
Supplemental Materials
Molecular Biology of the Cell

 Tie et al.

1

Supplemental materials

Figure S1. The effect of polynomial fitting order on the chromatic shift correction.

The mean magnitudes of green and blue vectors (Figure 2C) are shown as green and

blue columns respectively. The values of the 4th order columns are out of the display

range and are indicated at the top. Error bars, SDs. n=566 beads were analyzed.

Figure S2. The effect of background subtraction values and GalT-mCherry over-

expression levels on the LQ. (A) The LQ of GS15 was not significantly affected by the

variation of background subtraction values. The background subtraction values were

normalized. 46 analyzable Golgi mini-stacks were selected at the background

subtraction value of 100 and were color and shape coded in the plot. When the

subtraction value successively increased or decreased by 10, some analyzable mini-

stacks became non-analyzable as they no longer fulfilled the three selection criteria.

LQs of the remaining analyzable ones were calculated, plotted and connected by lines

of the same color. The horizontal dotted blue line indicates the LQ (mean ± SEM) of

n=46 mini-stacks at the subtraction value of 100. (B,C) LQs of GS15 and TGN46 were

not significantly affected by the expression level of GalT-mCherry. For each mini-stack,

the LQ was plotted against the mini-stack’s normalized total intensity of GalT-mCherry

as a red dot. Black lines were used to connect red dots from low to high total intensity

of GalT-mCherry. The linear regression fitting line (blue) together with its formula and

adjusted R2 (adj. R2) is shown. The mean ± SEM of combined LQs is also indicated in

each plot. n, the number of Golgi mini-stacks.

Figure S3. Example images of Golgi proteins and RUSH system reporters used in

this study. (A) All Golgi proteins (green) used in this study together with GM130 (blue)

2

and GalT-mCherry (red) under nocodazole treatment. For endogenous GM130

staining, (m) and (r) indicate mouse and rabbit antibody respectively. (B) Example

images of RUSH system secretory membrane reporters during our intra-Golgi

transport assay. Cells co-expressing GalT-mCherry, reporters and corresponding ER

hooks were treated with nocodazole. Biotin was added to release reporters into the

secretory pathway. Example images at 0 and 40 min of biotin chase are shown. At 0

min, all reporters display typical ER localization. GM130 (blue) is from endogenous

staining. Scale bars, 10 µm.

Figure S4. LQs in different cell lines and the axial length of the Golgi mini-stack. (A)

LQs of GFP-Golgin84 and TGN46 in various mammalian cell lines: HeLa (human

cervical epithelium), RPE1 (hTERT RPE1, human retinal pigmented epithelium), BSC1

(monkey kidney epithelium), C2C12 (mouse myoblast) and NRK fibroblast (normal rat

kidney fibroblast) cells. GFP-Golgin84 was introduced by transient expression while

TGN46 was endogenous. Note that TGN46 antibody is human specific and does not

work for C2C12 and NRK cells. Error bars, SEMs. n≥45 Golgi mini-stacks were

analyzed for each LQ. (B,C) Histogram of axial lengths of Golgi stacks (distances from

GM130 to GalT-mCherry) or Golgi complexes (distances from GM130 to TGN46). The

calculated lengths via GLIM were mean 2D projected values. To estimate the length in

3D, the mean 2D projected values were multiplied by π/2 (see Materials and methods,

Projection of unit-length 3D line segment). In B and C, mean ± SEM is also indicated

in the plot. n, the number of Golgi mini-stacks.

Figure S5. The tyrosine or acidic cluster motif of furin is sufficient for the endocytic

targeting to the TGN. The reporter ss-SBP-GFP-CD8a-furin wild type, Y mutation, AC

3

mutation or Y+AC mutation was co-expressed with the ER hook ss-Strep-KDEL. To

study the endocytic TGN targeting, cells were incubated in the presence of biotin and

CD8a mouse monoclonal antibody for 12 hours and processed for

immunofluorescence labeling. Wild type, Y mutation and AC mutation localized to the

Golgi and were able to target the internalized CD8a antibody to the Golgi; however,

Y+AC mutation neither localized to the Golgi nor was it able to target CD8a antibody

to the Golgi. Note that cells were not treated with nocodazole. Scale bar, 10 µm.

