.ebi.ac.uk/ena/data/view/PRJEB9639, exome pipeline described 
in a later section). We also obtained gene copy number data for 86 cell lines from the CCLE project 
(http://www.broadinstitute.org/ccle/) (Barretina et al., 2012). To annotate cell lines according to likely 
functionally mutated cancer genes we built a pipeline that takes mutation information from whole exome 
sequencing experiments and somatic copy number variation (CNVs) from multiple sources and classifies 
each cell line as to whether or not there is evidence for mutation or CNV for each of the cancer genes 
(https://github.com/GeneFunctionTeam/cell_line_functional_annotation). This annotation pipeline 
conforms to guidelines for the integration of functional genomics data proposed by the International 
Cancer Genome Consortium (Gonzalez-Perez et al., 2013). A dictionary of terms describing mutational 
consequences in the various data sets was used to enable comparison across each data set. Specifically, 
terms relating to copy number amplification, homozygous deletion, truncating mutations or recurrent 
missense mutations were used to define those mutations most likely to have a functional consequence in 
affected cell lines. Where a mutation was observed that was deemed to have an uncertain consequence 
(for example, a non-recurrent missense mutation), the event was recorded so that during the association 
tests any cell lines with such mutations in a gene could be excluded from both the mutant and wild-type 
group. The annotation pipeline also performed standardisation of cell line names and gene identifiers. 
 
Using the exome data we considered a TSG-like gene to be functionally mutated in a given cell line if it 
contained a likely loss-of-function mutation (frameshift, nonsense or splice site alteration) or a missense 
mutation at a recurrently mutated residue (described in the next paragraph). In contrast we only 
considered an OG-like gene to be functionally mutated if it contained a mutation of a recurrently mutated 
residue. For CNV data sets we classified cell lines as containing a functionally relevant mutation if there 
was evidence of homozygous deletion of a TSG-like gene (GISTIC score of -2) or genomic amplification 
of an OG-like gene (GISTIC score of 2).  
 
Even for well established cancer-associated genes, distinguishing between driver mutations (that have a 
likely gain of function effect for oncogenes or loss of function effect for tumor suppressors) and passenger 
mutations (that have no oncogenic effect) can be difficult for missense somatic mutations (point 
mutations). To address this problem we attempted to distinguish between the two by focussing on 
recurrent mutations - those mutations that alter residues that are frequently mutated across multiple 
tumor samples. We defined recurrently mutated residues using a database of > 1.2 million somatic 
mutations (Davoli et al., 2013). As some genes are sequenced more frequently than others (due to 
targeted sequencing) or mutated more frequently than others (due to genome location / chromatin 
accessibility) the threshold for defining a residue recurrently mutated is set on a per gene basis. For the 
analysis described here we defined a recurrently mutated residue as one that is mutated in either 3% of 
all samples featuring a mutation in that gene or three samples overall, whichever threshold is larger. 
 
The set of functionally relevant alterations in cancer genes based on the exome and CNV data types 
were represented as Boolean matrices (1 for mutant, 0 for non-mutant). These datasets were combined 
using a simple logical OR function. For example, combining exome and CNV data sets we considered an 
oncogene to be mutated in a given cell line if the oncogene was either amplified according to the CNV 
data OR mutated at a recurrently altered site according to the exome data. Cell lines where a given data 
type was not available were excluded from analyses incorporating that data type. 
 
Exome sequencing pipeline 
Exome sequencing libraries were prepared using SureSelect Human All Exon 50 Mbp kits (Agilent). 
Illumina paired-end libraries were sequenced on a HiSeq2000 (Illumina), acquiring 2 x 76 bp reads. 
Basecalling and demultiplexing was performed using Casava v1.8 (Illumina) software. Fastq files were 



 

 

aligned to the human reference genome (GRCh37) using the Burrows-Wheeler Aligner (Li and Durbin, 
2009). Duplicate reads arising from PCR were removed prior to further processing and variant detection. 
Base recalibration, realignment around indels and variant calling were performed using the Genome 
Analysis Tool-kit v2 with default settings (DePristo et al., 2011). Variants called in regions not covered by 
the capture probes were excluded, as were those with genotype quality scores below 20 and those 
covered by fewer than 10 reads.  
 
