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1 Parameter values

The parameter values used in the model in the main text are taken from [13,15,16], where they have been
optimized to agree with a number of experimental observations, including the existence of competence events,
the duration of these events, and the robustness of events to a wide range of stress levels. They are first given
below in dimensionless form, which is sufficient to establish their deterministic dynamical properties. To
account for intrinsic noise and to compare with experiments, several physical quantities are then specified to
establish molecule numbers and timescales. The conversion to the remaining model parameters, and their
resulting values, are then given below.

Native circuit:

Dimensionless parameters

as = 0
bk = 0.3
bs = 3
k0 = 0.2
k1 = 1/30
∆k = 0.1
∆s = 0.1
h = 2
p = 5

Physical quantities

Molecule numbers:
Γk = 100
Γs = 1

Timescales:
δk = 0.001/s
δs = 0.001/s

Remaining parameters

αk (varied)
αs = asΓsδ = 0/s
βk = bkΓkδk = 0.03/s
βs = bsΓsδs = 0.003/s
kk = k0Γk = 20
ks = k1Γk = 3.3
λk = ∆kδk = 10−4/s
λs = ∆sδs = 10−4/s

SynEx circuit:
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Dimensionless parameters

am = 0.3
bk = 15
bm = 10
µ = 1
h = 2
p = 2

Physical quantities

Molecule numbers:
kk = 10
km = 5

Timescales:
λk = 10−4/s
λm = 10−4/s

Remaining parameters

αk (varied)
αm = amkmλm = 1.5× 10−4/s
βk = bkkkλk = 0.015/s
βm = bmkmλm = 0.005/s
δ = µλk/km = 2× 10−5/s

Note that in [13,15,16] the higher values Γk = 25000 and Γs = 20 (native), and kk = 5000 and km = 2500
(SynEx) are used to establish molecule number. We use the lower values here to elucidate the effects of
intrinsic noise. This assumption is relaxed in the next section, where we return to the high-number regime.
In the main text, we discuss how the effects of noise are robust to this choice.

2 Linear stability analysis of the deterministic model

Here, for the dynamics in Fig. 4 and S1, we list the fixed points and the eigenvalues of the Jacobian matrix
evaluated at each fixed point:

Fig. 4A (left) Fig. 4A (right) Fig. S1C and D Fig. 4B (left) Fig. 4B (right)

Fixed
Point 1

λ1 = −0.045 λ1 = −0.44 λ1 = −0.03 + 0.52i λ1 = −0.25 λ1 = −0.6 + 1.9i
λ2 = −0.10 λ2 = −0.81 λ2 = −0.03− 0.52i λ2 = −0.88 λ2 = −0.6− 1.9i

2
λ1 = 0.04 λ1 = 0.43
λ2 = −0.10 λ2 = −0.69

3
λ1 = 0.05 + 0.28i λ1 = 2.1
λ2 = 0.05− 0.28i λ2 = 0.54

Regime excitable excitable
monostable
(damped

oscillations)
monostable

monostable
(damped

oscillations)

We see that for both circuits at low stress (columns 1 and 2), there is one stable fixed point (negative
eigenvalues) and two unstable fixed points (where at least one eigenvalue has positive real part), consistent
with excitable behavior. For both circuits at high stress (columns 3 and 5), there is one fixed point, and its
eigenvalues are complex with negative real part, indicating damped oscillations. For the native circuit at
very high stress (column 4), there is one fixed point, and its eigenvalues are real and negative, indicating a
monostable state.

3 Relaxing the model assumptions

To relax the first two simplifying assumptions made in the main text, we consider a stochastic model that
has high molecular copy numbers, and that accounts explicitly for the mRNA dynamics and the dynamics
of competitive degradation. The model follows from our earlier work [16], and consists of a set of coupled
chemical reactions for each circuit. Due to the complexity of the model, we do not solve the master equation
explicitly, but rather we simulate the dynamics using the Gillespie algorithm [50].

