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1. Appendix A

We assume exchangeability, but in many applications we expect that the ele-
ments of (say) y are in fact independent. However, the weaker exchangeability
requirement is useful to clarify that various forms of pre-treating the data, such
as normalization techniques, do not invalidate permutation testing. The same
comment applies to normalization of X, provided that X and y are normalized
separately. Conditioned on the observed x and y, under H0 each of the n! per-
muted versions of y is equally likely to have arisen in relation to the elements
of x, and these permutations are the population upon which inference is based.
We use Π to denote a random permutation, drawn uniformly from these possi-
bilities. The permutation in turn produces the random statistic r(x,yΠ), upon
which an exact p-value PΠ is based.

A primary advantage to exact testing is the distribution-free property. If X
and Y have continuous densities, rΠ will assume n! unique values, and a p-value
(e.g., pleft) will be rank-uniform, assuming of the values {1/n!, 2/n!, ...1} each
with probability 1/n!. This property ensures approximate validity, Pr(PΠ ≤
α|data) ≈ α, and that the p-value is also valid unconditionally, so Pr(PΠ ≤
α) ≈ α. Exact testing methods are familiar to many practitioners, but are often
discussed in the more limited context of rank methods or discrete data. Thus
we make a few additional remarks to clarify our treatment here.

• Exchangeability of either X or Y is sufficient. One practical consequence is
that the response vector may be fixed by design, and need not be thought
of as “random.”

• The number of unique r(x,yΠ) outcomes may be much smaller than n!,
depending on the choice of statistic, or tied values in x or y. As an ex-
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treme example, consider binary x and y, and Fisher’s exact test of the
corresponding 2 × 2 table. Fisher’s p-value is typically computed using
summations of hypergeometric outcome probabilities, thus avoiding enu-
meration of all n! possibilities. However, complete n! enumeration would
produce the same p-value.

• A large literature has considered the conservativeness of exact testing (e.g.,
Agresti and Coull [2]), due to tied values in x and y producing tied values
in r(x,yΠ). Although such conservativeness is an important consideration
for small sample sizes, for large sample sizes this phenomenon is of lesser
importance.

• Even a slight skew in r(x,yΠ) can, for extreme values of the statistic,
produce a marked departure in p-values computed using permutation vs.
standard parametric approaches. This matter has received little attention,
which we attribute primarily to the historical focus on α = 0.05, for which
the differences between permutation and parametric analysis are often
minimal.

2. Appendix B: citations and derivations for the permutationally
equivalent property

Adapting the definition in Pesarin and Salmaso [10] (pg. 48) to our setting,
statistics r and s are defined to be permutationally equivalent for x and y if for
all pairs of permutations π and π′, r(x,yπ) ≤ r(x,yπ′) if and only if s(x,yπ) ≤
s(x,yπ′).

The permutationally equivalent property for r has been variously presented
for the t statistic for linear regression and equal-variance two-sample t-testing
( including our two-sample problem) in Gatti et al. [5]. The one-to-one rela-
tionship between r and the contingency table linear trend statistic for two-way
tables, which includes the Cochran-Armitage z-statistic and the 2×2 chi-square
statistic, is detailed in Stokes and Koch [12] P.99, and also see Andres [3]. These
relationships also hold unconditionally, i.e. they are not restricted to fixed x and
y.

The common rank-based procedures include the Spearman correlation coef-
ficient, which is well-known to be identical to the Pearson sample correlation
(i.e. r), computed on rank(x) and rank(y). Similarly, the Wilcoxon rank-sum
statistic is equivalent to the two-sample mean difference of ranks, as the total
sum of ranks is fixed. Thus the permutationally equivalent property follows di-
rectly from the definition of r, by computing the correlation on new variables
x′ = rank(x), y′ = rank(y).

The relationships described below depend on observed moments of x or y,
and may not hold unconditionally for random X and Y . However, under permu-
tation these moments remain fixed, and thus do not violate the permutationally
equivalent property. Directional p-values for Fisher’s exact test for 2× 2 tables
are determined entirely by the cell count in an arbitrarily chosen cell, after con-
ditioning on the margins, and it is evident that the p-values are one-to-one with
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the cell count. Suppose without loss of generality that x and y are represented
by binary {0, 1} values, and we focus on the cell for which x = 1,y = 1. Then
that cell count is r =

∑
xjyj , proving the relation.

