
Article
Large-Scale Profiling of K
inase Dependencies in
Cancer Cell Lines
Graphical Abstract
Highlights
d Kinome-wide (714 gene) siRNA screens in 117 cell lines from

ten cancer histotypes

d Integrating genotype data reveals cancer driver gene

dependencies

d Integrating protein interaction data aids the interpretation of

genetic dependencies

d Identified dependencies enable prediction of mutant cell line

responses to drugs
Campbell et al., 2016, Cell Reports 14, 2490–2501
March 15, 2016 ª2016 The Authors
http://dx.doi.org/10.1016/j.celrep.2016.02.023
Authors

James Campbell, Colm J. Ryan,

Rachel Brough, ..., Sandra J. Strauss,

Alan Ashworth, Christopher J. Lord

Correspondence
alan.ashworth@ucsf.edu (A.A.),
chris.lord@icr.ac.uk (C.J.L.)

In Brief

Campbell et al. use parallel siRNA

screens to identify the kinase

dependencies of 117 cancer cell lines

from ten cancer types. They use this

resource to identify kinase dependencies

associated with specific cancer types or

driver genes and show that the

integration of protein interaction

networks facilitates the interpretation of

these dependencies.

mailto:alan.ashworth@ucsf.edu
mailto:chris.lord@icr.ac.uk
http://dx.doi.org/10.1016/j.celrep.2016.02.023
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.celrep.2016.02.023&domain=pdf


Cell Reports

Article
Large-Scale Profiling of Kinase Dependencies
in Cancer Cell Lines
James Campbell,1,9 Colm J. Ryan,2,9 Rachel Brough,1 Ilirjana Bajrami,1 Helen N. Pemberton,1 Irene Y. Chong,1,3

Sara Costa-Cabral,1 Jessica Frankum,1 Aditi Gulati,1 Harriet Holme,1,4 Rowan Miller,1,4 Sophie Postel-Vinay,1,5

Rumana Rafiq,1 Wenbin Wei,1 Chris T. Williamson,1 David A. Quigley,6 Joe Tym,7 Bissan Al-Lazikani,7 Timothy Fenton,4

Rachael Natrajan,8 Sandra J. Strauss,4 Alan Ashworth,1,10,* and Christopher J. Lord1,*
1The Breast Cancer Now Research Centre and CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
2Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
3Royal Marsden Hospital, London SW3 6JJ, UK
4UCL Cancer Institute, University College London, London WC1E 6DD, UK
5Gustave Roussy Cancer Campus, 94805 Villejuif, France
6UCSF Helen Diller Family Comprehensive Cancer Centre, San Francisco, CA 94158, USA
7Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Sutton SM2 5NG, UK
8Functional Genomics Laboratory, The Breast Cancer Now Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
9Co-first author
10Present address: UCSF Helen Diller Family Comprehensive Cancer Centre, San Francisco, CA 94158, USA

*Correspondence: alan.ashworth@ucsf.edu (A.A.), chris.lord@icr.ac.uk (C.J.L.)

http://dx.doi.org/10.1016/j.celrep.2016.02.023

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
SUMMARY

One approach to identifying cancer-specific vulnera-
bilities and therapeutic targets is to profile genetic
dependencies in cancer cell lines. Here, we describe
data from a series of siRNA screens that identify the
kinase genetic dependencies in 117 cancer cell lines
from ten cancer types. By integrating the siRNA
screen data with molecular profiling data, including
exome sequencing data, we show how vulnerabil-
ities/genetic dependencies that are associated with
mutations in specific cancer driver genes can be iden-
tified.By integrating additional datasets into this anal-
ysis, including protein-protein interaction data, we
also demonstrate that the genetic dependencies
associatedwithmany cancer driver genes formdense
connections on functional interaction networks. We
demonstrate the utility of this resource by using it to
predict the drug sensitivity of genetically or histologi-
cally defined subsets of tumor cell lines, including an
increased sensitivity of osteosarcoma cell lines to
FGFR inhibitors and SMAD4 mutant tumor cells to
mitotic inhibitors.

INTRODUCTION

The phenotypic and genetic changes that occur during tumori-

genesis alter the set of genes upon which cells are dependent.

The best known example of this phenomenon of ‘‘genetic de-

pendency’’ is oncogene addiction where tumor cells become

dependent upon the activity of a single oncogene, which

when inhibited leads to cancer cell death. Alternatively, tumor

cells can become addicted to the activity of genes other than
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oncogenes, effects known as non-oncogene addictions (Luo

et al., 2009), induced essential effects (Tischler et al., 2008),

or synthetic lethal interactions (Kaelin, 2005). From a clinical

perspective, identifying genetic dependencies in tumor cells

could illuminate vulnerabilities that might be translated into

therapeutic approaches to treat the disease. Examples of this

approach include the development of drugs that target onco-

gene addiction effects, such as imatinib in the case of ABL

addiction, and therapeutic approaches that exploit synthetic

lethal effects, such as PARP inhibitors for BRCA-deficient

cancers (Lord et al., 2015).

A number of groups have used high-throughput screening ap-

proaches such as RNAi or small molecule sensitivity screens to

systematically identify genetic dependencies in tumor cell lines

(Barretina et al., 2012; Brough et al., 2011; Cowley et al., 2014;

Garnett et al., 2012; Koh et al., 2012). A particular focus has

been in dissecting genetic dependencies that involve kinases

(Brough et al., 2011; Grueneberg et al., 2008), as these enzymes

play key roles in a number of oncogenic processes (Greenman

et al., 2007) and are pharmacologically tractable (Sakharkar

and Sakharkar, 2007; Workman and Al-Lazikani, 2013; Zhang

et al., 2009). Previously, we used high-throughput short inter-

fering (si)RNA screening to identify the kinase dependencies in

a panel of 20 breast cancer derived cell lines (Brough et al.,

2011). Here, we describe as a resource an expansion of this

approach, namely parallel siRNA screens targeting 714 genes

in 117 genetically and histologically diverse tumor cell lines.

Building on our previous work (Brough et al., 2011), we extend

our analytical approach to describe how this data set may be

used as a hypothesis-generating tool for identifying candidate

therapeutic targets associated with specific tumor histotypes

or mutations in cancer driver genes. We also illustrate how, by

integrating this functional data with orthogonal data sources

such as protein-protein interaction data sets, these genetic de-

pendencies might be dissected mechanistically.
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A Figure 1. Screening Overview

(A) Schematic of siRNA screening, data process-

ing, and genomic data integration.

(B) Piechart illustrating histotypes for 117 cell lines

that passed QC (CNS).

(C) Frequency plot depicting the number of cell

lines in which each kinase siRNA caused a signif-

icant growth defect (Z % �2).

