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Note on low level single cell data processing and gene expression matrix prepa-

ration

Cells from disparate tissues.

We have downloaded RNA-seq dataset from NCBI repository (http://www.ncbi.nlm.nih.gov) un-
der accession number SRP041736, which contains transcriptional profiles of 347 singles cells. Next, we
have converted the Sequence Read Archive (SRA) files into fastq files using SRA Toolkit (http://www.
ncbi.nlm.nih.gov/sra/|), and used TopHat-2.0.12 [[@] to perform genomic mapping of pair-end reads to
the latest human reference genome GRCH38 (http://www.ensembl.org/info/data/ftp/index.html).
We have used R package called Rsubread [A] to assign mapped sequencing reads to genomic features, i.e.
to perform transcript counting, which was achieved using function featureCounts.

In order to construct a gene expression matrix for higher level analysis, we have performed basic cell
and gene filtering: (a) From 347 samples we have focused on a subset of 301 cells (a subset without ERCC
validation cells and bulk sample), which were used in the main study by Pollen et al. [5]. In addition, we
have removed one cell that had 0 expression levels across all genes, this left us with a 300 cells in total.
(b) For gene filtering we have used R package called edgeR [B], we kept those genes that fulfilled at least
100 counts per million (cpm) in at least 10 samples; this left us with 8686 genes in total. Lastly, we have

transformed gene expression counts to a logarithmic values; more precisely, values z;; in matrix X were

0

obtained by log, (m% + 1), where x;; are read counts of a gene.

Mouse neuronal cells. We have downloaded readily pre-processed dataset from the website http://

linnarssonlab.org/drg/. For the main study, we focused on 622 cells that were classified as neurones
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5.

Note on K-means algorithm

Within pcaReduce package K-means method operates using fixed settings — the default algorithm is set
to be Hartigan-Wong algorithm [?], with a number of several random starts (we fix it to be nstart = 20);

the latter option attempts to address the sensitivity in selecting initial centroids.

Note on consensus pcaReduce

As the output of pcaReduce is stochastic and dependent on the initial k-means initialisation and proba-
bilistic merge steps, each run of the algorithm may produce varying results. In order to obtain a consensus,
we ran pcaReduce algorithm 100 times with sampling as a merging criterion and then used the ensemble
clustering methods implemented in the R package “clue”. We used the built-in method “SE”, based on
least squares Euclidean consensus partitions. We used the following control parameters: K — the number
of classes — to be the true number of clusters (4,8,11 — depending on example used); and nruns — the
number of runs to be performed — to be 50. Similar consensus approch was taken for pcaReduce algorithm

with max merging criterion.

Note on clustering tool comparison

e K-means and merging. Using PCA we project initial dataset to ¢ = 30 and partition it into
K = 31 clusters using K-means. Next, we merge two clusters together using sampling as a merging
criterion. However, in the next step instead of dropping off the last dimension (i.e. instead of
g +— g — 1 in Algorithm 1 in main paper), we keep ¢ = 30 fixed, and continue merging clusters
as described before. We repeat these steps 100 times. This small method alteration illustrates the
importance of gradual dimensionality reduction, as it affects the pcaReduce performance quality on

both datasets (see Method 3, averaged ARANDI scores in Figures 4 and 6 in main paper).

e K-means only. We ran the K-means clustering algorithm for a full dataset 100 times without
prior dimensionality reduction step; using either the true number of clusters, e.g. for the Pollen
data set K = 4 and K = 11, and computed the ARANDI scores between these clusterings and

known cellular labels (e.g. see Method 4 in Figure 4 A and B respectively).

e Hierarchical clustering. We ran the hierarchical clustering algorithm with all possible distance
measures: Euclidean, maximum, Manhattan, Canberra, and binary. Each time we cut hierarchical
tree at e.g. K =4 and K = 11 and compute ARANDI scores between these clusterings and known

cellular labels (e.g. see Method 5 in Figure 4 A and B respectively).



e PCA followed by Hierarchical clustering. Using PCA we project initial dataset to ¢ = 30
and run hierarchical clustering algorithm with all possible distance measures. Each time we cut
hierarchical tree at e.g. K =4 and K = 11 and compute ARANDI scores between these clusterings

and known cellular labels (e.g. see Method 6 in Figure 4 A and B respectively).

e RtSNE followed by Hierarchical clustering. Using RtSNE we project data on to two-
dimensional space, we select the number of dimensions that should be retained in the initial PCA
step to be 30 (the same as ¢ = 30), and set perplexity parameter to be 30, further we use accuracy
parameter to be default, # = 0.5. We ran the hierarchical clustering algorithm with a range of
possible distance measures: Euclidean, maximum, Manhattan, Canberra, and binary. Each time
we cut hierarchical tree at e.g. K = 4 and K = 11 and compute ARANDI scores between these

clusterings and known cellular labels (e.g. see Method 7 in Figure 4 A and B respectively).

e SNN-Clig. We ran the SNN-Cliq [I1] tool on a full dataset using a range of possible distance
measures: Fuclidean, maximum, Manhattan, Canberra, and binary. We keep default settings, i.e.
k = 3, which is the size of the nearest neighbours, » = 0.7, which is a parameter for finding quasi-
cliques, and m = 0.5 — a merging parameter; the later two parameters affects cluster compositions.
Next, we compute ARANDI score between true clusterings, K = 4 and K = 11, and clusterings
determined by SNN-Cliq. (e.g. see Method 8 in Figure Figure 4 A and B respectively). It is worth
noting that by examining various parameter k,r, m combinations, one potentially could achieve a
greater agreement between estimated and known clusterings. However, this could also pose some

difficulties in situations where cluster labels are unknown.