Figure S6 Wild type furin chimera did not synchronously arrive on the PM during

the chase. The reporter ss-SBP-GFP-CD8a-furin wild type or Y+AC mutation was co-

expressed with the ER hook ss-Strep-KDEL. Cells were chased by biotin treatment

under the same condition as experiments in Figure 7 for various length of time and

subsequently incubated with CD8a mouse monoclonal antibody on ice for 1 hour. The

surface bound CD8a was revealed by immunofluorescence. Scale bar, 10 µm.

Table S1. LQs of GFP-Golgin84, GS15 and TGN46 from three independently

conducted experiments.

experiment #1 experiment #2 experiment #3
Golgi protein

mean SEM n mean SEM n mean SEM n

GFP-Golgin84 0.29 0.02 138 0.3 0.03 143 0.26a 0.03 108
GS15 0.82a 0.03 97 0.82 0.02 177 0.83 0.03 150

TGN46 1.47a 0.02 203 1.43 0.06 85 1.48 0.05 107
aData is also used in Table 1.

Table S2. LQs obtained by the spinning disk confocal and wide-field microscope.

spinning disk confocal wide-field
Golgi protein mean SEM n mean SEM n

KDELR -0.11 0.03 130 -0.14 0.03 163
Golgin97 1.34 0.03 177 1.38 0.04 138

Golgin245 1.39 0.06 127 1.43 0.04 136

4

Endogenous KDELR, Golgin97 and Golgin245 were immuno-stained. The same glass

coverslips were imaged by the confocal and wide-field microscope and the resulting

LQs are listed.

Video S1 Three-color live cell imaging of cells expressing GalT-iRFP670, GFP-

Golgin-84, and mCherry-GM130. HeLa cells transiently expressing GalT-iRFP670,

GFP-Golgin84 and mCherry-GM130 were treated with nocodazole and imaged live for

24 min with a time interval of 30 sec. The time lapse corresponds to Figure 5. The time

stamp represents min:sec.

Note 1. The MATLAB code for chromatic shift correction by polynomial
fitting.
Function: The software is first calibrated or trained by beads before chromatic shift-

correction. The order of the polynomial fitting can be selected.

For calibration:
Input: 1) Raw coordinates of centers of beads are saved as a CSV file. The

coordinates must be arranged as: Rx, Ry, Gx, Gy, Bx and By. R=red; G=green;
B=far red. 2) The order of the polynomial fitting.

Output: A model file containing the calibration information is generated. It is used for
shift correction.

For shift correction:
Input: 1) The model file generated in the calibration. 2) Raw coordinates of centers of

Golgi mini-stacks are saved as a CSV file. The coordinates must be arranged
as: Rx, Ry, Gx, Gy, Bx and By. R=red; G=green; B=far red. 3) The order of the
polynomial fitting used in the calibration.

Output: A CSV file containing shift-corrected coordinates arranged as Rx, Ry, Gx, Gy,
Bx and By. Rx and Ry are the same as raw values since the red channel is free
of chromatic aberration by definition.

%-----------------------
% runme.m
%-----------------------

%MAIN ENTRY of the software
%
% PARAMETERS TO BE SET
% train_filename: csv file containing the x,y locations of each of the
% three colour channels for N samples
%

5

% d: degree of the polynomial to be used for fitting (set to 1 by default)
%
% val_filename: csv file containing the x,y locations of each of the
% three colour channels for samples in the validation set
%
% test_filename: csv file containing the x,y locations of each of the
% three colour channels for samples in the test set
%

clear all; close all; clc;
mean_err = [];

% set the degree of the polynomial to be used
d = 1;
my_clock = '20120518_1800';
 % a string that contains the current time stamp, here is an
example
csv_predfname= sprintf('pred_degree_%d_%s.csv', d, my_clock);
% the prediction result is saved in this file

% Train the model to obtain the coefficients of the polynomial
[drgx_coeff, drgy_coeff, dcgx_coeff, dcgy_coeff] = my_train_new('20120518-
BeadsCentroid-1-7-allInOneSheet.csv', d);

% validate the trained model (optional)
mean_err(d+1,:) = my_val_new('20120518-BeadsCentroid-a.csv', drgx_coeff,
drgy_coeff, dcgx_coeff, dcgy_coeff, d);

% Use the trained model on the test data to obtain predictions
[x_r2gfp_res, y_r2gfp_res, x_c2gfp_res, y_c2gfp_res] = my_test_new('20120518-
BeadsCentroid-a.csv', csv_predfname, drgx_coeff, drgy_coeff, dcgx_coeff, dcgy_coeff,
d);