(D) Clustered heatmap summarizing the KGDs of

117 cell lines. The average linkage hierarchical

clustering was used with Pearson’s correlation as

the similarity metric. Only the 20% most variable

siRNA Z scores were used for the calculation

of correlations. The histotype of each cell line

is indicated by the color blocks to the left of

the heatmap and corresponds to the scheme

shown in (B).
RESULTS

Kinase Genetic Dependencies Identified by Parallel
siRNA Screens
We screened a panel of 136 tumor cell lines in triplicate in a plate-

arrayed format using an siRNA library designed to target 714

genes (see Experimental Procedures and Figure 1A). The genes

targeted with this library included 500 protein kinases (Manning

et al., 2002), with the remaining targets comprising metabolic

kinases (e.g., ATP-dependent 6-phosphofructokinases), lipid

kinases (e.g., PIK3C2A), as well as proteins that lack kinase

activity, but directly impact kinase signaling (e.g., the cyclin

dependent kinase inhibitor CDKN1C). Cells were reverse trans-

fectedwith siRNA and then cultured until cells reached 70%con-
Cell Reports 14, 2490–2501
fluency (on average 4-7 days), at which

point cell viability was assessed using

the CellTiter-Glo assay. Following data

processing and the application of quality

control filters to ensure the reproducibility

and high dynamic range of each screen

(seeSupplemental Information; Figure 1A;

Table S1A), we retained 117 high quality

screens for further analysis. The resulting

resource (Table S1B) features tumor cell

line models from ten different cancer

types (breast, ovarian, lung, osteosar-

coma, esophageal, pancreatic, head,

and neck, cervical, CNS, and endome-

trioid; Figure 1B), and includes data for

69 lines not profiled in prior large-scale

RNAi screens (Brough et al., 2011; Cow-

ley et al., 2014; Koh et al., 2012).

To allow data to be compared between

different cell lines, the viability data from

each screen were standardized by the

use of a robust Z score statistic (Table

S1B). We considered candidate kinase

genetic dependencies (KGDs) in the

data set as those where the siRNA elicited

Z < �2 effects. 76% of the kinases pro-
filed in the screening library represented KGDs in at least one tu-

mor cell model. Additionally, 53% and 26% represented KGDs

in R5 and R10 cell lines, respectively (Figure 1C and Table

S1C). On average, each tumor cell line model exhibited 51

KGDs. A set of six kinase-coding genes (PLK1, AURKA, WEE1,

CHEK1, CDK11A, and GUCY2D) represented KGDs in >70%

of the cell lines screened and four of these (PLK1, AURKA,

WEE1, and CHEK1) are known to be involved in the mitotic

cell-cycle -checkpoint.

Candidate KGDs Associated with Tumor Histotypes
Using average linkage hierarchical clustering to cluster the siRNA

Z score data (Figure 1D), we found that tumor cell lines fre-

quently clustered according to tumor histotype. For example,
, March 15, 2016 ª2016 The Authors 2491
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Figure 2. Kinase Dependencies Associated with Histotypes

(A) Radar plot summarizing the KGDs associated with the osteosarcoma histotype. The concentric circles indicate the statistical significance and the depth of

color indicates the separation of Z scores between the osteosarcoma histotype and the non-osteosarcoma group of cell lines. A set of six kinases annotated as

involved in skeletal system morphogenesis in the Gene Ontology are annotated with asterisks.

(B) Heatmap of KGDs enriched in osteosarcoma cell lines are shown as a heatmap representing siRNA Z scores. The asterisks indicate kinases involved in

skeletal system morphogenesis as in (A).

(C and D) Box plots of area under curve (AUC) estimates for 58 cell lines exposed to the FGFR inhibitor AZD4547 (C) and PD173074 (D) at eight different

concentrations. FGFR1 and FGFR2-amplified cell lines are indicated with black and green circles, respectively. The non-tumor epithelial cell lines MCF10A and

MCF12A are indicated with gray arrows.

(E) Box plot of AUC estimates for a panel of cell lines exposed to the FGFR inhibitor PD173074 (Garnett et al., 2012).

In each box plot (C–E), the top and bottom of the box represents the third and first quartiles and the box band represents the median (second quartile); whiskers

extend to 1.5 times the interquartile distance from the box. See also Figures S1 and S2.
themajority of ovarian cancer cell lines formed a single cluster, as

did thosemodels derived fromosteosarcomas (Figure 1D). Using

median permutation (MP) tests on theZ score data, we found 151

KGDs associated with specific histotypes at a false discovery

rate (FDR) of 0.1 (Table S1D). As expected, the number of

KGDs associated with each histotype was correlated with the

number of cell lines screened for that histotype (Spearman’s

rho = 0.82), reflecting the increased statistical power resulting

from a larger sample size. In breast cancer models, we found

an increased requirement for ERBB3 and PIK3CA, members of

the ERBB2 and PI3-kinase signaling pathways that are fre-

quently dysregulated in this cancer histology (Miller et al.,
2492 Cell Reports 14, 2490–2501, March 15, 2016 ª2016 The Author
2011). In contrast, models of osteosarcoma were more reliant

upon genes involved in ‘‘skeletal system morphogenesis’’,

including PDGFRA, ACVR2B, TGFBR2, DLG1, FGFR1, and

FGFR2 (Su et al., 2008) (Gene Ontology enrichment p < 0.001 af-

ter correcting for multiple hypothesis testing, Berriz et al., 2009;

Figures 2A and 2B). The FGFR1 and FGFR2 KGDs suggested

that osteosarcomamodels might be especially sensitive to small

molecule FGFR inhibitors. Testing a set of 58 tumor cell lines for

FGFR inhibitor sensitivity, we found AZD4547 (Gavine et al.,

2012) and PD173074 (Bansal et al., 2003) to be more selective

for osteosarcoma models (AZD4547, p = 7.6 3 10�3,

PD173074 p = 3.9 3 10�2; Figures 2C and 2D; Table S1E) and
s
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to have minimal effects in two non-tumor epithelial models (Fig-

ure S1). This osteosarcoma selective effect was independent of

FGFR1 or FGFR2 amplification status and was also apparent

when FGFR1 or FGFR2 amplified tumor cell lines were excluded

from the analysis (AZD4572, p = 7.2 3 10�3 and PD173074, p =

4.33 10�2; Figures 2C and 2D). Furthermore, the osteosarcoma

selective nature of PD173074 was confirmed by a reanalysis of

PD173074 sensitivity data derived from 660 tumor cell lines (Gar-

nett et al., 2012) (Figure 2E; p=1.4310�3). Taken together, these

results suggested that FGFR inhibitors might show some utility in

osteosarcoma, but that factors in addition to FGFR1 and FGFR2

amplification might explain drug sensitivity in this setting.

We also assessed the possibility that KGDs could be identified

that were associated with specific subtypes of cancer. We, and

others, have previously used RNAi data to identify KGDs associ-

ated with distinct breast cancer subtypes (Brough et al., 2011;

Marcotte et al., 2012). To illustrate the utility of the expanded

data set described here, we used MP tests to identify KGDs

associated with the clear cell subtype of ovarian cancer (OCC).

We found three kinases (CAMK2N1, GRK2, and MAP3K9) to

be KGDs in OCCmodels, compared to other ovarian cancer his-

tologies such as serous ovarian cancer (Figure S2; Table S1F).

Candidate KGDs Associated with Driver Gene
Alterations
By integrating the siRNA data with exome sequencing (Forbes

et al., 2015) and copy number profiling data (Barretina et al.,

2012), we identified KGDs associated with mutations in each

of 200 candidate cancer driver genes (see Supplemental Infor-

mation; Table S1G). We identified 4,247 putative dependencies

associated with driver gene mutations (uncorrected MP test

p % 0.05; Table S1H). As the large number of tests performed

using these 200 driver genes prohibited correction for multiple

hypothesis testing, we focused our subsequent analysis on 21

key cancer driver genes (12 tumor suppressor genes and nine

oncogenes; Futreal et al., 2004; Vogelstein et al., 2013) (Fig-

ure 3A) mutated in at least seven tumor cell lines in our panel.

