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Supplemental Experimental Procedures 

Choice of experimental design 

Tissues from the same animals (n=3 for each age group) were analyzed using multiple 

genomics and proteomics techniques, across three different sites that were specialized 

in the respective types of analysis. The experimental focus was set onto the broad 

application of proteomic techniques with subcellular resolution and phospho 

proteome analysis in two different organs with differential regenerative capacity and 

their integration with genomics data instead of the investigations of a large number of 

individuals. The data thus rather capture alterations at different regulation levels 

across the two age groups instead variations across individuals, such as e.g. the subtle 

yet intimate relationship between changes in translation and protein abundance in 

young vs. old animals. Those would not have been discovered using a single 

technique on a larger number of samples. 

 

Explanation of figures stated in Summary 

The 468 differences in protein abundance stated in the Summary indicate the 

cumulative number of significantly affected comparisons between young and old 

animals in the two organs investigated. Since a given protein group can be significant 

in more than one comparison, e.g. two sub-cellular fractions or both organs, the 

number of unique protein groups affected is slightly lower (457). 

The 130 proteins not altered in their protein abundance, but affected at different levels 

of regulation include: 109 proteins affected at the level of phosphorylation, but not at 

the level of protein abundance (Figure S4D); 9 proteins undergoing changes of 

subcellular localization (Figure 5B); 12 proteins for which we detected an alteration 

of splicing and the proteomic measurement indicated no significant alteration of the 

overall protein abundance in the same organ. Cases that were not quantified in 

proteomic experiments were not considered since we cannot exclude an alteration of 

their protein abundance between young and old animals to occur. 

 

Tissue fractionation 

Entire organs were used for genomic and proteomic measurements. Samples of livers 

were homogenized as whole. Brains were cut into two hemispheres (sagittal plane) 

upon dissection, and an entire hemisphere was homogenized before fractionation.  
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Thus all regions of the brain were represented in proper proportion. Liver and brain 

nuclei were purified according to previously described protocols (Blobel and Potter, 

1966; Lovtrup-Rein and McEwen, 1966). Further fractionation was based on previous 

descriptions (Toyama et al., 2013). Briefly, nuclei pellets were resuspended in 

corresponding nuclei purification buffers, and the supernatant was saved for further 

fractionation (S1). Mitochondria-enriched fractions were achieved by diluting nuclei 

pellet supernatants (S1) 5x in corresponding nuclei purification buffers with no 

sucrose and spinning at 13,000x g for 15 min. Supernatants (S2) were saved for future 

fractionation, and pellets were washed again with nuclei purification buffer and spun 

13,000x g for 15 min. Pellets were resuspended in nuclei purification buffer and spun 

at 800x g for 5 min to pellet large insoluble materials and remaining nuclei. The 

supernatant was taken as the mitochondria enriched fraction (pn1). Cytosolic 

membrane enriched fractions were achieved by taking the initial mitochondrial 

supernatant (S2) and spinning again at 13,000x g for 15 min to remove any remaining 

mitochondria. The supernatant was taken and spun at 100,000x g for 20 min. The 

supernatant was taken as the cytoplasmic fraction (sol) and the pellet was resuspended 

in nuclei purification buffer and respun at 100,000x g for 20 min.  The pellet was 

resuspended in nuclei purification buffer and taken as the ER-enriched fraction (pn2). 

 

Determination of transcription and translation changes 

Ribosome profiling libraries were prepared as described previously (Toyama et al., 

2013). Total RNA libraries were prepared from homogenized tissue using TruSeq 

stranded kits with RiboZero gold (Illumina). Libraries for both ribosome profiling and 

total RNA were sequenced using the Illumina HiSeq platform. Mapping of RNA-Seq 

and ribosome profiling data was performed using TopHat (Trapnell et al., 2009), a 

splice-aware aligner. For differential expression analysis of ribosome profiling and 

total RNA sequencing, a generalized linear model (GLM) was constructed using 

DESeq (Anders and Huber, 2010). This analysis differentiates between specifically 

transcriptional and translational changes. Individual, highly variable outlier transcripts 

(colored red in Figure S2) were identified and removed from downstream analysis by 

testing for excess residual deviation between replicates (209 transcripts for brain and 

281 transcripts for liver). Outlier samples were assessed by hierarchical clustering and 
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excluded from dispersion estimates. Significantly affected transcripts were defined 

using an adjusted p value cut-off of 0.01 (Table S1). 