e RtSNE in conjunction with Mclust. We use t-SNE [M0] (R package Rtsne [d]) to project
dataset on to two-dimensional space, we select the number of dimensions that should be retained in
the initial PCA step to be 30 (the same as ¢ = 30), and set perplexity parameter to be 30, further
we use accuracy parameter to be default, § = 0.5. Next we use model based clustering, Mclust ],

with all possible covariance models to cluster projected dataset. We use the following strategies:

1. To determine the number clusters that best describes provided dataset, we use Bayesian infor-
mation criterion (BIC). We test the number of mixture components in the range of G = 1 : 31.
Next we compute ARANDI scores between the true cluster labels, K = 4 and K = 11, and

labels identified with BIC (e.g. see Method 9 in Figure 4 A and B respectively).

2. Alternatively, using Mclust we fit two finite mixture models with fixed number of mixture
components, G = 4 and G = 11. Again we compute ARANDI scores between true clusterings

and clusterings identified by Mclust (e.g. see method 10 in Figure 4 A and B respectively).

e SC3. R packages was obtained on 29/01/2016 from Bioconductor. We used function sc3 with



default parameters except for ks, which was set to ks = 4, 11 for the cell line data, and ks = 4,8, 11
for mouse neuronal cells. We ran the sc3 algorithm with both default and custom values for the

parameter d — the number of eigenvectors of the transformed distance matrix.

Note on starting ¢ value

Here we explore the effects on selecting various starting values q. We select five different starting strategies,
q = 15,20, 30, 50,100, and each time we run pcaReduce algorithm for 100 times. Figures B3 illustrates
how clustering results depend on the initial choice of ¢ value (otherwise largest K). We found that for

this example ¢ = 30 was a good choice and delivered data partition the most similar to the ground truth.
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Figure S1: Comparison of pcaReduce and hierarchical clustering results on the disparate tis-
sues data. (A) Hierarchical relationships between cells based on known cellular labels. (B) Hierarchical
relationships between cells based on cellular labels identified by single run of pcaReduce under the most
probable merging criterion. Also ARANDI scores between true clusterings, K = 4 and K = 11, and iden-
tified clusterings by pcaReduce are summarised in grey rectangles. (C) Hierarchical relationships between
cells based on cellular labels identified by a standard hierarchical clustering (HC) algorithm; ARANDI
scores between true clusterings, K = 4 and K = 11, and identified clusterings by HC are summarised in

grey rectangles.
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Figure S2: Variability of sc3 clustering structures Plots illustrate SC3 [3] performance for different
parameter ranges d given in the table (inset) for the tissue (ks = 4) and cell line (ks = 11) level
classifications. points show the ARANDI scores between the true clustering structure and those
identified by sc3. Blue points show the ARANDI scores computed between the pcaReduce ensemble
clusters and those of SC3. In red we highlight the scores obtained using the default d range used in SC3.
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Figure S3: Sensitivity of pcaReduce output to initial ¢-values. (A) — (E) shows ARANDI scores
for different parameter settings ¢ = 15, 20, 30, 50, 100 respectively between the true clusterings, K = 4,11
(green, blue), and 100 alternative clusterings identified by pcaReduce algorithm. Table (F) corresponds
to the averaged ARANDI scores.
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Figure S4: Hierarchical classification of mouse neuronal cells. (A) Hierarchical relationships
between cells based on known cellular labels. (B) Hierarchical relationships between cells based on cellular
labels identified by single run of pcaReduce under the most probable merging criterion. Also ARANDI
scores between the true clusterings, K = 4, 8,11, and identified clusterings by pcaReduce are summarised
in grey rectangles. (C) Hierarchical relationships between cells based on cellular labels identified by a
standard hierarchical clustering (HC) algorithm; ARANDI scores between true clusterings, K = 4,8, 11,
and identified clusterings by HC are summarised in grey rectangles.
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Figure S6: Comparison of classification performance on mouse neuronal cells. Boxplots 14
are based on 100 runs of each method, blue and green circles correspond to the outcome of consensus
clustering of pcaReduce output across 100 runs with sampling and max merging settings respectively;
methods 5-8 are evaluated based on all possible distance metrics; 9,11 based on all possible covariance
structures, method 11 based on various parameter d ranges. (A) ARANDI score between true clustering,
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Figure S7: Variability of SC3 clustering structures on mouse neuronal data. Plots illustrate SC3
performance, where parameter ranges for d shown in the table (inset). Orange points show the ARANDI
scores between the true clustering structure and those identified by sc3. Blue points show the ARANDI
scores computed between the pcaReduce ensemble clusters and those of SC3. In red we highlight the

scores obtained using the default d range used in SC3.

dim2

Figure S8: RtSINE visualisation of the mouse neuronal data. The data was projected on to a
two-dimensional space, here cells are coloured based on the known cell type labels for: (A) 4, (B) 8, and

(C) 11 clusters.
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Figure S9: Marker gene expression levels across 11 neuronal clusters identified using the pcaReduce algorithm.
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