%-----------------------
% my_train_new.m
%-----------------------

function [drgx_coeff, drgy_coeff, dcgx_coeff, dcgy_coeff] =
my_train_new(train_filename, d)
%MY_TRAIN_NEW Use training data to calculate the coeffecients of variable
%degree polynomial, which best fits the observations
%
% INPUTS
% train_filename: csv file containing the x,y locations of each of the
% three colour channels for N samples

6

% d: degree of the polynomial to be used for fitting
%
% OUTPUTS
% drgx_coeff, drgy_coeff: Mx1 vectors containing coefficients for fitting and
subsequent correcting of X and Y data for G channel
% dcgx_coeff, dcgy_coeff: Mx1 vectors containing coefficients for fitting and
subsequent correcting of X and Y data for CY5 channel
%
% M is the number of terms in a polynomial of degree d
%
%
%

% default lookup file name in case it wasn't provided as input
if nargin < 1
 train_filename = 'Beads_Centroid-1-9.csv';
end

% Load the dataset
my_dataset = my_load_dataset_csv(train_filename);
[dummy, c] = size(my_dataset);
assert(dummy==1);
result_dataset = cell(1, c);

% Extract out the x,y coordinates for the 3 color channels
% Each is a Nx1 vector
[x_gfp, y_gfp, x_rfp, y_rfp, x_cy5, y_cy5] = my_create_vector(my_dataset);

% Calculating the emperically observed shift
delta_x_rfp_gfp = x_gfp - x_rfp;
delta_y_rfp_gfp = y_gfp - y_rfp;

% Building the polynomial and the data matrix A
% Example, for d=1: a00 * x^0*y^0+ a01 * x^0*y^1+ a10 * x^1*y^0
% and A = [(x_rfp.^0).*(y_rfp.^0) (x_rfp.^0).*(y_rfp.^1) (x_rfp.^1).*(y_rfp.^0)];
[~, A] = make_polynomial(d,x_rfp,y_rfp);
% QR decomposing A
[Q,R]=qr(A,0);

% Treating like a system of linear equations Ax = B
% where x is the coefficients of the polynomial and B = Q'*delta
drgx_coeff = R\(Q'*delta_x_rfp_gfp);
drgy_coeff = R\(Q'*delta_y_rfp_gfp);

% A similar procedure follows for the CY5 correction
delta_x_cy5_gfp = x_gfp - x_cy5;

7

delta_y_cy5_gfp = y_gfp - y_cy5;

[~, A] = make_polynomial(d,x_cy5,y_cy5);
[Q,R]=qr(A,0);

dcgx_coeff = R\(Q'*delta_x_cy5_gfp);
dcgy_coeff = R\(Q'*delta_y_cy5_gfp);

% Storing the results and writing them out to a .csv file
result_dataset{1} = [drgx_coeff, drgy_coeff, dcgx_coeff, dcgy_coeff];
csvwrite(['train_degree' '_' int2str(d) '_coeff.csv'], result_dataset);

%-----------------------
% my_val_new.m
%-----------------------

function [mean_err] = my_val_new(val_filename, drgx_coeff, drgy_coeff, dcgx_coeff,
dcgy_coeff, d)
%MY_VAL_NEW Validate the trained model on a test set.
%
% INPUTS
% val_filename: csv file containing the x,y locations of each of the
% three colour channels for N samples of the validation data
% d: degree of the polynomial to be used for fitting
% drgx_coeff, drgy_coeff, dcgx_coeff, dcgy_coeff: learned coefficients
%
% OUTPUTS
% mean_err: The mean error in estimation of the corrected locations. This
% is a 1x4 vector, containing errors in x,y for the two channels
%

% default lookup file name in case it wasn't provided as input
if nargin < 1
 val_filename = 'Beads_Centroid-10-11.csv';
end

% Load the dataset
my_dataset = my_load_dataset_csv(val_filename);
[dummy, c] = size(my_dataset);
assert(dummy==1);
mean_err = zeros(1,4);

% Extract out the x,y coordinates for the 3 color channels
% Each is a Nx1 vector
[x_gfp,y_gfp,x_rfp,y_rfp,x_cy5,y_cy5] = my_create_vector(my_dataset);

8

% Make the data matrix and multiply with the learned coefficients to get
% the deltas
[~, A] = make_polynomial(d,x_rfp,y_rfp);
delta_x_rfp_gfp_res = A*drgx_coeff;
delta_y_rfp_gfp_res = A*drgy_coeff;

% Add obs. value back to get the predicted location
x_r2gfp_res = delta_x_rfp_gfp_res + x_rfp;
y_r2gfp_res = delta_y_rfp_gfp_res + y_rfp;