 

Mass spectrometry data acquisition and processing 

Subcellular fraction samples were solubilized in 4 M urea, 0.2% (v/v) Rapigest 

(Waters), 100 mM ammonium bicarbonate by 1 min sonication, cysteines reduced 

with 10 mM DTT for 30 min at 37°C and alkylated with 15 mM iodoacetamide for 30 

min in the dark. Proteins were digested for 4h at 37°C using 1:100 (w/w) LysC (Wako 

Chemicals GmbH) followed by overnight incubation with 1:50 (w/w) trypsin 

(Promega GmbH) upon dilution of urea to 1.5 M with HPLC-grade water. Digested 

peptides were desalted using C18 Macro-Spin columns (Harvard Apparatus) 

according to manufacturer instructions.  

Samples were analyzed using a nanoAcquity UPLC system (Waters GmbH) 

connected online to a LTQ-Orbitrap Velos Pro instrument (Thermo Fisher Scientific 

GmbH). Peptides were separated on a BEH300 C18 (75 µm x 250 mm, 1.7 µm) 

nanoAcquity UPLC column (Waters GmbH) using a stepwise 145 min gradient 

between 3% and 85% (v/v) ACN in 0.1% (v/v) FA. The mass spectrometer was 

operated in data-dependent mode using a TOP-20 strategy where survey MS scans 

(m/z range 375-1,600) were acquired in the orbitrap (R = 30,000 FWHM) and up to 

20 of the most abundant ions per full scan were fragmented by collision-induced 

dissociation (normalized collision energy = 35, activation Q = 0.250) and analyzed in 

the LTQ. Ion target values were 1,000,000 (or 500 ms maximum fill time) for full 

scans and 10,000 (or 50 ms maximum fill time) for MS/MS scans. Charge states 1 and 

unknown were rejected. Dynamic exclusion was enabled with repeat count = 1, 

exclusion duration = 60 s, list size = 500 and mass window ± 15 ppm. Data 

acquisition for phosphoproteomic analysis was performed using identical parameters 

with the exception of: stepwise gradient length: 115 min; TOP-15 strategy; multistage 

activation enabled using five phospho neutral loss masses (24.494, 32.659, 48.988, 

65.318, and 97.977); ion target values MS/MS = 30,000; dynamic exclusion time = 30 

s; repeat count = 2. 

Raw files were processed using MaxQuant (version 1.2.2.5) (Cox and Mann, 2008). 

The search was performed using Andromeda search engine (Cox et al., 2011) against 

the Ensembl Rnor_5.0 protein database. The search criteria were set as follows: full 
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tryptic specificity was required (cleavage after lysine or arginine residues, unless 

followed by proline); 2 missed cleavages were allowed; carbamidomethylation (C) 

was set as fixed modification; oxidation (M) and acetylation (protein N-term) were 

applied as variable modifications, if applicable; for phosphoproteomic analysis, 

phosphorylation (STY) was applied as variable modification in addition; mass 

tolerance of 20 ppm (precursor ions) and 0.5 Da (fragment ions). The reversed 

sequences of the target database were used as decoy database. Peptide hits were 

filtered at a false discovery rate of 1% using a target-decoy strategy (Elias & Gygi, 

2007). For the quantitative label-free analysis of protein abundance, the “peptides.txt” 

output file of the MaxQuant search was used to calculate protein abundance scores 

from the summed intensities of proteotypic peptides normalized by the protein 

molecular weight, as described in (Ori et al., 2013). Only proteins identified with at 

least 2 unique peptides were retained for quantitative analysis. For phosphoproteome 

analysis, search results were filtered using Andromeda score >= 60, Delta score > 5 

and location probability of > 0.75. Only mono-phosphorylated peptides were retained 

for quantitative analysis. All comparative analyses were performed using R version 

3.0.1 (R Core Team, 2012). Only proteins and phosphosites quantified in at least two 

replicates were used for relative quantification. To reduce technical variation, data 

was first log2-transformed and then quantile-normalized using the preprocessCore 

library (Gentleman et al., 2004). Differential expression was evaluated using the 

limma package (Smyth et al., 2005) and q values calculated using fdrtool (Strimmer, 

2008). Two phosphopeptide samples (one each for nuc brain and pn2 brain) were 

detected as outliers by hierarchical clustering and excluded from downstream 

analysis. Significant affected proteins or phosphosites were defined by a q value cut-

off of 0.1 (Table S2 and S6). 

