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Theoretical background

A two-neuron network motif, reciprocally connected through delayed pulsatile interactions, can be de-
scribed by Eq. 3 with j = 1, 2. We construct a map by recording the phase of the neurons at the instant
of firings of the first neuron (see Fig. S1) [1, 2]. Assuming the neurons have the same firing rate ω, we
have

φ1(tn+1) = φ1(tn) + ωT + g12Z(ωτ12 + ∆φn),
φ2(tn+1) = φ2(tn) + ωT + g21Z(ωτ21 −∆φn).

(1)

where T is the period of firing of the neurons and ∆φn = φ1(tn) − φ2(tn) is the phase difference of the
neurons at the instant of nth spike of the neuron 1. Subtracting the above equations gives the map for
the phase lag ∆φn and its fixed point determines the phase lag in the locked state. In a homogeneous
system with identical neurons and synapses (ω1 = ω2, g12 = g21 and τ12 = τ21), fixed points are the
solutions of Z(ωτ + ∆φ) = Z(ωτ −∆φ). Having in mind that Z(θ) is a 2π periodic function of θ, the
latter equation has two solutions ∆φ = 0 and π. Linearizing the equation for the phase lag around these
solutions gives the stability condition. The inphase mode is stable for Z ′(ωτ) < 0 and the anti-phase
mode stability condition is Z ′(ωτ + π) < 0. For canonical type-II oscillators with Z(θ) = − sin(θ), for
example, for ωτ < π

2 and ωτ > 3π
2 the connections are synchronizing and the synchronous state is stable.

For π
2 < ωτ < 3π

2 the connections are desynchronizing and the neurons fire in antiphase. Finally, for
ωτ = π

2 and ωτ = 3π
2 , the phase lag depends on the initial condition and all phase lags are neutrally

stable. Figure. 1 shows phase lag in the steady state for canonical type-II neurons for two different
values of the oscillators’ frequency. Note that since ωτ determines the stability condition, changing the
frequency of the oscillators can change the nature of the connections and hence the state of the system.
For the fully connected three-neuron motif, a similar map can be constructed

φ1(tn+1) = φ1(tn) + ωT + g12Z(ωτ12 + ∆φn) + g13Z(ωτ13 + (∆φn −∆φ′n)),
φ2(tn+1) = φ2(tn) + ωT + g21Z(ωτ21 −∆φn) + g23Z(ωτ23 −∆φ′n),
φ3(tn+1) = φ3(tn) + ωT + g31Z(ωτ31 − (∆φn −∆φ′n)) + g32Z(ωτ32 −∆φ′n).

(2)

where T is the period of firing of the neurons and ∆φn = φ1(tn) − φ2(tn) and ∆φ′n = φ2(tn) − φ3(tn).
For Z(θ) = − sin(θ), the fix point of the equations 2 is determined by sin(∆φn) = sin(∆φ′n), which leads
to ∆φn = ∆φ′n and ∆φn = π −∆φ′n. With ∆φn = ∆φ′n we have two solutions ∆φn = 2π

3 and ∆φn = 0
which are the evenly spaced phases (2π/3, 2π/3, 2π/3) state and inphase (0, 0, 0) state, respectively; and
with ∆φn = π −∆φ′n we have ∆φn = 0 and ∆φn = π both representing two inphase neurons which are
antiphase with the third neuron, (0, π, π) state.
The linear stability analysis shows that ∆φn = ∆φ′n = 0 is stable when the connections are synchronizing
λ = cos(ωτ) > 0, and the two other states ∆φn = ∆φ′n = 2π3 and ∆φn = 0,∆φ′n = π are stable when
connections are desynchronizing λ = cos(ωτ) < 0.
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Figure S1: Time evolution of coupled phase oscillators. Schematic map of phase versus time used
for analytic investigation. The evolution of the averaged phase of two neurons is shown by solid navy
and violet lines, respectively. T is period of firing in phase locked state, τij is the time delay, and ωs are
the intrinsic frequency of oscillators. Dynamical variable of the map is the phase difference of the two
neurons at the time of nth spike of the first neuron, depicted as ∆θn.

For a network of N interconnected neurons, the Poincaré map reads

φi(tn+1) = φi(tn) + ωiT +
∑
j

gijZ(ωiτij − (φi(tn)− φj(tn))), (3)

where i = 1, 2, ..., N . Given a homogeneous network with identical neurons, zero-lag synchronization is a
solution of the generalized equation 3, and the stability condition for the synchronous solution is reduced
to Z ′(ωτ) < 0. As a result, we can conclude that the stability of zero-lag synchrony of networks with
homogeneous degree (e.g. all-to-all networks) is independent from the coupling constant g and the size
of the network N .