% Difference between the actual and the predicted locations
x_tmp_r2g = x_gfp-x_r2gfp_res;
y_tmp_r2g = y_gfp-y_r2gfp_res;

% Calculating the mean errors
mean_err(1) = mean(abs(x_tmp_r2g));
mean_err(2) = mean(abs(y_tmp_r2g));

figure,
subplot(1, 2, 1), scatter(x_tmp_r2g, y_tmp_r2g);
msg = sprintf('d=%d, rfp2gfp', d); title(msg);

% A similar procedure follows for the CY5 correction
[~, A] = make_polynomial(d,x_cy5,y_cy5);

delta_x_cy5_gfp_res = A*dcgx_coeff;
delta_y_cy5_gfp_res = A*dcgy_coeff;

x_c2gfp_res = delta_x_cy5_gfp_res + x_cy5;
y_c2gfp_res = delta_y_cy5_gfp_res + y_cy5;

x_tmp_c2g = x_gfp-x_c2gfp_res;
y_tmp_c2g = y_gfp-y_c2gfp_res;

mean_err(3) = mean(abs(x_tmp_c2g));
mean_err(4) = mean(abs(y_tmp_c2g));

subplot(1, 2, 2), scatter(x_tmp_c2g, y_tmp_c2g);
msg = sprintf('d=%d, cy52gfp', d); title(msg);

result_dataset = [x_gfp, y_gfp, x_r2gfp_res, y_r2gfp_res, x_c2gfp_res, y_c2gfp_res];
csvwrite(['val_degree' '_' int2str(d) '_pred.csv'], result_dataset);

% print the errors out
mean_err

9

%-----------------------
% my_test_new.m
%-----------------------

function [x_r2gfp_res, y_r2gfp_res, x_c2gfp_res, y_c2gfp_res] =
my_test_new(test_filename, csv_outfname, drgx_coeff, drgy_coeff, dcgx_coeff,
dcgy_coeff, d)
%MY_TEST_NEW Use the learned coeffecients of a polynomial
% to correct for chromatic aberration in the test data
%
% INPUTS
% test_filename: csv file containing the x,y locations of the test data
% d: degree of the polynomial to be used for fitting
% drgx_coeff, drgy_coeff: Mx1 vectors containing the learned coefficients G channel
correction
% dcgx_coeff, dcgy_coeff: Mx1 vectors containing the learned coefficients
% CY5 channel correction
%
% OUTPUTS
% x_r2gfp_res, y_r2gfp_res: Corrected coordinates for G channel of size Nx1
% x_c2gfp_res, y_c2gfp_res: Corrected coordinates for CY5 channel, size Nx1
%
%

% default test file name in case it wasn't provided as input
if nargin < 1
 test_filename = 'Noc-Golgi-Mini-Stack_Centroid.xls';
end

% Load the test data
my_dataset = my_load_dataset_csv(test_filename);
[~, c] = size(my_dataset);
result_dataset = cell(1, c);

% Extract out the x,y coordinates for the 3 color channels
% Each is a Nx1 vector
[~,~,x_rfp,y_rfp,x_cy5,y_cy5] = my_create_vector(my_dataset);

% GFP correction
% first build the polynomial and the data matrix.
% A*learned coefficients will give delta
[~, A] = make_polynomial(d,x_rfp,y_rfp);
delta_x_rfp_gfp_res = A*drgx_coeff;
delta_y_rfp_gfp_res = A*drgy_coeff;

10

% Adding back the original location to delta and obtain the corrected loc.
x_r2gfp_res = delta_x_rfp_gfp_res + x_rfp;
y_r2gfp_res = delta_y_rfp_gfp_res + y_rfp;

% A similar procedure follows for the CY5 correction
[~, A] = make_polynomial(d,x_cy5,y_cy5);
delta_x_cy5_gfp_res = A*dcgx_coeff;
delta_y_cy5_gfp_res = A*dcgy_coeff;

x_c2gfp_res = delta_x_cy5_gfp_res + x_cy5;
y_c2gfp_res = delta_y_cy5_gfp_res + y_cy5;

% Storing the results and writing them out to a .csv file
result_dataset{1} = [x_r2gfp_res, y_r2gfp_res, x_c2gfp_res, y_c2gfp_res];
%csvwrite(['test_degree' '_' int2str(d) '_pred.csv'], result_dataset);
csvwrite(csv_outfname, result_dataset);