This identified 211 KGDs at an FDR of 0.5 (Table S1I) that could

form the basis for subsequent validation experiments.

This approach reconfirmed the well-established ERBB2

oncogene addiction in models of breast cancer, but also estab-

lished ERBB2 addiction/KGD in models of esophageal cancer

(Figures 3B and 3C), where ERBB2 is recurrently amplified/over-

expressed in 20% of tumors (Bang et al., 2010). This suggested
Figure 3. KGDs Associated with Cancer Driver Mutations

(A) Bar chart indicating the frequency of driver gene alterations observed in the ce

alterations were detected.

(B) Radar plot summarizing the KGDs associated with ERBB2 amplification (the

(C) Box plot showing the ERBB2 Z scores for cell lines grouped according to ER

(D) Box plots showing additional KGDs associated with ERBB2 amplification.

(E) Box plots summarizing CCND1 KGDs upon CIT.

(F) Examples of KGDs that are supported by protein-protein interactions.

(G) Examples of KGDs that are supported by kinase-substrate relationships.

(H) Examples of KGDs that are supported by gene regulatory relationships.

(I) Examples of KGDs associated with ERBB2 amplification status in esophageal c

path between the mutated driver gene and kinases.

In each box plot (C–I), the top and bottom of the box represents the third and first

extend to 1.5 times the interquartile distance from the box. See also Figures S3
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that this particular genetic dependency was relatively indepen-

dent of the underlying histotype. ERBB2 amplification was

also associated with dependency upon other members of the

ERBB2 signaling network including the ERBB2 binding partner

ERBB3 (p = 23 10�3), JAK2 (p = 13 10�2), and the downstream

effector of ERBB2, PIK3CA (p = 4 3 10�3; Figure 3D). We found

other KGDs associated with ERBB2 amplification, including a

strong dependency upon the stress response kinase MEK3

(MAP2K3, p = 4 3 10�4; Figure 3D) (Dérijard et al., 1995) and

PIP5K1A (p = 2 3 10�5), a kinase involved in inositol phosphate

metabolism (Loijens and Anderson, 1996).

We assessed the possibility that some KGDs associated with

cancer driver gene mutations might be private to or more pro-

found in particular histotypes. For example, BRAF p.V600E

mutant melanomas are extremely sensitive to BRAF inhibition,

whereas colorectal cancers with the same mutation show little

response (Prahallad et al., 2012). We used a similar analysis as

above to identify KGDs associated with driver gene mutations

within particular histotypes and identified 943 KGDs (Tables

S1J and S1K), compared to 211 in the prior analysis that com-

bined all histotypes. Together, these 1,154 candidate depen-

dencies could inform the design of subsequent validation

studies. As an example of this, we selected for validation one

of the KGDs associated with RB1 mutation in osteosarcoma

(Kansara et al., 2014), DYRK1A (p = 6.8 3 10�3; Figure S3A), a

component of the DREAM complex (Sadasivam and DeCaprio,

2013) previously identified as a protein interaction partner of

RB1 (Varjosalo et al., 2013). To confirm the dependency of

RB1 null osteosarcoma models upon DYRK1A, we selected 14

osteosarcoma models and characterized these according to

their RB1 mutation and protein expression status and estab-

lished that multiple distinct DYRK1A siRNAs could replicate

the RB1 selectivity observed in the initial screen as well as elicit-

ing DYRK1A silencing (Figure S3). These results suggest that

DYRK1A might represent a valid genetic dependency in RB1

defective osteosarcoma cells.

We also noted from our analysis of the siRNA data that some

genetic dependencies associated with cancer driver gene

mutations were observed independently in multiple histotypes.

These included KGDs associated with ERBB2 amplification in

breast and esophageal cancer models (e.g., ERBB2 p = 7.9 3

10�5 [breast] and p = 9.2 3 10�3 [esophageal] and MAP2K3 p =

3.33 10�2 [breast] and p = 4.43 10�3 [esophageal]; Figure S4A),

but also a dependency upon the microtubule associated
ll line panel. The colored segments in each bar indicate the histotypes in which

scheme as per Figure 2A).

BB2 amplification status. The colors indicate cell line histotypes as in (A).

ancer models supported by kinase-substrate relationships that form a shortest

quartiles and the box band represents the median (second quartile); whiskers

and S4 and Tables S1I and S1K.
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serine/threonine kinase MAST1 in CCND1 amplified breast

or esophageal cancer models (p = 1.1 3 10�2 [breast] and

p = 1.3 3 10�2 [esophageal]; Figure S3B). Likewise, a KGD

upon Citron Rho-interacting kinase (CIT), a regulator of cytoki-

nesis (Madaule et al., 1998) was also seen in CCND1 amplified

breast or esophageal cancer models (p = 2. 3 10�3 [breast],

p = 2.6 3 10�3 [esophageal]; Figure 3E). In both osteosarcoma

(p = 1.4 3 10�3) and lung cancer models (p = 3.5 3 10�2; Fig-

ureS1C),we identified an association betweenmutation/deletion

of CDKN2A and dependency upon the cyclin dependent kinase

gene CDK11A, which encodes a CDKN2A interacting protein

(Varjosalo et al., 2013). In total, we identified 63 kinase depen-

dencies associated with driver gene mutation status that were

observed independently in more than one histotype (Table S1K).

Integrating Data on Protein-Protein and Regulatory
Interactions Facilitates the Interpretation of Genetic
Dependencies
The set of KGDs associated with cancer driver gene alterations

can be used to frame testable hypotheses, such as ‘‘mutation

in gene A drives dependency upon a gene B.’’ However, without

further information, there are a number of potential mechanistic

explanations for each genetic dependency. In model organisms,

the problem of interpreting such dependencies has been ad-

dressed by integrating information from protein-protein (Beyer

et al., 2007) and kinase-substrate interaction databases (Fiedler

et al., 2009). To facilitate a mechanistic understanding of KGDs

and to provide additional guidance for the design of subsequent

experiments, we annotated our list of KGDs according to

whether they involved known protein-protein interactions

(Chatr-Aryamontri et al., 2015; Das and Yu, 2012), known ki-

nase-substrate relationships (Lachmann and Ma’ayan, 2009),

or known regulatory relationships (Cerami et al., 2011) between

the driver gene and the identified dependency (see Experimental

Procedures). Doing this, we found 113 KGDs involved pairs of

genes with a previously reported functional relationship between

the mutated driver gene and kinase target (Tables S1I and S1K).