 

Quantification of histones H3.1 and H3.3 by targeted proteomics 

We developed targeted proteomics assays for two proteotypic peptides for histone 

H3.1 (FQSSAVMALQEASEAYLVGLFEDTNLCAIHAK) and H3.3 

(FQSAAIGALQEASEAYLVGLFEDTNLCAIHAK) as described in (Ori et al., 

2014). The same nuclear samples used for shotgun analysis were analyzed using a 

TSQ Vantage triple quadrupole mass spectrometer (Thermo Fisher Scientific GmbH) 

connected to a nanoAcquity UPLC system (Waters GmbH). Digested peptides were 
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separated on a BEH300 C18 (75µm×250mm, 1,7µm) nanoAcquity UPLC column 

with a 75 min linear gradient between 3 and 35% (v/v) ACN 0.1% (v/v) FA at a flow 

rate of 300 nL/min. Data were recorded using an unscheduled acquisition with a fixed 

dwell time of 20 ms per transition. At least four transitions were recorded for each 

peptide and their co-elution was manually inspected. Peptide intensities were 

estimated using the summed intensity of all transitions and used to calculate the 

histone H3.1 to H3.3 ratio. Assays development, validation and peptide quantification 

was performed using SpectroDive (a kind gift of Biognosys AG).  

 

Identification of differentially expressed protein complexes and protein complex 

members 

Differential expression of protein complexes was assessed by a gene-set enrichment 

approach using the R package gage (Luo et al., 2009). Essentially, members of 

protein complexes were employed as gene set definitions and used to query the 

protein abundance data. gage was used to identify protein complexes that had 

members displaying consistent abundance changes (either increased or decreased 

abundance) during aging. The consistent expression change of the members of the 

same protein complex was interpreted as a change in complex abundance. A q value 

cut-off of 0.1 was used to determine significantly affected protein complexes. 

To investigate compositional rearrangements of protein complexes rather than 

changes in overall complex abundance, we adapted a two-step normalization method 

that we described previously (Ori et al., 2013). For each sample set, we extracted 

protein complex members and performed a complex-wise normalization (Ori et al., 

2013) by subtracting from the abundance value of each protein the trimmed-mean 

abundance of the rest of the complex members. In case of proteins involved in 

multiple complexes, the average value from all the corresponding complexes was 

taken into consideration. After complex-wise normalization, the relative abundance of 

complex members was compared in young and old animals using limma (Smyth, 

2005) and fdrtool (Strimmer, 2008), as described for protein abundance (see above). 

A q value cut-off of 0.2 was used to determine differentially expressed complex 

members (Table S4).  

For both approaches, we used definitions covering 270 large protein complexes 

curated from different resources (Ruepp et al., 2010; Vinayagam et al., 2013) and the 
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literature (Ori A, Iskar M, in preparation) were used. Only protein complexes that had 

at least 5 members quantified were considered. 

 

Reconstruction of functional networks that are altered between young and old 

animals 

Functional networks were reconstructed by combining alterations observed at the 

level of translation output, protein abundance or phosphorylation. Protein interactions 

were derived from STRING using a confidence score > 0.7 (Jensen et al., 2009), 

network modules extracted using MCODE (Bader and Hogue, 2003), and module 

functional enrichment assessed using ClueGO (Bindea et al., 2009). 

 

Quantification of alternative expression of splicing isoforms 

Analysis of differential splicing was performed using MISO in “isoform-centric” 

mode (Katz et al., 2010). Because MISO does not natively handle replicates, an 

analysis of merged alignments as well as each possible pairwise comparison was 

performed. Significantly changed transcripts were identified by Bayes factor ≥ 10, 

difference ≥ 0.2 in merged analysis and 5/9 pairwise comparisons and ≥ 100 counts 

total in merged analysis (Table S7). 
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Figure S1 related to Figure 1. Reproducibility of proteomic measurements and 

variation of protein abundances between animals of different age. (A) 

Coefficients of variation (standard deviation / mean calculated on raw protein 

abundance scores) between animals of the same age were computed for all the protein 
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groups quantified across subcellular fractions. The low coefficients of variation 

indicate minimal within-age-group variation in protein abundance both in brain and 

liver. (B and C) Distribution of p values for all the subcellular fractions analyzed. The 

enrichment of protein groups having low p values (< 0.1) indicates deviation from the 

null-hypothesis (i.e. presence of proteins that vary in abundance between young and 

old animals). As discussed in the manuscript, brain samples are generally more 

affected than liver one. P values were calculated using fdrtool (Strimmer, 2008) from 

the t-statistics computed by limma (Smyth et al 2005). (D) Molecular alterations 

during physiological aging are mild. The effect of aging at the level of transcription, 

translation output and protein abundance is compared to differences between the two 

organs. Age-related changes are characterized by small effect sizes and they affect a 

limited number of transcripts and proteins. For proteomic data, the comparison of the 

nuclear fractions is shown as a representative example. 
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Figure S2 related to Figure 1. Replicate samples of RNA-Seq and Ribosome 

Profiling are consistent. (A-B, D-E) Pairwise scatterplots and Pearson correlations 

are given for RNA-Seq (A, D) and Ribosome Profiling (B, E) counts. Samples from 

different animals show high correlation in both measurements for both tissues. Points 

in red were filtered from final analysis due to high dispersion (see Supplemental 

Experimental Procedures for details). (C, F) Distribution of p values for translation 

output in brain (C) and liver (F). Enrichment of low p values indicates statistically 

significant changes. 
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Figure S3 related to Figure 2. Protein kinases and members of the ubiquitin-

proteasome system and autophagy are affected between young and old animals. 