For the native circuit, the reactions and rates are:
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Reaction Rate

Pconst
ComK → Pconst

ComK + mRNAComK k1 (varied)
PComK → PComK + mRNAComK k2n

h/(khk + nh)
mRNAComK → mRNAComK + ComK k3 = 0.2/s
Pconst
ComS → Pconst

ComS + mRNAComS k4 = 0/s
PComS → PComS + mRNAComS k5/[1 + (n/ks)

p]
mRNAComS → mRNAComS + ComS k6 = 0.2/s
mRNAComK → ∅ k7 = 0.005/s
ComK → ∅ k8 = 10−4/s
mRNAComS → ∅ k9 = 0.005/s
ComS → ∅ k10 = 10−4/s
MecA + ComK → MecAK k11/Ω
MecAK → MecA + ComK k−11 = 5× 10−4/s
MecAK → MecA k12 = 0.05/s
MecA + ComS → MecAS k13/Ω
MecAS → MecA + ComS k−13 = 5× 10−5/s
MecAS → MecA k14 = 4× 10−5/s

Additional parameters

k2 = 0.19/s
k5 = 0.0015/s
k11 = 2× 10−6/s
k13 = 4.5× 10−6/s
kk = 5000
ks = 833
h = 2
p = 5
Ω = 1.66 µm3

MT = 500

Here Pgene denotes the promoter of the corresponding gene (constitutive or regulated), and MecAK and
MecAS represent the complex of MecA bound to ComK and ComS, respectively. As in the main text, n
is the number of ComK molecules per cell. Ω represents the cell volume, and MT gives the total number
of MecA molecules. Upon adiabatically eliminating the faster mRNA dynamics and the MecA dynamics,
one obtains the model in the previous section, except with the larger molecule numbers Γk = 25000 and
Γs = 20 [13]. The control parameter here, k1, is related to the control parameter in the reduced model, αk,
via k1 = k7αk/k3 [13].

For the SynEx circuit, the reactions and rates are:

Reaction Rate

Pconst
ComK → Pconst

ComK + mRNAComK k1 (varied)
PComK → PComK + mRNAComK k2n

h/(khk + nh)
Pconst
MecA → Pconst

MecA + mRNAMecA k3 = 0.0019/s
PMecA → PMecA + mRNAMecA k4n

p/(kpm + np)
mRNAComK → mRNAComK + ComK k5 = 0.2/s
mRNAMecA → mRNAMecA + MecA k6 = 0.2/s
MecA + ComK → MecA k7/Ω
mRNAComK → ∅ k8 = 0.005/s
mRNAMecA → ∅ k9 = 0.005/s
MecA → ∅ k10 = 10−4/s
ComK → ∅ k11 = 10−4/s

Additional parameters

k2 = 0.19/s
k4 = 0.0625/s
k7 = 4× 10−8/s
kk = 5000
km = 2500
h = 2
p = 2
Ω = 1.66 µm3

Once again, Pgene denotes the promoter of the corresponding gene, n is the number of ComK molecules
per cell, and Ω represents the cell volume. Upon adiabatically eliminating the faster mRNA dynamics, one
obtains the model in the previous section, except with the larger molecule numbers kk = 5000 and km = 2500
[16]. The control parameter here, k1, is related to the control parameter in the reduced model, αk, via
k1 = k8αk/k5.

To relax the third simplifying assumption made in the main text, we consider a stochastic model of the
SynExSlow circuit. The model follows from our earlier work [16], and is similar to the stochastic model in
the main text, except that there are three species with dynamic molecule numbers: ComK (n), MecA (m),
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and ComS (`). The production rate functions are, respectively,

gn = αk +
βkn

h

khk + nh
, qn = αm +

βmn
p

kpm + np
, yn = αs +

βsn
h

khs + nh
, (1)

and the degradation rate functions are, respectively,

rnm` =
δkm

1 + n/Γk + `/Γs
+ λk, s = λm, unm` =

δsm

1 + n/Γk + `/Γs
+ λs. (2)

The parameter values are [16]:

Parameters

αk (varied) βs = 0.5/s
αm = 0.075/s Γk = 25000
αs = 0.5/s Γs = 20
δk = δs = 2× 10−6/s kk = 5000
λk = λm = λs = 10−4/s km = 2500
βk = 7.5/s ks = 500
βm = 2.5/s h = p = 2

Note that these values correspond to the high-molecule-number regime of the native and SynEx models of
the main text, and thus this model of the SynExSlow circuit also relaxes the first simplifying assumption of
low molecule number.

Finally, we note that at these parameter values, the deterministic analog of this model predicts that as a
function of the control parameter αk, the excitable regime transitions directly into a damped oscillatory
(mono-stable) regime, where two of the three eigenvalues of the Jacobian matrix are complex, and all have
negative real part. That is, there is no standard oscillatory regime. Therefore, we define a heuristic boundary

α
(2)
k = 0.15/s after which the damping is clearly evident within the first 24 hours of the deterministic

dynamics (see Fig. S7). The fact that the stochastic dynamics exhibit sustained oscillations in the absence
of a deterministically oscillatory regime, even beyond this heuristic boundary (Fig. S7), indicates that the
ability of noise to induce oscillations in the SynExSlow circuit is especially strong.