For example, mutation/amplification of EGFR in lung cancer cell

lines was associated with an increased dependency upon FES

(p = 33 10�2; Figure 3F), previously identified as an EGFR bind-

ing partner (Jones et al., 2006). Similarly, in esophageal cancer

models, we identified a significant association betweenmutation

of the chromatin remodeling factor gene SMARCA4 and depen-

dency upon the bromodomain protein BRD4 (p = 6 3 10�3; Fig-

ure 3F), previously identified as a protein interaction partner of

SMARCA4 (Rahman et al., 2011). Among the dependencies

associated with a kinase-substrate interaction, we found that

mutation of STK11 (LKB1) in ovarian cancer models was associ-

ated with an increased dependency uponMARK2 (p = 23 10�3;

Figure 3G), an LKB1 substrate (Lizcano et al., 2004). Similarly, we

found that MYC (cMYC) amplified esophageal models had an

increased dependency upon MAPK1 (ERK-2, p = 1.2 3 10�2;

Figure 3G), which is known to phosphorylate and stabilize the

cMYC protein (Sears et al., 2000). We also identified a series of

dependencies between cancer driver genes and their transcrip-

tional targets, the majority of which focused upon MYC. In lung

cancermodels, we found thatMYC amplification was associated

with an increased dependency upon CDKL5 (5.6 3 10�3; Fig-
Cell
ure 3H), a genewhose expression is regulated byMYC. Similarly,

in esophageal models, we found MYC amplification to be asso-

ciated with an increased dependency upon the MYC transcrip-

tional target PRKCH (Zeller et al., 2006) (p = 6.7 3 10�3;

Figure 3H).

For KGDs where a direct relationship between the driver gene

and the kinase was not known, we used a simple information-

flow type analysis to identify the shortest known molecular

paths between driver gene and the kinase dependency (Tables

S1I and S1K). For example, one of the strongest dependencies

identified across all histotypes was between STK11 and

SRP72 (Figure S4C). We found no evidence of a direct relation-

ship between the two genes, but found that STK11 has been

shown to regulate the expression ofMYC (Nath-Sain and Marig-

nani, 2009), which in turn has been shown to regulate SRP72

(Zeller et al., 2006), suggesting a putative path linking the driver

gene and the kinase dependency. In esophageal cancer models,

we found that ERBB2 amplification is associated with MASTL

(Voets and Wolthuis, 2010) and NEK9 (Belham et al., 2003)

KGDs (Figure 3I). We found no direct link between ERBB2 and

either of these kinases, but both are CDK1 substrates and

CDK1 itself is an ERBB2 substrate. In this instance, all members

of the path (ERBB2/CDK1/NEK9/MASTL) were identified as

ERBB2 dependencies. In total, 163 dependencies not supported

by a direct link could be reached by adding one intermediate

connection (e.g., CDK1 is an intermediate connection between

ERBB2 and NEK9).

Pathway and Network Level KGDs
Work in model organisms has shown that a genetic mutation

often results in an increased dependency on not just one gene,

but multiple genes involved in a specific pathway or complex

(Collins et al., 2007; Kelley and Ideker, 2005; Ryan et al., 2012).

To explore the utility of this concept in interpreting our KGD

data, we mapped the nominally significant KGDs (p % 0.05)

identified for each cancer driver gene across all histotypes

onto the high-confidence STRING functional interaction network

(Franceschini et al., 2013) (see Experimental Procedures). For

11 of the 21 driver genes analyzed (KRAS, ERBB2, CCND1,

PIK3CA, SMAD4, NOTCH2, ARID1A, NF1, FBXW7, MAP2K4,

and RB1), we found that the dependencies associated with

each driver gene were significantly more connected on the

STRING interaction network than would be expected by chance

(see Experimental Procedures; Figure S5; Table S1L). This sug-

gested that these 11 driver genes might induce dependencies

not just on individual genes, but on functional subnetworks.

For two of these networks, we added known protein-protein

and kinase-substrate interaction data to aid their interpretation.

In the case of the network associated with ERBB2 amplification,

this suggested that ERBB2 amplification might induce depen-

dencies on direct binding partners and substrates of ERBB2

(JAK2, ERBB3, and PIK3CA), but also a network of genes

involved in MAPK signaling (e.g., MAP2K3, MAP3K4, and

MAP3K2) and inositol phosphate metabolism (including

PIP5K1A, PIK3CA, and PIK3CD) (Figure 4A). Similarly, we found

significantly more functional interactions among the kinases

identified as dependencies associated with mutation of the tu-

mor suppressor SMAD4, a member of the TGF-b pathway that
Reports 14, 2490–2501, March 15, 2016 ª2016 The Authors 2495
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Figure 4. Driver Gene KGDs and Functional Interaction Networks

(A) Functional interaction network showing interactions between ERBB2

amplification-associated KGDs. The nodes correspond to kinases that are

identified as KGDs in ERBB2 amplified cell lines. The nodes are scaled to

indicate the significance of the KGD association p value. The blue edges

correspond to experimentally determined protein-protein interactions, the

pink arrows indicate the direction of experimentally determined kinase-sub-

strate interactions, and the gray edges reflect high-confidence STRING

functional interactions. Only KGDs that interact with at least one other ERBB2

dependency are shown.

(B) Functional interaction network showing interactions among KGDs identi-

fied in SMAD4 mutated cancer cell lines. Details as for ERBB2 network in (A).

(C) Box plot showing AUC values of a panel of cell lines exposed to com-

pounds targeting microtubules (paclitaxel and epothilone B) or Aurora Kinases

(VX680) and classified into SMAD4 mutant or wild-type groups. The top and

bottom of the box represents the third and first quartiles and the box band

represents the median (second quartile); whiskers extend to 1.5 times the

interquartile distance from the box.

See also Figure S5 and Table S1L.
is frequently mutated or homozygously deleted in colorectal

(Thiagalingam et al., 1996), pancreatic (Hahn et al., 1996), and

esophageal (Dulak et al., 2013) cancers (Figure 4B). The inte-

grated network we constructed from SMAD4 KGDs revealed

that AKT1 and a number of its substrates (FGR, MAP3K3,

PIKFYVE,CHEK1, andWEE1) were SMAD4mutation associated

KGDs. Consistent with this, loss of SMAD4 has been shown to

be associated with increased AKT activation in colorectal and

pancreatic tumor cell lines (Chen et al., 2014; Zhang et al.,

2014). Furthermore, a recent large-scale drug screen identified
2496 Cell Reports 14, 2490–2501, March 15, 2016 ª2016 The Author
SMAD4 as the only driver gene significantly associated with

sensitivity to A-443654, a pan-AKT inhibitor (Garnett et al.,

2012). In addition to AKT1 and its substrates, we found a densely

connected group of kinases that regulate the mitotic cell cycle in

the SMAD4 dependency network (Figure 4B), suggesting that

SMAD4 mutant tumor cell lines may have an increased sensi-

tivity to perturbation of this process. To test this hypothesis,

we analyzed a compendium of drug sensitivity profiles (Garnett

et al., 2012) and found that SMAD4 mutant cell lines have

increased sensitivity to the Aurora Kinase inhibitor VX-680 (Har-

rington et al., 2004) (p = 4 3 10�3; Figure 4C). Furthermore, we

found that SMAD4 mutant cell lines also exhibited an increased

sensitivity to the mitotic inhibitors paclitaxel (p = 8.33 10�5) and

epothilone B (p = 3 3 10�3; Figure 4C), suggesting a general

sensitivity to drugs that target the mitotic checkpoint.

We present the functional interaction networks for the depen-

dencies associated with each driver gene in Figure S5 and Table

S1L. In addition to aiding the interpretation of dependencies,

these subnetworks may be useful in alleviating some of

the problems associated with false-positive effects in high-

throughput genetic screens. Although there is a possibility of

any given dependency being the result of off-target siRNA ef-

fects (Jackson and Linsley, 2010), the likelihood of an entire

pathway being identified through off-target effects is likely to

be much lower.

In the examples described above, we used the siRNA data to

identify KGDs associated with defects in individual driver genes.