For the remaining “standard” statistics, such as those based on likelihood ra-
tios, the statistic measures departure from the null in either direction, and may
not be one-to-one with r2. The one-to-one relationship with rΠ is claimed only
for separate consideration of permutations with sign(r) < 0 and permutations
with sign(r) > 0. For a generalized linear model, we define µj=E[Yj ], with link
function g(µj)=ηj = β0 + β1xj . For notational convenience we define zj0 = 1
and zj1 = xj , so ηj =

∑
g βgzjg, for g ∈ {0, 1}. For any standard link function

(McCullagh and Nelder [9] P30), µj is monotone with ηj . For the link functions
of most common interest, including identity, log, logit, and probit models, the
relationship is strictly increasing, and the arguments below pertain to this sit-
uation. Decreasing canonical link functions apply to exponential, gamma, and
inverse Gaussian data, for which the r, β̂1 relationship in the arguments below
simply needs to be reversed.

Without loss of generality, we assume that x and y have been scaled so that
the correlation function r(x,y) =

∑
j xjyj . We begin by claiming that, if a

unique maximum likelihood estimate exists, then the m.l.e. β̂1 and r(x,y) have
the same sign. Using notation from Agresti [1], the score function is

∂Lj
∂βg

=
(yj − µj)zjg
var(Yj)

∂µj
∂ηj

(2.1)

(2.2)

with known var(Yj) =
∂µj

∂ηj
a(φ) and dispersion parameter a(φ), so that

∂Lj

∂βg
=

(yj − µj)zjg/a(φ). Careful examination of the score function shows that for
nonzero xj it is always decreasing in β1, regardless of β0. This fact may be seen
by separate consideration of the four combinations of {µj < 0, µj > 0} × {xj <
0, xj > 0}. Now suppose that r(x,y) > 0. The score function at β1 = 0 is

equal to
∑n
j=1

(yj−µj)xj

var(Yj)
∂µj

∂ηj
∝ r(x,y) > 0. Therefore, the solution to the score

equation must be β̂1 > 0. If r(x,y) < 0, the same reasoning implies β̂1 < 0, and

so r(x,y) and β̂1 must share the same sign.
For a particular permutation π, suppose there exists another permutation π′

such that r(x,yπ′) > r(x,yπ) > 0. Using β̂g,π to denote the maximum likelihood
estimates for permutation π, by the argument above,

L(β̂0π, β̂1π|x,yπ′) > L(β̂0π, β̂1π|x,yπ).

By the definition of maximum likelihood and the strict inequality above, it
follows that

L(β̂0π′ , β̂1π′ |x,yπ′) > L(β̂0π, β̂1π|x,yπ).

Therefore the maximum loglikelihood is a monotone increasing function of the
Pearson correlation coefficient over the positive range, and the same argument
implies it increases with decreasing negative correlation. The null loglikelihood
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Fig 1. Left panel: with no skew in rΠ, ptwo and pdouble have the same power (black is overlaid
over green). Right panel: when rΠ is skewed, pdouble has a power advantage.

does not vary over permutations, so the same conclusion applies to the maximum
loglikelihood ratio statistic. Note that this argument applies to the loglikelihood
ratio, and not necessarily to other statistics. In particular, the logistic Wald
statistic can have aberrant behavior for extreme departures from the null Hauck
and Donner [6].

3. Appendix C: Power of ptwo vs. pdouble.

Figure 1 shows the power for an illustrative model, with Y = βX + εY , n = 50,
and significance level α = 10−5. 1000 simulations were performed, and 106

permutations performed for each simulation to obtain the two types of p-values.
Two scenarios are shown: (i) X ∼ N(0, 1) and εY ∼ exp(1) (exponential with
mean 1, left panel), and (ii) X ∼ exp(1), εY ∼ exp(1) (right panel), with the
power each |β| value averaged over the power for the corresponding positive
and negative β. Skew in rΠ requires that both x and y be skewed (described in
more detail below), and the random variable X is skewed only for scenario (ii).
Accordingly, pdouble and ptwo are essentially identical in the left panel, while in
the right panel, skew in rΠ provides an advantage to pdouble.