4 Spectral solution to the master equation

We write the master equation (Eqn. 1 in the main text) as

dpnm
dt

= −
(
L̂n[gn, rnm] + L̂m[qn, snm]

)
pnm. (3)

Here −L̂ is the linear birth-death operator, whose action on the probability distribution p is described by

− L̂n[gn, rn]pn = gn−1pn−1 + rn+1(n+ 1)pn+1 − (gn + rnn)pn, (4)

where in general on an operator (here, L̂) we use a subscript to denote the sector (n or m) on which it acts.
Explicitly, then, the master equation reads

dpnm
dt

= gn−1pn−1,m + rn+1,m(n+ 1)pn+1,m − (gn + rnmn)pnm

+qnpn,m−1 + sn,m+1(m+ 1)pn,m+1 − (qn + snmm)pnm. (5)
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We will now derive the spectral decomposition of the master equation by introducing the generating function.
For intuition, we will first introduce the generating function in the context of the one-dimensional system
described by Eqn. 4, then extend our results to the full master equation.

The generating function is an expansion in a complete set of states, indexed by molecule number, for which
the probabilities provide the expansion coefficients. Denoting the states abstractly as |n〉, the generating
function is defined

|G〉 ≡
∑
n

pn|n〉, (6)

where the sum runs from 0 to ∞ (as do all sums hereafter unless otherwise specified). Summing Eqn. 4
against |n〉 yields

−L̂|G〉 =
∑
n

gn−1pn−1|n〉+
∑
n

rn+1(n+ 1)pn+1|n〉 −
∑
n

gnpn|n〉 −
∑
n

rnnpn|n〉 (7)

=
∑
n

gnpn|n+ 1〉+
∑
n

rnnpn|n− 1〉 −
∑
n

gnpn|n〉 −
∑
n

rnnpn|n〉, (8)

where the second step shifts the sum without penalty (i) in the first term, since p−1 = 0, and (ii) in the second
term, since it vanishes for n = 0. Eqn. 8 benefits from the introduction of two additional sets of operators: (i)
operators corresponding to the evaluation of the production and degradation functions at particular values of
n,

ĝ|n〉 ≡ gn|n〉, (9)

r̂|n〉 ≡ rn|n〉, (10)

and (ii) raising and lowering operators that correspond to the shifts in n caused by birth and death,

â+|n〉 ≡ |n+ 1〉, 〈n|â+ = 〈n− 1|, (11)

â−|n〉 ≡ n|n− 1〉, 〈n|â− = n〈n+ 1|. (12)

In Eqns. 11-12, for completeness, we have also presented the operators’ actions to the left, which derive from
the orthonormality condition 〈n|n′〉 = δnn′ . In terms of the above operators, Eqn. 8 becomes

−L̂|G〉 =
∑
n

pnâ
+ĝ|n〉+

∑
n

pnâ
−r̂|n〉 −

∑
n

pnĝ|n〉 −
∑
n

pnâ
+â−r̂|n〉, (13)

=
(
â+ĝ + â−r̂ − ĝ − â+â−r̂

)∑
n

pn|n〉, (14)

= −
(
â+ − 1

) (
â−r̂ − ĝ

)
|G〉. (15)

Eqn. 15 reveals the form of the birth-death operator in generating function space.

We now generalize Eqn. 15 to the two-dimensional master equation of the model. Defining the two-dimensional
generating function,

|G〉 ≡
∑
nm

pnm|n,m〉, (16)

the master equation becomes

|Ġ〉 = −
[(
â+n − 1

) (
â−n r̂nm − ĝn

)
+
(
â+m − 1

) (
â−mŝnm − q̂n

)]
|G〉, (17)

where dot denotes the time derivative, and as before the subscripts on operators denote the sectors on which
they act.