Changing the synchronization properties of the connections through
changes in the input current

To illustrate the effects of a variable synchronization over the network we consider one example of
variation of the injected current. When the level of injected current to the network increases from
I1 to I2 (I1 < I2), the intrinsic frequency of oscillators increases from ν1 to ν2, and the inter-spike
interval of oscillations reduces from T1 to T2 (T1 > T2). Figure S2 shows how with a fixed delay the
property of the connection changes with the period. If the delay τ lies in the ranges shaded by gray, the
connection switches from synchronizing to desynchronizing and vice versa. Table S1 demonstrates the
ranges of the delay (in terms of T1 and T2 ) with the corresponding change of the property for a type-II
oscillator with canonical form of PRC. As Fig. S2 and table S1 show, a transition to synchrony occurs

for 3
T2
4
< τ < 3

T1
4

, and a transition to asynchrony occurs for
T2
4
< τ <

T1
4

.

Owing to the slowly varying F-I curve (Frequency-Injected current curve) of the Hodgkin-Huxley
neurons, varying the input current from 10 µA to 20 µA, the oscillatory frequency rises from 68.6 Hz
to 86.9 Hz. Therefore, the oscillatory period reduces from 14.6 ms to 11.5 ms. In this example the
delay interval that leads to a transition from a desynchronized to a synchronized state is 8.6 ms < τ <
10.9 ms, and the delay interval that leads to a transition from a synchronized to a desynchronized state
is 2.8 ms < τ < 3.6 ms. Such range of short delays of about 3 ms shows that this transition could play
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Figure S2: Connection’s properties for two different amounts of injected current. The os-
cillatory period is shorter for larger external input. For a fixed interaction delay the final state of
synchronization depends on the amount of external input, or the period of the PRCs. Gray shaded areas
show the delay intervals in which increasing the external current from I1 (PRC1) to I2 (PRC2), changes
the final state of oscillations from synchronized to desynchronized and vise versa.

Delay Transition

τ <
T2
4

Sync −→ Sync

T2
4
< τ <

T1
4

Sync −→ Desync

T1
4
< τ < 3

T2
4

Desync −→ Desync

3
T2
4
< τ < 3

T1
4

Desync −→ Sync

3
T1
4
< τ < 5

T2
4

Sync −→ Sync

5
T2
4
< τ < T1 Sync −→ Desync

Table S1: State transition for different delay intervals.

an important role for cortical oscillations at gamma band. Note that in a biologically realistic cases, the
changes in the firing rates which cause transitions between synchrony and asynchrony, are determined by
the form of PRC which might change their slope several times during the whole period, namely earlier
in the period (see e.g., [3]), which makes it possible that transitions occur in smaller values of firing rates
even with delay times of few milliseconds.

Time-scale of transition to synchrony

Any feasible control mechanism for the opening and closing of communicating channels must operate in
a fast time scale that is compatible with the changes between metastable states. As shown in Figs. S3
and S4, the proposed mechanism of engagement and disengagement of synchronization occurs in the
order of hundreds of milliseconds for different network sizes, in-degree values and synaptic strengths.

Robustness against noise and heterogeneity

To check how the results are robust against different sources of noise we present the outcome of changing
level of the stimulus in presence of stochastic input or quenched noise as the inhomogeneity of firing
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Figure S3: Transition to synchrony in all-to-all networks with different sizes. (A) Synchroniza-
tion order parameter of all-to-all networks versus time. The green line depicts the time-dependent input.
The transition time, chosen as the time to reach 50% of the maximum order parameter, is shown in (B)
for different network sizes. For large enough networks (N > 100), the transition time is independent of
the network size.
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Figure S4: Transition to synchrony in random networks. (A) Synchronization order parameter of
random networks with different mean in-degree versus time. The orange line depicts the time-dependent
input. In (B) and (C) the time needed to reach 50% of maximum order parameter is shown for different
mean in-degrees and different synaptic strengths, respectively. The larger is the in-degree or the synaptic
strength, the faster is the transition.

frequencies, resulted from imposing different levels of input to the neurons. In general, both noise and
inhomogeneity oppose collective coherence and decrease the level of the order in the system but for small
to intermediate levels of noise, partial synchrony is still observable as is shown in Fig. S5.
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Figure S5: Transition to synchrony in presence of noise and irregularity (A) Network activity
and raster plot of 100 randomly selected neurons from an all-to-all network (N = 500) when the firing
rate of neurons are chosen from a lognormal distribution with coefficient of variation equal to 0.94. The
normalized activity of the network defined as the ratio of the mean maximum activity in the steady state
to the network size, is shown in (C) for different values of the coefficient of variation of firing rates. (B)
Network activity and raster plot when an additive white gaussian noise with zero mean is added to the
input current. The intensity of the noise

√
2Dξ(t) is D and here D = 0.06. In (D) the mean normalized

maximum network activity is shown versus noise intensity. The plot on the top-left shows the level of
the mean input which is adjusted to change the network state from incoherent to synchronized.
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