%-----------------------
% my_create_vector.m
%-----------------------

function [x_gfp,y_gfp,x_rfp,y_rfp,x_cy5,y_cy5] = my_create_vector(dataset)
%MY_CREATE_VECTOR Extract location data as separate vectors from the loaded
%cell array
%
% INPUTS
% dataset: csv file loaded into memory
%
% OUTPUTS
% x_gfp, y_gfp: x,y info for the red channel
% x_rfp, y_rfp: x,y info for the green channel
% x_cy5, y_cy5: x,y info for the CY5 channel
% Example usage:
% data = my_load_dataset_csv('traindata.csv')
% [x_gfp,y_gfp,x_rfp,y_rfp,x_cy5,y_cy5] = my_create_vector(data)
%
%

[~,c] = size(dataset);
x_gfp = [];
y_gfp = [];
x_rfp = [];
y_rfp = [];
x_cy5 = [];
y_cy5 = [];

11

for i = 1:c
 vect = dataset{i};

 x_gfp = [x_gfp; vect(:,1)];
 y_gfp = [y_gfp; vect(:,2)];

 x_rfp = [x_rfp; vect(:,3)];
 y_rfp = [y_rfp; vect(:,4)];

 x_cy5 = [x_cy5; vect(:,5)];
 y_cy5 = [y_cy5; vect(:,6)];
end

%-----------------------
% my_load_dataset_csv.m
%-----------------------

function dataset = my_load_dataset_csv(filename)
%MY_LOAD_DATASET_CSV Read from a given csv file into a cell array for
%subsequent calculations
%
% INPUTS
% filename: csv file containing the x,y locations of each of the
% three colour channels for N samples
%
% OUTPUTS
% dataset: cell array containing the data loaded into memory
%
%

valid_vect = csvread(filename);
dataset{1} = valid_vect ;

%-----------------------
% make_polynomial.m
%-----------------------

function [function_expr, A] = make_polynomial(degree,x,y)
%MAKE_POLYNOMIAL Given the degree of the required polynomial and the data
%points (bi variate), this function builds the polynomial structure and the
%data matrix
%
% INPUTS
% degree: degree of the polynomial to be used for fitting

12

% x, y: Nx1 vectors containing the data points
%
% OUTPUTS
% function_expr: The polynomial expression (String)
% A: NxM data matrix where,
% M is the number of terms in a polynomial of degree d
% and Aij is the jth polynomial term (without the coefficient) of the ith
% sample.
%
%

expr = [];
A = [];

for i = 0: degree
 for j=0:degree - i
 % adding the corresponding term to the existing polynomial
 expr = [expr '+a' int2str(i) int2str(j) ' * ' 'x^' int2str(i) ' * ' 'y^' int2str(j)];
 A = [A (x.^i).*(y.^j)];
 end
end

% removing the , upfront
expr = expr(1, 2:size(expr,2));
function_expr = expr ;

end

0

20

40

60

80

m
ea

n
m

ag
ni

tu
de

 o
f v

ec
to

rs
 (n

m
)

no
n-c

orr
ec

ted

0
ord

er

1
ord

er

2
ord

er

3
ord

er

4
ord

er
stth thnd rd

(2±2)x104
(5±5)x103

polynomial fitting order

mean±SD

gr
ee

n
ve

ct
or

bl
ue

 v
ec

to
r

background subtraction value

total intensity of GalT-mCherry in the Golgi mini-stack

0 200 400 600 800
-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

LQ
 o

f T
G

N
46

y=1.43+(5.04 10-4) x
adj. R =0.00852

0 200 400 600 800
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y=0.82+(4.09 10-5) x
adj. R =-0.00382

LQ
1.47±0.02 (n=395)

LQ
0.82±0.02 (n=247)

70 80 90 100 110 120 130 140 150 160 170 180
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

LQ
 o

f G
S

15

A

B

C

0.85±0.05 (n=46)