Although there are hundreds of reported driver genes in cancer,

some of these can be grouped into a small number of recurrently

altered pathways (Garraway and Lander, 2013). Furthermore, it is

possible that mutation in any member of such a pathway might

have similar phenotypic effects. With this in mind, we considered

whether we could identify candidate ‘‘pathway level’’ depen-

dencies by grouping tumor cell lines according to mutations in

any one of a set of driver genes belonging to the same pathway

or complex. We obtained a previously curated list of pathways

associated with driver gene mutations (Garraway and Lander,

2013) and manually updated this using literature information on

well-established pathways (e.g., homologous recombination).

For each pathway, tumor cell lines were grouped using a logical

OR argument, i.e., if a cell line possessed a functional mutation

of anygenemember of thepathway then that cell linewasconsid-

eredmutated in that pathway. This resulted in a set of 15 pathway

groupings (Table S1M) that were perturbed in at least seven tu-

mor cell lines. Associating pathway mutations with KGDs was

then performed in the same way as for individual genes using

the MP test approach. This resulted in the identification of an

additional 338 dependencies across all histotypes (Table S1N)

and 748 histotype-specific dependencies (Table S1O).

As with individual driver genes, we found that the mutation

of pathways was often associated with dependencies that

were densely connected on the STRING functional interaction

network. Indeed, using the dependencies identified across all

histotypes, we found that nine of the 15 pathways (HR, PRC2,

PI3K signaling, Cell Cycle Oncogenes, Cell Cycle Merged, TOR

Signaling, MAPK Signaling, TGF B Signaling, and RAS/RAF

Signaling) were associated with dependencies that were more

functionally connected than would be expected by chance.
s
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Figure 5. Pathway Mutations Associated with KGDs

(A) Heatmap showing increased dependency on TWF2 in cell lines with loss-of-function mutations in members of the SWI-SNF complex.

(B) Heatmap showing increased dependency on UCK2 in ovarian cancer cell lines with loss-of-function mutations in members of the SWI-SNF complex.

(C) Heatmap showing increased dependency on DAPK1 in esophageal cancer cell lines with loss-of-function mutations in members of the SWI-SNF complex.

(D) Heatmap showing increased dependency upon CDK6 in cell lines bearing mutations in KRAS, HRAS, NRAS, or BRAF.

See also Figure S5 and Tables S1M–S1O.
This suggested thatmutation of one pathwaymay induce depen-

dency on a second pathway, consistent with observations from

yeast where it has been shown genetic dependencies can often

be best explained as occurring between pairs of pathways (Kel-

ley and Ideker, 2005). The dependency graphs associated with

each pathway are presented in Figure S5.

In some instances, the association between a pathway and ki-

nase siRNA had a predictive value no greater than the associa-

tion with an individual member of the pathway. For example,

alteration in the mTOR signaling pathway (mutation in TSC1

OR TSC2 OR STK11) was associated with an increased depen-

dency upon the signal recognition particle SRP72 gene (rho =

�0.40), but mutation of STK11 alone better explained the relative

sensitivity of mutant and non-mutant cell lines in this regard

(rho =�0.44). We therefore filtered these associations to identify

175 across-histotype (Table S1N) and 608 histotype-specific

pathway dependencies where the pathway was a better predic-

tor of dependency than any one individual gene (Table S1O). One

example of a pathway dependency involved loss-of-function
Cell
mutations in the genes encoding components of the SWI/SNF

complex, mutated in �20% of all human cancers. By grouping

all tumor cell lines that had a loss-of-function mutation or

homozygous deletion of any member of the SWI/SNF complex

(including the genes ARID1A, SMARCA1, SMARCA4, ARID2,

ARID1B, and PBRM1) and then carrying out MP tests on the

siRNA data as before, we identified ten KGDs including TWF2

(Figure 5A), a gene encoding a protein that affects the stability

of the actin cytoskeleton through interaction with G-actin (Pivo-

varova et al., 2013). Further dependencies were identified for this

complex within specific histotypes including the uridine-cytidine

kinase gene UCK2 (Van Rompay et al., 2001) in ovarian cancer

models (Figure 5B) and the death-associated protein kinase

gene DAPK1 in esophageal cancer models (Figure 5C).

We also investigated MAPK gene alterations (including RAS

gene or BRAF mutations) as a pathway and found a CDK6 KGD

(Figure 5D). The dependency of KRAS mutant tumor cell lines

upon CDK6was readily apparent (rho =�0.38), but was stronger

when KRAS, HRAS, NRAS, or BRAF mutant tumor cell line
Reports 14, 2490–2501, March 15, 2016 ª2016 The Authors 2497



modelswere combined as agroup (rho=�0.43). CDKs, including

CDK6, have been identified by a number of groups as putative

non-oncogene addictions for KRAS mutant cancers (Barbie

et al., 2009; Puyol et al., 2010). Our results suggest that CDK6

might be a non-oncogene addiction not just for KRAS mutant

models, but also for cell lines with any one of a variety of MAPK

activating mutations (NRAS, HRAS, and BRAF). We tested this

hypothesis using published drug screening results for a CDK4/

6 inhibitor (PD0332991) in 628 cell lines (Garnett et al., 2012)

and found a significant association between mutation of the

MAPK pathway and sensitivity to this inhibitor (p = 2.5 3 10�3,

Mann-Whitney U [MW U]-test). None of the individual members

of this pathway showed as strong an association with this inhib-

itor (KRAS p = 1.93 10�1, HRAS p = 5.83 10�2, NRAS p = 1.73

10�2, BRAF p = 2.8 3 10�2, and MW U-test).

DISCUSSION

A key challenge in the study of cancer biology is to understand

how driver mutations alter the cellular state to promote tumor

progression and how these altered states may be exploited in

the development of targeted therapeutic approaches to the

disease (Yaffe, 2013). Here, we have used siRNA screening to

quantitatively estimate the kinase requirements of tumor cell

lines in an attempt to understand better the genetic depen-

dencies present. By integrating our siRNA data with molecular

and histotype classifications, we have identified KGDs associ-

ated with particular cancer histologies or the presence of partic-

ular driver gene mutations. By integrating the KGD data with

additional sources of annotation, such as protein-protein inter-

action data, we have tried to exemplify how testable hypotheses

can be framed to explain the associations between a biomarker,

such as a driver gene mutation, and a kinase dependency. Our

aim in providing this data and illustrating its potential utility is

to present starting points for further work.

As with any large functional data set, it is important to point out

where elements of the technology usedmight influence the inter-

pretation of the data. In general, siRNA mediated gene silencing

is transient, when compared to, for example, short hairpin (sh)

RNAmediated RNAi. With this in mind, we used a relatively short

cell culture period between transfection and cell viability assess-

ment (a 4 to 7 day period). Nevertheless, we cannot predict

whether longer-term cell culture or longer-term gene silencing

might result in a somewhat different profile of genetic depen-

dencies. Furthermore, we used an ATP-based assay of cell

viability in the screens. Some modes of cell inhibition exist that

might have been missed using this method. As with any high-

throughput technique, siRNA screens also have inherent false-

positive and false-negative effects. Addressing false positives

is especially important given the well-documented off-target

effects associated with RNAi reagents (Jackson and Linsley,

2010). Consequently, we recommend that subsequent work

that builds on the dependencies we have identified encapsulates

some form of orthogonal validation. Individual siRNAs designed

to target a gene (as we have shown in the case of DYRK1A de-

pendency in RB1 null cell lines) or small molecule inhibitors (as

we have shown for the FGFR sensitivity of osteosarcoma cell

lines) might be used as a form of validation. Alternatively,
2498 Cell Reports 14, 2490–2501, March 15, 2016 ª2016 The Author
methods such as CRISPR-Cas9 mediated gene targeting

(Sander and Joung, 2014) might be appropriate. We also note

that like all genetic screen data sets, the negative predictive

value of our data (i.e., the prediction that a particular genetic

dependency does not exist) might be somewhat limited, given

the transient and sometimes incomplete nature of gene silencing

by siRNA.