(A) Kinases are grouped in families as classified in UniProt (UniProt Consortium, 

2009). The names of twelve significantly affected cases (q value < 0.1) are indicated 
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in black font, while the names of additional 14 kinases that showed a strong trend 

(p value < 0.05) but did not raise to significant level (q value > 0.1) are indicated in 

gray font. (B) Several proteins functionally related to the ubiquitin proteasome system 

and autophagy change abundance in brain from old animals. Proteins are grouped 

according to their functional classification. See also Table S2. 
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Figure S4 related to Figure 5. Reproducibility of phosphoproteomic 
measurements and comparison of protein abundance and phosphorylation level 

changes. (A) Reproducibility of phosphopeptide abundance measurements. The 

reproducibility of phosphopeptide abundance measurements was assessed by 

correlating protein abundance scores between technical replicates. The histogram 

shows the distribution of pairwise correlations between all technical replicates for 

brain and liver. The average pairwise correlation was Pearson’s r = 0.957, indicating 

high reproducibility. (B) As for protein abundance measurements (Figure 1C), 

samples from the same age group displayed consistently higher correlation than 

samples from different age groups. The boxplots depict all the pairwise correlations 

between samples from all the subcellular fractions. For both brain and liver, the 

correlation coefficients of samples from the same age group are significantly higher 

than samples from different age groups (Wilcoxon rank sum test p value 2.0e-2 and 

3.2e-4, respectively). (C) Coefficients of variation (standard deviation / mean 

calculated on raw phosphopeptide intensities) between animals of the same age were 

computed for all the phosphopeptides quantified across subcellular fractions. The low 

coefficients of variation indicate minimal within-age-group variation in 

phosphopeptide levels both in brain and liver. (D) Comparison of protein abundance 

and phosphorylation level changes. For 136 affected phosphosites, we had 

measurements of both protein abundance and phosphorylation level in the same 

subcellular fraction. The heatmap show side–by–side comparison of protein 

abundance and phoshorylation level fold changes. For 19 of these phosphosites 

(indicated by a white star), we detected changes at both protein (p value < 0.05) and 

phosphopetide level. These cases are highlighted in (E): the barplot compares fold 

changes measured at the protein (dark blue) and phosphopeptide level (green) in the 

two independent experiments. In 17 out of 19 cases (90%) the fold changes measured 

at the protein and phosphopeptide level are in agreement (fold change with same 

sign). A star indicates not consistent cases that are suggestive of an alteration of the 

fraction of protein molecules phosphorylated. Proteins and phosphosites identified 

only in one age group were assigned an arbitrary log2 fold change of +3 (identified 

only in old animals) or -3 (identified only in young animals). See also Table S6. 
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Figure S5 related to Figure 6. Increased abundance of ribosomal proteins in old 

brain. All proteins identified in the pn2 fraction of brain are plotted according to their 

average abundance score and average fold change between young and old animals 

(both log2-transformed). Positive values indicate higher expression in old animals and 

negative values indicate higher expression in young animals. Orange dots indicate the 

identified members of the cytosolic ribosome. Boxplots show the distribution of 

abundances of ribosomal proteins in young and old animals. 
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Figure S6 related to Figure 7. Changes in PSI value for all transcripts. Percent 

Spliced In (PSI) values are mostly consistent across age, but with a moderate number 

of differentially expressed transcripts. Significantly changed transcripts, marked in 

orange, had bayes factor ≥	
 10 and difference ≥	
 0.2 in merged and at least 5/9 

individual analyses. See also Table S7. 
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Figure S7 related to Figure 6. Conserved molecular alterations in aging brain 
between rat and human. We compared significant changes in protein abundance or 

translation output that we identified in aging rat brain to changes in transcript level 

associated to age in human brain (Lu et al., 2004). 12 out of 14 (86%) changes in the 

protein abundance level and 33 out of 38 (87%) alterations in translation output that 

were identified as significant in both our and the human dataset are consistent having 

fold changes with the same sign. This suggests that conservation of age-associated 

molecular events between rodents and humans. Cases that were identified as 

significantly affected both at the level of translation output and protein abundance are 

highlighted in orange. 

 
 