Protein Quantitation 
Whole cell protein lysates were extracted from cells by lysis with NP250 buffer (20 mM Tris pH 7.6, 1 mM 
EDTA, 0.5%. NP40, 250 mM NaCl). For RNAi knock-down, samples were extracted 72 hours post 
transfection. Western blots were performed using Novex precast TA gels (Invitrogen) as described 
previously (Farmer et al, 2005). Primary antibodies were immunoblotted overnight using either anti-RB1 
(1/1000; Cell Signaling), anti-DYRK1A (1/1000 Cell Signalling), anti-p16 (1/1000 Abcam) or anti-ACTIN 
(1/2000; Santa Cruz). Fluorescent anti-rabbit, anti-mouse or anti-goat secondary antibodies (Licor) were 
incubated with the blot (1:5000) for 1 hour at room temperature in the dark followed by detection and 
processing on a Licor Odyssey Western Imager. Blots were viewed using ImageStudio Software (Licor). 
 
Quantitative RT–PCR 
Total RNA from cell lines were extracted using RNeasy mini kit (Qiagen) according to the manufacturer’s 
instructions. cDNA was synthesised using SuperScript III reverse transcriptase (Invitrogen) for RT–PCR 
with random hexamers as per the manufacturer’s instructions. Assay-on-Demand primer/probe sets were 
purchased from Applied Biosystems. Real-Time qPCR was performed on the 7900 DHT Fast Real-Time 
PCR System (Applied Biosystems), using GAPDH as an endogenous control.  Gene expression was 
calculated relative to expression of GAPDH endogenous control. Samples were quantified in 
quadruplicate. 
 
Data Integration 
Protein-protein interactions were obtained from the HINT (Das and Yu, 2012), BioGRID version 3.4.128 
(Chatr-Aryamontri et al., 2015) and KEA databases (Lachmann and Ma'ayan, 2009). Kinase-substrate 
interactions were obtained from KEA (Lachmann and Ma'ayan, 2009), PhosphoSitePlus (Hornbeck et al., 
2015) and (Cheng et al., 2014). High confidence (combined score > 0.7) functional interactions were 
obtained from the STRING database (Version 9.1; (Franceschini et al., 2013)). Gene expression 
relationships were obtained from PathwayCommons (Cerami et al., 2011) by extracting those 
relationships annotated as ‘controls-expression-of’. To identify the shortest directed path between driver 
genes and their dependencies we built an integrated directed network using the directed edges from 
PathwayCommons (those labelled 'controls-expression-of', 'controls-phosphorylation-of', 'controls-
transport-of', 'controls-production-of’) and the full set of kinase-substrate interactions from all sources. The 
shortest_path function in NetworkX (Hagberg et al., 2008) was then used to query this graph. All shortest 
paths of length 2 or less are provided in Supplemental Table S1I and S1K. To evaluate the connectivity of 
the dependencies associated with each driver gene we compared the number of observed high-
confidence STRING interactions between the nominally significant dependencies (those with median 
permutation test p-value < 0.05) to the number observed on 100 randomized degree matched interaction 
networks.  
 
Pathway analysis 
The original pathway groupings were taken from (Garraway and Lander, 2013). Four groupings were 
dropped because they only contain a single gene (e.g. the 'RNA abundance' pathway contained a single 
gene DIS3). Six groupings were removed because they referred to a broad molecular class of genes 
(‘RTK Signalling’, ‘Chromatin histone methyltransferases’) rather than a specific pathway or complex. 
Three further groupings were removed as they were catch-all terms for unclassified driver genes (e.g. 
‘Other signaling’). We then added three additional pathways to this list – homologous recombination 
(based on data described by Wood and Lindahl (Wood et al., 2005; Wood et al., 2001), FGFR signalling 
(containing the FGFR genes which were previously only annotated as ‘RTK signaling’) and the PRC2 
complex (Kuzmichev et al., 2002). From this list we then removed groupings that were not represented by 
any mutant cell lines in our panel or groupings in which only a single member of the grouping was 
mutated in our cell lines. Finally pathways that were essentially redundant (comprised of identical sets of 



 

 

mutated genes) in the panel of cell lines we screened were combined. The pathways used are presented 
in Table S1M. 
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