The key insight of the spectral method is that a master equation such as Eqn. 17 can be simplified significantly
by expansion in a wisely chosen set of eigenfunctions. Since Eqn. 17 describes two coupled birth-death
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processes, we choose to expand in the eigenfunctions of two uncoupled birth-death processes – that is, processes
with constant production rates ḡ and q̄ and degradation rates r̄ and s̄, respectively. Again for intuition we
begin in one dimension, for which the operator describing a constant-rate birth-death process is given by Eqn.
15:

− L̂|G〉 = −
(
â+ − 1

) (
â−r̄ − ḡ

)
|G〉 = −r̄b̂+b̂−|G〉. (18)

In the second step we have defined the shifted raising and lowering operators

b̂+ ≡ â+ − 1, (19)

b̂− ≡ â− − ḡ/r̄. (20)

The operator b̂+b̂− is a number operator whose eigenvalues are integers, which we call j; thus the eigenvalue
relation for the constant-rate birth-death operator is

− L̂|j〉 = −r̄j|j〉. (21)

Accordingly, b̂+ and b̂− raise and lower the eigenstates as â+ and â− do the |n〉 states (Eqn. 11-12):

b̂+|j〉 = |j + 1〉, 〈j|b̂+ = 〈j − 1|, (22)

b̂−|j〉 = j|j − 1〉, 〈j|b̂− = j〈j + 1|. (23)

As we will see, the spectral method exploits the expansion of the generating function in these eigenstates |j〉.

Returning to two dimensions, it is clear that we would like to write the coupled master equation in terms of
the uncoupled rates, which we do by adding them to and subtracting them from Eqn. 17:

|Ġ〉 = −
[(
â+n − 1

) (
â−n [r̂nm + r̄ − r̄]− ĝn − ḡ + ḡ

)
+
(
â+m − 1

) (
â−m[ŝnm + s̄− s̄]− q̂n − q̄ + q̄

)]
|G〉 (24)

= −
[(
â+n − 1

) (
â−n r̄ − ḡ − â−n γ̂nm + Γ̂n

)
+
(
â+m − 1

) (
â−ms̄− q̄ − â−mλ̂nm + Λ̂n

)]
|G〉 (25)

= −
[
r̄b̂+n b̂

−
n − b̂+n

(
b̂−n +

ḡ

r̄

)
γ̂nm + b̂+n Γ̂n + s̄b̂+mb̂

−
m − b̂+m

(
b̂−m +

q̄

s̄

)
λ̂nm + b̂+mΛ̂n

]
|G〉. (26)

In the second step we define operators which capture the deviations between the constants and the coupled
rates,

Γ̂n ≡ ḡ − ĝn, Λ̂n ≡ q̄ − q̂n, (27)

γ̂nm ≡ r̄ − r̂nm, λ̂nm ≡ s̄− ŝnm, (28)

and in the third step we write the raising and lowering operators in terms of their shifted counterparts:

b̂+n ≡ â+n − 1, b̂+m ≡ â+m − 1, (29)

b̂−n ≡ â−n − ḡ/r̄, b̂−m ≡ â−m − q̄/s̄. (30)

We now expand the generating function in the eigenstates of b̂+n b̂
−
n and b̂+mb̂

−
m, with eigenvalues j and k,

respectively,

|G〉 =
∑
jk

Gjk|j, k〉, (31)

which makes Eqn. 26∑
jk

Ġjk|j, k〉 = −
∑
jk

Gjk

[
r̄j − b̂+n b̂−n γ̂nm −

ḡ

r̄
b̂+n γ̂nm + b̂+n Γ̂n + s̄k − b̂+mb̂−mλ̂nm −

q̄

s̄
b̂+mλ̂nm + b̂+mΛ̂n

]
|j, k〉.

(32)
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Projecting from the left with the state 〈j, k|,

Ġjk = −(r̄j + s̄k)Gjk −
∑
j′

Gj′k〈j|b̂+n Γ̂n|j′〉 −
∑
j′k′

Gj′k′〈j, k|b̂+mΛ̂n|j′, k′〉

+
∑
j′k′

Gj′k′〈j, k|b̂+n b̂−n γ̂nm|j′, k′〉+
ḡ

r̄

∑
j′k′

Gj′k′〈j, k|b̂+n γ̂nm|j′, k′〉

+
∑
j′k′

Gj′k′〈j, k|b̂+mb̂−mλ̂nm|j′, k′〉+
q̄

s̄

∑
j′k′

Gj′k′〈j, k|b̂+mλ̂nm|j′, k′〉, (33)

and noting the actions of b̂+ and b̂− to the left (Eqns. 29-30) yields the dynamics of the expansion coefficients,