total intensity of GalT-mCherry in the Golgi mini-stack

LQ
 o

f G
S

15

nocodazole

GalT-mCherry GM130 (m)GFP-Sec31a Merge

GalT-mCherry GM130 (r)GS27 Merge

GalT-mCherry GM130 (m)GFP-ERGIC53 Merge

GalT-mCherry GM130 (r)KDELR Merge

GalT-mCherry GM130 (m)GFP-GM130 Merge

GalT-mCherry GM130 (m) β-COP Merge

GalT-mCherry GM130 (m)GFP-Golgin84 Merge

GalT-mCherry GM130 (m)GFP-ACBD3 Merge

GalT-mCherry GM130 (m)ACBD3 Merge

GalT-mCherry GM130 (r)GS28 Merge

10 µm

GalT-mCherry GM130 (m)GM130 (r) Merge

Fig. S3-A-1 A

GalT-mCherry GM130 (m)Giantin Merge

GalT-mCherry GM130 (r)GS15 Merge

GalT-mCherry GM130 (m)GalT-GFP Merge

GalT-mCherry GM130 (m)GFP-GPP130 Merge

GalT-mCherry GM130 (m)GFP-KDELR Merge

GalT-mCherry GM130 (r)GalT-HA Merge

GalT-mCherry GM130 (m)GFP-Rab6 Merge

GalT-mCherry GM130 (m)Arl1 Merge

GalT-mCherry GM130 (r)Vti1a Merge

nocodazole

GalT-mCherry GM130 (m)GFP-GCC88 Merge

10 µm

Fig. S3-A-2

GalT-mCherry GM130 (r)Golgin245 Merge

GalT-mCherry GM130 (m)GFP-Golgin97 Merge

GalT-mCherry GM130 (r)CI-M6PR Merge

GalT-mCherry GM130 (m)TGN46 Merge

GalT-mCherry GM130 (r)Syntaxin6 Merge

GalT-mCherry GM130 (m)Vamp4-GFP Merge

GalT-mCherry GM130 (m)Furin Merge

GalT-mCherry GM130 (r)CD8a-CI-M6PR Merge

nocodazole

GalT-mCherry GM130 (r)Golgin97 MergeFig. S3-A-3

GalT-mCherry GM130 (r)GGA2 Merge

10 µm

nocodazole, biotin chase 0 min nocodazole, biotin chase 40 min

GalT-mCherry GM130

ss-SBP-GFP-CD8a-
furin (wild type)

merge

Merge

ss-SBP-GFP-
E-cadherin

TNFα-SBP-GFP

10 m

GalT-mCherry GM130 merge

ss-SBP-GFP-CD8a-
furin (wild type)

ss-SBP-GFP-CD8a-
furin (Y mutation)

ss-SBP-GFP-CD8a-
furin (Y mutation)

ss-SBP-GFP-CD8a-
furin (AC mutation)

ss-SBP-GFP-CD8a-
furin (AC mutation)

ss-SBP-GFP-CD8a-
furin (Y+AC mutation)

ss-SBP-GFP-CD8a-
furin (Y+AC mutation)

ss-SBP-GFP-
E-cadherin

ss-SBP-GFP-
CD59

ss-SBP-GFP-
CD59

TNFα-SBP-GFP

B

mean 2D projected axial length
=219±4 nm
(n=401)

mean 3D axial length
=344±6 nm
(n=401)

mean 2D projected axial length
=319±5 nm
(n=401)
mean 3D axial length
=501±8 nm
(n=401)

2D projected axial length of a Golgi mini-stack or distance
 from GM130 to GalT-mCherry in image (nm)

2D projected axial length of a Golgi complex or distance
 from GM130 to TGN46 in image (nm)

A

B

0 200 400 600 800
0

20

40

60

80

100

120

140

C
ou

nt
s

0 200 400 600 800
0

50

100

150

C
ou

nt
s

H
eL

a
R

P
E

1
B

S
C

1
C

2C
12

N
R

K

0.0

0.5

1.0

1.5

2.0

LQ

C

GFP-Golgin84

TGN46

internalized
CD8a antibody GM130 merge

AC mutation

10 µm

Y+AC mutation

Y mutation

wild type

ss-SBP-GFP-CD8a-
furin

GFP

ss-SBP-GFP-CD8a-furin
 (Y+AC mutation)

CD8a
surface labeling

ch
as

e
af

te
r b

io
tin

 tr
ea

tm
en

t

20
 m

in
40

 m
in

60
 m

in
90

 m
in

12
0

m
in

10 µm

ss-SBP-GFP-CD8a-furin
(wild type)

GFP
CD8a

surface labeling

	Binder1.pdf
	mc-E15-09-0664-s01.pdf
	mc-E15-09-0664-s02.pdf
	mc-E15-09-0664-s03.pdf
	mc-E15-09-0664-s04.pdf
	mc-E15-09-0664-s05.pdf
	mc-E15-09-0664-s06.pdf
	mc-E15-09-0664-s07.pdf
	mc-E15-09-0664-s08.pdf
	mc-E15-09-0664-s09.pdf