In carrying out functional screens in cancer cell lines, we have

tried to use some of the lessons learned from studies in model

organisms to aid the interpretation of our identified depen-

dencies. For example, integrating protein-protein interaction

data with functional data (Figure 5) was an approach pioneered

in the study of yeast genetic interaction screens (Beyer et al.,

2007; Kelley and Ideker, 2005). Here, we have integrated this

type of data to help frame testable hypotheses relating to the

observed dependencies. A more sophisticated level of protein-

protein interaction data for human tumor cell lines (Krogan

et al., 2015) will undoubtedly enhance our ability to understand

genetic dependencies. Similarly the availability of phosphopro-

teomic data for the cell lines in our panel may facilitate a more

mechanistic reconstruction of the signaling networks active

in each cell line. A number of approaches (e.g., So et al., 2015;

Terfve and Saez-Rodriguez, 2012) have been developed to inte-

grate siRNA or small molecule perturbations with time-course

phosphoproteomics data sets to reconstruct signaling networks.

Currently phosphoproteomic data for cancer cell line panels are

relatively limited (e.g., Casado et al., 2013; Creixell et al., 2015),

but as the overlap of cell lines covered by these phosphoproteo-

mic resources and our siRNA resource increases there will

be opportunities for the development of further integrative

modeling approaches. Similarly, the increased availability of pro-

tein expression data sets (e.g., Lawrence et al., 2015; Moghad-

das Gholami et al., 2013) may provide further opportunities for

the development of additional integrative approaches.

Finally, to make our resource as useful to the community as

possible, we have made all of the data described in this

manuscript available (https://cansar.icr.ac.uk/), alongside the

computational scripts used to integrate data (https://github.

com/GeneFunctionTeam/cell_line_functional_annotation).
EXPERIMENTAL PROCEDURES

siRNA and Small Molecule Screening

Cell lines were transfected with a plate-arrayed siRNA library targeting 714 ki-

nases and kinase-related genes (Dharmacon SMARTpools). Positive control

(siPLK1) and multiple negative controls (siCON1 and siCON2; Dharmacon,

catalog numbers D-001210-01-20 and D-001206-14-20) and AllStar (QIAGEN,

catalognumber1027281)were includedoneveryplate. 20breastcancermodels

were screened in a 96-well-plate format while the remaining cell lines were

screened in a 384-well-plate format (Table S1A). All screens were performed in

triplicate. Cell viabilitywas estimated as cells reached 70%confluency (normally

4–7daysafter transfection) usingaCellTiter-Gloassay (Promega).Dataprocess-

ing and quality control was performed using the cellHTS2 R package (Boutros

et al., 2006). Further details, including small molecule sensitivity testing, are pro-

vided in the Supplemental Information.

Association Testing

To identify associations between specific features (histotype or driver gene

mutation) and sensitivity to specific siRNAs, a one-sided MP test was used.

For each siRNA, we compared the observed difference between the median
s
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Z score of the interest group and the median Z score of the ‘‘other’’ group to

that expected based on random permutation. There were one million random

samples that were created with the same sample sizes as the interest and

other groups and the difference in the medians of the two groups calculated,

allowing an empirically determined p value to be calculated. Correction for

multiple testing was performed using the Benjamini and Hochberg FDR (Ben-

jamini and Hochberg, 1995) and only those at an FDR of 50% are reported. For

all small molecule association tests, we used a one-sided MW U test on area

under the dose response curve values.

Data Access

All siRNA Z score data can be found in Table S1B and also at https://cansar.icr.

ac.uk/.

Data Integration

Data fromHINT (Das and Yu, 2012), BioGRID version 3.4.128 (Chatr-Aryamon-

tri et al., 2015), and KEA protein- protein interaction databases were used

(Lachmann and Ma’ayan, 2009). Kinase-substrate interactions were obtained

from KEA (Lachmann and Ma’ayan, 2009), PhosphoSitePlus (Hornbeck et al.,

2015) and (Cheng et al., 2014). High confidence (combined score >0.7) func-

tional interactions were obtained from the STRING database (Version 9.1;

Franceschini et al., 2013). Gene expression relationships were obtained from

Pathway Commons (Cerami et al., 2011). The shortest_path function in

NetworkX (Hagberg et al., 2008) was also used. Further details are provided

in the Supplemental Information.
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The accession number for the exome sequencing data of 11 ovarian cancer

cell lines reported in this study is ENA: PRJEB9639.
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Figure S1. Response to two small molecule FGFR inhibitors (AZD4547 
and PD173074) in non-tumour derived epithelial cell lines. (Related to 
Figure 2). A) Response of the normal epithelium-derived cell line MCF10A to 
eight concentrations of AZD4547 and PD173074. B) Response of the normal 
epithelium-derived cell line MCF12A to eight concentrations of AZD4547. Error 
bars represent standard error of the mean from three independent 
experiments. 
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Figure S2. Kinase dependencies associated with ovarian clear cell carcinoma. (Related to 
Figure 2). Boxplots illustrating the dependency of 11 ovarian clear cell (OCC) models on 
CAMK2N1, GRK4 and MAP3K9 relative to ovarian carcinoma models classified as other subtypes. 
See also Supplementary Table S1F. In each box plot the top and bottom of the box represents the 
third and first quartiles and the box band represents the median (second quartile); whiskers extend 
to 1.5 times the interquartile distance from the box. 
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Figure S3. Validation of DYRK1A dependency in RB1 mutant osteosarcoma cell lines. (Related to Figure 
3). A) Boxplot summarising Z-scores of osteosarcoma models treated with siRNAs targeting DYRK1A and 
grouped according to RB1 mutation status. B) DYRK1A siRNA smart pool deconvolution in RB1 wt and mutant 
osteosarcoma models. P-values shown for each siRNA and the pool of siRNAs (siPool) are the result of 
applying median permutation tests to the siRNA Z-scores comparing the mutant and wild type groups. C) 
Detection of RB1, p16 (CDKN2A) and actin in osteosarcoma cell lines using western blotting and 
immunostaining of proteins. D) CAL51 and MCF7 cells treated with individual siRNAs targeting DYRK1A 
together with a pool of the same siRNAs, non-targeting negative control siRNAs (siCON1, siCON2) or 
untreated cells were harvested 72 h post transfection. DYRK1A and Actin protein abundance was evaluated 
using western blotting and immunostain detection. E) Expression of DYRK1A vs GAPDH mRNA in CAL51 and 
MCF7 cells treated with siRNAs. Relative expression values were normalized to the median of the untreated 
samples. Explanation as for D. 
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Figure S4. Boxplots showing kinase dependencies associated with driver gene mutations. 
(Related to Figure 3). A) Genetic dependencies associated with ERBB2 amplification within breast 
and esophageal cancer histotypes. B) Genetic dependencies associated with CCND1 amplification 
within breast and esophageal cancer histotypes. C) Dependency of STK11 (LKB1) mutant cell lines to 
siRNA designed to target the Signal Recognition Particle 72 gene SRP72 in the complete panel of cell 
lines and within the lung cancer panel. In each box plot the top and bottom of the box represents the 
third and first quartiles and the box band represents the median (second quartile); whiskers extend to 
1.5 times the interquartile distance from the box. 