Ġjk = −(r̄j + s̄k)Gjk −
∑
j′

[Γj−1,j′Gj′k + Λjj′Gj′,k−1] +
∑
j′k′

[
jγkk

′

jj′ +
ḡ

r̄
γkk

′

j−1,j′ + kλkk
′

jj′ +
q̄

s̄
λk−1.k

′

jj′

]
Gj′k′ ,

(34)
where the deviations, rotated into eigenspace, have become matrices and tensors:

Γjj′ ≡ 〈j|Γ̂n|j′〉 =
∑
n

〈j|n〉(ḡ − gn)〈n|j′〉, Λjj′ ≡ 〈j|Λ̂n|j′〉 =
∑
n

〈j|n〉(q̄ − qn)〈n|j′〉, (35)

γkk
′

jj′ ≡ 〈j, k|γ̂nm|j′, k′〉 λkk
′

jj′ ≡ 〈j, k|λ̂nm|j′, k′〉

=
∑
nm

〈j|n〉〈k|m〉(r̄ − rnm)〈n|j′〉〈m|k′〉, =
∑
nm

〈j|n〉〈k|m〉(s̄− snm)〈n|j′〉〈m|k′〉. (36)

With Eqn. 34, we have turned the original master equation (Eqn. 17) into a linear algebraic equation, involving
only matrix and tensor multiplication. In steady state Eqn. 34 can be solved perturbatively by treating the
first term on the right-hand side as larger than the others and iterating to convergence.

Algorithmically, then, the procedure prescribed by the spectral method is the following. First we compute the
deviation matrices and tensors from the given rate functions gn, rnm, qn, and snm, and our chosen ‘gauges’ ḡ,
r̄, q̄, and s̄. Then we solve for the steady state of Eqn. 34 by iteration to obtain the expansion coefficients
Gjk. Finally, we compute the probability distribution by taking the inverse transform:

pnm =
∑
jk

Gjk〈n|j〉〈m|k〉. (37)

The probability distribution provides the complete stochastic description of the steady-state process. Note
that both the deviation matrices/tensors and the probability distribution are computed via multiplication
against the eigenmodes 〈n|j〉 and 〈m|k〉 or their conjugates 〈j|n〉 and 〈k|m〉; these are efficiently precomputed
via recursive update rules.

For the SynEx circuit, the dynamics of the spectral expansion coefficients are simplified because we have
rnm → rm and snm → s̄:

Ġjk = −(r̄j + s̄k)Gjk −
∑
j′

[Γj−1,j′Gj′k + Λjj′Gj′,k−1] +
∑
k′

[
jγkk′Gjk′ +

ḡ

r̄
γkk′Gj−1,k′

]
, (38)

where

Γjj′ ≡
∑
n

〈j|n〉(ḡ − gn)〈n|j′〉, Λjj′ ≡
∑
n

〈j|n〉(q̄ − qn)〈n|j′〉, (39)

γkk′ ≡
∑
m

〈k|m〉(r̄ − rm)〈m|k′〉. (40)

We see that the sparser coupling of the degradation terms (compared to the native circuit) has left us with a
linear algebraic equation involving only matrices, not tensors. The solution follows the steps outlined above
for the native circuit.
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The spectral method is more efficient than other solution techniques by many orders of magnitude [48].
However, we find that here it becomes numerically unstable at sufficiently high numbers. Therefore, at high
copy numbers, we solve for the steady state of the original master equation (Eqn. 3) by iteration. This is less
efficient but more numerically stable. Specifically, we tile the columns of pnm into one vector Pi, and write
the master equation as

dPi

dt
=
∑
i′

Mii′Pi′ =
∑
i′

(−Diδii′ +Nii′)Pi′ , (41)

where Mii′ is the reshaped operator in Eqn. 3, and −Di and Nii′ are its diagonal and non-diagonal components,
respectively. In steady state, we have

Pi = D−1i

∑
i′

Nii′Pi′ , (42)

which we solve iteratively until convergence.

5 Chromosomal alterations and antibiotic resistance

In this study, strains of the Bacillus subtilis strain PY79 were genetically altered by homologous combination,
resulting in a single copy of each promoter-gene pair integrated into the bacterial chromosome.

The Native strain is a variant from a previous study [13]. This strain includes an IPTG inducible promoter,
Phyperspank that drives ComK production together with the native comK gene, which is left intact. This was
introduced into the amyE gene locus and was selected for using spectinomycin resistance, SpR. Furthermore, a
construct containing PcomG−cfp and PcomS−yfp was inserted into the sacA gene locus using chloramphenicol,
CmR, as an antibiotic selection marker. A table that summarizes the chromosomal alterations, synthetic
gene insertions, and antibiotic resistance in the order of transformations is below.

Locus::Construct (Antibiotic Resistance)

amyE :: Phyperspank − comK(SpR)
sacA :: PcomG − cfp, PcomS − yfp(CmR)

The SynExSlow strain is similar to the one described in [16] with a few changes. For this study, we
wanted to be able to tune ComK production using IPTG as in the native strain above. However, the
SynExSlow strain as previously described used the hyperspank promoter to regulate the basal level of
ComS. Here we replaced the original comS regulation, amyE :: Phyperspank − comS, with comS expression
from a ribosomal promoter, PrpsD − comS with constitutive expression similar to the expression previously
described. This was inserted into the gltA gene locus together with PcomG − comS, which slows down
the synthetic competence differentiation, using phleomycin (PlmR) as a selection marker. Originally, the
PcomG − comS promoter-gene construct was inserted into the sacA gene locus, but in this variant only
the pSac − cm − PcomG−Kbox1 −mecAxp is inserted into the sacA locus with chloramphenicol resistance
(CmR) as a selection marker due to better transformation efficiency. The final difference is the identical
Phyperspank − comK construct inserted into the amyE gene locus with spectinomycin resistance (SpR) as was
used with the Native strain. The knock-out of the srfA gene locus containing comS was done by inserting
with comS :: neo, PcomG − cfp with neomycin and kanamycin resistance (NeoR/KanR) as in the original
SynExSlow.

This is summarized according to the actual order of transformations in the following table:
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Locus::Construct (Antibiotic Resistance)

amyE :: Phyperspank − comK(SpR)
sacA :: PcomG−Kbox1 −mecAxp(CmR)
∆srfA, comS :: PcomG − cfp(NeoR/KanR)
gltA :: PrpsD − comS, PcomG − comS(PlmR)

6 Cell Differentiation Behavior

Bacillus subtilis exhibits two main stress responses: 1. competence and 2. sporulation. Competence is a
transient differentiation program allowing for exogenous DNA uptake and integration, whereas sporulation is
a terminal differentiation state where the cell can remain dormant. The interaction between sporulation and
competence was previously studied [5] where it was found that the two differentiation programs independently
race each other rather than using intricate cross-regulation between the two differentiation circuits. It was
also discovered that cells could undergo both competence and sporulation programs simultaneously to create
dual-activity cells. It was found that sporulation could exclude competence via physical mechanisms, e.g.
lysing the mother cell and thus preventing competence. Furthermore, it was also found that competence
could exclude sporulation in that ComK expressed from sporulation promoters prevented the progression of
sporulation.

The implication for this study is that by increasing the competence frequency we simultaneously suppress the
sporulation rate. Spores are seen in both the Native and SynEx strains. For the purpose of the analysis of
competence, spores are excluded from the analysis though the mother cell of the spore is still analyzed until
lysis occurs since competence continues to be possible until lysis.

Furthermore, cells that remain in competence for an extended duration cannot divide due to suppression of
ftsZ. This results in long, worm-like cells as the cells continue to grow in biomass without dividing. Because
of this the comparison between a stable competence states and transient competence states is difficult to do
on a single cell basis. To compare the different levels of induction, we rather identify the location of cells (not
spores) using phase contrast microscopy, create a mask based on edge detection and the region properties of
the edge enclosed regions, and then use that mask to measure the distribution of fluorescence for the area
where the cells were identified. Several images and their associated masks are included as examples.

7 Image Analysis

Image analysis is done in the following steps:

1. Edge detection is done using the MATLAB function, edge, using the Laplacian of Gaussian kernel to
discover zero crossings. A tolerance threshold of zero is specified to obtain all possible edges resulting
in over segmentation.

2. Edges are dilated to create enclosed areas.

3. The properties of those regions are computed based on the phase contrast image, for properties such as
MinIntensity, MeanIntensity, MaxIntensity, and Solidity.

4. The range of these properties is manually selected to select for the dark phase contrast areas that
correspond to areas where Bacillus subtilis exists, excluding the phase bright spores.
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5. The selected areas are then combined into a binary mask of cell locations, and the fluorescence of cfp
as a reporter for PcomG activity, which in turn is an effective reporter for ComK activity, is obtained.

6. The fluorescence within the mask is then plotted as a histogram for comparison with IPTG conditions.
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