Figure S5. Network dependency maps for driver genes and pathways. (Related to Figure 4 and Figure 5). 
Functional interaction networks showing high-confidence STRING interactions between KGDs associated with 11 
driver genes and 9 pathways. Only those networks that are more densely connected than expected are shown. See 
also Supplementary Table S1L 



Table S1. Datasets used in the study and analysis result tables. The sheet named ‘explanation of 
the tables’ details the contents. 



 

 

Supplemental Experimental Procedures 
 
Cell lines and siRNA 
The majority of tumor cell lines were obtained from the American Type Culture Collection, European 
Collection of Cell Cultures and Deutsche Sammlung von Mikroorganismen und Zellkulturen. Head and 
neck cancer cell line models were obtained from Susanne Gollin and Theresa Whiteside (University of 
Pittsburgh), Tom Carey (University of Michigan) and Hans Joenje (VU Medical Centre, NL). All cell lines 
were maintained as per the supplier's instructions. STR typing of 10 loci was performed on each cell line 
using the GenePrint 10 system (Promega) and used to confirm the identity of cell lines prior to storage. 
Cell lines were transfected with siRNA SMARTpools (Dharmacon) using Dharmafect 3, Dharmafect 4 
(Dharmacon), Oligofectamine, Lipofectamine 2000 or RNAi max (Invitrogen) transfection reagents. 
siPLK1 (Dharmacon) was used as a positive control on each screen plate. Negative controls were 
siCON1, siCON2 (Dharmacon) and Allstar (Qiagen) and were included on every screening plate. 
 
siRNA screening and processing 
136 cancer-derived cell lines spanning 10 different tissue types were optimised for siRNA screening. This 
involved titrating the amount of lipid transfection reagent used as well as titrating cell number used for 
reverse siRNA transfections. For each cell line we tested at least four different transfection reagents and 
selected conditions that met the following criteria: (i) compared to a mock control (no lipid or siRNA), the 
transfection of non-silencing negative control siRNA caused no more than 20 % cell inhibition; (ii) 
compared to non-silencing negative control siRNA, the transfection of PLK1–targeting siRNA caused 
more than 80% cell inhibition; (iii) cell confluency reached 70% within the range of 4-7 days. The later 
criteria allowed assays to be terminated whilst cells were in growth phase. Once optimal conditions had 
been established, each cell line was transfected with a plate-arrayed siRNA library targeting 714 kinases 
and kinase-related genes (Dharmacon). 20 breast cancer cell lines were screened in a 96 well plate 
format, while the remainder were screened in a 384 well plate format (Supplementary Table S1A). Cell 
viability was estimated using a luminescent assay detecting cellular ATP levels (CellTitre-Glo, Promega). 
Luminescence values were processed using the cellHTS2 R package (Boutros et al., 2006).  To evaluate 
the effect of each siRNA pool on cell viability, we log2 transformed the luminescence measurements and 
then centred these to the median value for each plate. The plate-centred data were scaled to the median 
absolute deviation (MAD) of the library as a whole to produce robust Z-scores (Figure 1A). All screens 
were performed in triplicate. Screens judged to have poor dynamic range (Z’ factor ! 0) (Zhang et al., 
1999) or poorly correlated replicates (r ! 0.7) were excluded during an evaluation of screen quality. 
Subsequently, we retained kinase dependency profiles for 117 cell line models for further analysis.  
 
Small molecule kinase inhibitor cell inhibition assays 
Cell lines were profiled using two FGFR inhibitors (AZD4547 and PD173074) at eight different 
concentrations (0.5, 1, 5, 10, 50, 100, 500 and 1000 nM). A majority of the panel of cell lines profiled were 
derived from breast cancer and osteosarcomas with smaller numbers of cell lines derived from tumors of 
the central nervous system, cervix, head and neck, large intestine and lung cancer. 250-500 cells were 
seeded in 384 well plates. 24 hours post seeding, drug exposure was initiated and cells were 
continuously cultured in the presence of the drugs for a period of five days, at which point cell viability 
was estimated using Cell-Titre Glo (Promega). Cells were initially plated at a density to ensure that each 
cell line was in growth phase by the end of the five day treatment, similar to (Garnett et al., 2012). 
Luminescence values were normalised to the median of the per-plate DMSO negative control wells and 
the dose-response relationships modelled using 3-parameter logistic regression provided by the drc R-
package (Ritz and Streibig, 2005). Area under the dose response curve (AUC) measurements calculated 
using this package were used as a read-out of drug sensitivity. Each cell line was assessed in triplicate. 
 
 
Annotating cell lines according to mutation status 
We annotated cell lines according to the presence of DNA mutations and copy number alterations in 
oncogenes and tumor suppressor genes. We included genes in the Cancer Gene Census (Futreal et al., 
2004), genes listed in a census of amplified and overexpressed genes in human cancer (Santarius et al., 
2010) and genes identified as candidate tumor suppressor gene (TSG) or oncogenes (OG) using the 
TUSON explorer approach described by (Davoli et al., 2013). The set of cancer genes were classified into 



 

 

a tumor suppressor (TSG)-like group and an oncogene (OG)-like group using the molecular genetic 
classification information for genes available in the Cancer Gene Census. Genes with dominant effects 
were classified an oncogenes and those with recessive effects classified as tumor suppressor genes. 
Genes that were not included in the Cancer Gene Census were classified using the TUSON Explorer 
TSG and OG q-values (a positive classification occurring where the q-score for a given gene was < 0.1). 
 
We obtained exome sequencing data for 77 cell lines from the COSMIC cell line project 
(http://cancer.sanger.ac.uk). We extended this data set with new exome sequencing data from 11 ovarian 
cancer cell lines (deposited at http://www.ebi.ac.uk/ena/data/view/PRJEB9639, exome pipeline described 
in a later section). We also obtained gene copy number data for 86 cell lines from the CCLE project 
(http://www.broadinstitute.org/ccle/) (Barretina et al., 2012). To annotate cell lines according to likely 
functionally mutated cancer genes we built a pipeline that takes mutation information from whole exome 
sequencing experiments and somatic copy number variation (CNVs) from multiple sources and classifies 
each cell line as to whether or not there is evidence for mutation or CNV for each of the cancer genes 
(https://github.com/GeneFunctionTeam/cell_line_functional_annotation). This annotation pipeline 
conforms to guidelines for the integration of functional genomics data proposed by the International 
Cancer Genome Consortium (Gonzalez-Perez et al., 2013). A dictionary of terms describing mutational 
consequences in the various data sets was used to enable comparison across each data set. Specifically, 
terms relating to copy number amplification, homozygous deletion, truncating mutations or recurrent 
missense mutations were used to define those mutations most likely to have a functional consequence in 
affected cell lines. Where a mutation was observed that was deemed to have an uncertain consequence 
(for example, a non-recurrent missense mutation), the event was recorded so that during the association 
tests any cell lines with such mutations in a gene could be excluded from both the mutant and wild-type 
group. The annotation pipeline also performed standardisation of cell line names and gene identifiers. 
 
Using the exome data we considered a TSG-like gene to be functionally mutated in a given cell line if it 
contained a likely loss-of-function mutation (frameshift, nonsense or splice site alteration) or a missense 
mutation at a recurrently mutated residue (described in the next paragraph). In contrast we only 
considered an OG-like gene to be functionally mutated if it contained a mutation of a recurrently mutated 
residue. For CNV data sets we classified cell lines as containing a functionally relevant mutation if there 
was evidence of homozygous deletion of a TSG-like gene (GISTIC score of -2) or genomic amplification 
of an OG-like gene (GISTIC score of 2).  
 
Even for well established cancer-associated genes, distinguishing between driver mutations (that have a 
likely gain of function effect for oncogenes or loss of function effect for tumor suppressors) and passenger 
mutations (that have no oncogenic effect) can be difficult for missense somatic mutations (point 
mutations). To address this problem we attempted to distinguish between the two by focussing on 
recurrent mutations - those mutations that alter residues that are frequently mutated across multiple 
tumor samples. We defined recurrently mutated residues using a database of > 1.2 million somatic 
mutations (Davoli et al., 2013). As some genes are sequenced more frequently than others (due to 
targeted sequencing) or mutated more frequently than others (due to genome location / chromatin 
accessibility) the threshold for defining a residue recurrently mutated is set on a per gene basis. For the 
analysis described here we defined a recurrently mutated residue as one that is mutated in either 3% of 
all samples featuring a mutation in that gene or three samples overall, whichever threshold is larger. 
 
The set of functionally relevant alterations in cancer genes based on the exome and CNV data types 
were represented as Boolean matrices (1 for mutant, 0 for non-mutant). These datasets were combined 
using a simple logical OR function. For example, combining exome and CNV data sets we considered an 
oncogene to be mutated in a given cell line if the oncogene was either amplified according to the CNV 
data OR mutated at a recurrently altered site according to the exome data. Cell lines where a given data 
type was not available were excluded from analyses incorporating that data type. 
 
Exome sequencing pipeline 
Exome sequencing libraries were prepared using SureSelect Human All Exon 50 Mbp kits (Agilent). 
Illumina paired-end libraries were sequenced on a HiSeq2000 (Illumina), acquiring 2 x 76 bp reads. 
Basecalling and demultiplexing was performed using Casava v1.8 (Illumina) software. Fastq files were 



 

 

aligned to the human reference genome (GRCh37) using the Burrows-Wheeler Aligner (Li and Durbin, 
2009). Duplicate reads arising from PCR were removed prior to further processing and variant detection. 
Base recalibration, realignment around indels and variant calling were performed using the Genome 
Analysis Tool-kit v2 with default settings (DePristo et al., 2011). Variants called in regions not covered by 
the capture probes were excluded, as were those with genotype quality scores below 20 and those 
covered by fewer than 10 reads.  
 
Protein Quantitation 
Whole cell protein lysates were extracted from cells by lysis with NP250 buffer (20 mM Tris pH 7.6, 1 mM 
EDTA, 0.5%. NP40, 250 mM NaCl). For RNAi knock-down, samples were extracted 72 hours post 
transfection. Western blots were performed using Novex precast TA gels (Invitrogen) as described 
previously (Farmer et al, 2005). Primary antibodies were immunoblotted overnight using either anti-RB1 
(1/1000; Cell Signaling), anti-DYRK1A (1/1000 Cell Signalling), anti-p16 (1/1000 Abcam) or anti-ACTIN 
(1/2000; Santa Cruz). Fluorescent anti-rabbit, anti-mouse or anti-goat secondary antibodies (Licor) were 
incubated with the blot (1:5000) for 1 hour at room temperature in the dark followed by detection and 
processing on a Licor Odyssey Western Imager. Blots were viewed using ImageStudio Software (Licor). 
 
Quantitative RT–PCR 
Total RNA from cell lines were extracted using RNeasy mini kit (Qiagen) according to the manufacturer’s 
instructions. cDNA was synthesised using SuperScript III reverse transcriptase (Invitrogen) for RT–PCR 
with random hexamers as per the manufacturer’s instructions. Assay-on-Demand primer/probe sets were 
purchased from Applied Biosystems. Real-Time qPCR was performed on the 7900 DHT Fast Real-Time 
PCR System (Applied Biosystems), using GAPDH as an endogenous control.  Gene expression was 
calculated relative to expression of GAPDH endogenous control. Samples were quantified in 
quadruplicate. 
 
Data Integration 
Protein-protein interactions were obtained from the HINT (Das and Yu, 2012), BioGRID version 3.4.128 
(Chatr-Aryamontri et al., 2015) and KEA databases (Lachmann and Ma'ayan, 2009). Kinase-substrate 
interactions were obtained from KEA (Lachmann and Ma'ayan, 2009), PhosphoSitePlus (Hornbeck et al., 
2015) and (Cheng et al., 2014). High confidence (combined score > 0.7) functional interactions were 
obtained from the STRING database (Version 9.1; (Franceschini et al., 2013)). Gene expression 
relationships were obtained from PathwayCommons (Cerami et al., 2011) by extracting those 
relationships annotated as ‘controls-expression-of’. To identify the shortest directed path between driver 
genes and their dependencies we built an integrated directed network using the directed edges from 
PathwayCommons (those labelled 'controls-expression-of', 'controls-phosphorylation-of', 'controls-
transport-of', 'controls-production-of’) and the full set of kinase-substrate interactions from all sources. The 
shortest_path function in NetworkX (Hagberg et al., 2008) was then used to query this graph. All shortest 
paths of length 2 or less are provided in Supplemental Table S1I and S1K. To evaluate the connectivity of 
the dependencies associated with each driver gene we compared the number of observed high-
confidence STRING interactions between the nominally significant dependencies (those with median 
permutation test p-value < 0.05) to the number observed on 100 randomized degree matched interaction 
networks.  
 
Pathway analysis 
The original pathway groupings were taken from (Garraway and Lander, 2013). Four groupings were 
dropped because they only contain a single gene (e.g. the 'RNA abundance' pathway contained a single 
gene DIS3). Six groupings were removed because they referred to a broad molecular class of genes 
(‘RTK Signalling’, ‘Chromatin histone methyltransferases’) rather than a specific pathway or complex. 
Three further groupings were removed as they were catch-all terms for unclassified driver genes (e.g. 
‘Other signaling’). We then added three additional pathways to this list – homologous recombination 
(based on data described by Wood and Lindahl (Wood et al., 2005; Wood et al., 2001), FGFR signalling 
(containing the FGFR genes which were previously only annotated as ‘RTK signaling’) and the PRC2 
complex (Kuzmichev et al., 2002). From this list we then removed groupings that were not represented by 
any mutant cell lines in our panel or groupings in which only a single member of the grouping was 
mutated in our cell lines. Finally pathways that were essentially redundant (comprised of identical sets of 



 

 

mutated genes) in the panel of cell lines we screened were combined. The pathways used are presented 
in Table S1M. 
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