The MCC method approximates the distribution of rΠ using a smooth den-
sity f(r) (cdf F ), and denote rη = F−1(η), η ∈ (0, 1). For fixed α < 0.5,

define r+ as the value such that
∫ −r+
−∞ f(r)dr +

∫∞
r+
f(r)dr = α, and we will

denote r− = −r+. We assume r− < rα/2, which further implies r+ < r1−α/2.
This assumption is essentially without loss of generality, as all of the following
arguments can be applied by reversing corresponding inequalities, and in the
instance of equality the two types of p-value will have equal power. It follows
that F (rα/2) − F (r−) = F (r1−α/2) − F (r+). The upper panel of Supplemen-
tary Figure 2 illustrates these critical values for a right-skewed null distribution
and α = 0.05. The red boundaries r−, r+ are equidistant from the mean, corre-
sponding to rejection thresholds for ptwo, while the green boundaries rα/2, r1−α/2
correspond to pdouble.
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We approximate the alternative density as taking the form g(r) = 1
2f(r −

δ) + 1
2f(r+ δ) over the appropriate support, where δ determines the power. We

define the following ordering conditions for fixed δ:

F (rα/2 − δ)− F (r− − δ) > F (r1−α/2 − δ)− F (r+ − δ), (3.1)

F (rα/2 + δ)− F (r− + δ) > F (r1−α/2 + δ)− F (r+ + δ). (3.2)

Given the ordering conditions, it is simple to show that G(rα/2) − G(r−) >
G(r1−α/2)−G(r+). The left-hand side corresponds to region 1 in the lower panel
of Supplementary Figure 1, which is larger than the right-hand side (region 2).
Region 1 is included in the rejection region of pdouble, while region 2 is included
in the rejection region of pdouble, and the remaining shaded regions are common
to both rejection rules. Thus, the ordering conditions imply that the power of
pdouble is greater than that of ptwo. Applying all of the above arguments when
r− > rα/2, and reversing the inequalities, again showing that the power of pdouble
is greater than that of ptwo.

Ordering conditions for the beta approximation
Whether the ordering conditions hold depends on the precise form of f and on

δ. Simulations such as shown in the main text show that for “typical” skewed
densities and α values used in practice, the ordering conditions hold across
a wide range of δ, and pdouble clearly has greater power than ptwo. Using the
approximating beta density proposed here for MCC, for rΠ with beta parameters
α < β (right-skewed), we can obtain a result for extreme α and δ near zero.

For our purposes it is more convenient to work directly with the original beta
random variable, rather than the rescaled version which is used to approximate
rΠ. We will denote the random variable B, with realized value b, and null pdf and

cdf h(b) and H(b). Recall that r = b−E(B)√
var(B)(n−1)

, b = r
√
var(B)(n− 1)+E(B),

and we will use b−, etc., to refer to the values correspondingly mapped from r−,
etc. Here E(B) = α1

α1+α2
< 1

2 . ptwo experiences an asymmetry for sufficiently
small α, as the right tail extends further from the mean than the left tail.
Specifically, when α ∈ (0, 1−H

(
2E(B)

)
), b− = 0 < bα/2. Using continuity and

unimodal properties of the beta density implies that h(b−) < h(bα/2) for α ∈ R,

where R = (0, α′) for some positive α′ ≥ 1 − H
(
2E(B)

)
. A first order Taylor

expansion is H(b+δ) = H(b)+δh(b)+o(δ), and we examine the second ordering
condition applied to the beta random variable, by computing

H(bα/2 + δ)−H(b− + δ)−
{
H(b1−α/2 + δ)−H(b+ + δ)

}
=
{
H(bα/2)−H(b−)− (H(b1−α/2)−H(b+))

}
+δ
{
h(bα/2)− h(b−)− (h(b1−α/2)− h(b+))

}
+ o(δ)

= 0 + δ
{
h(bα/2)− h(b−)− (h(b1−α/2)− h(b+))

}
+ o(δ). (1)

We have h(bα/2) > h(b−) and h(b1−α/2) < h(b+), and thus the term in braces in
(1) is positive, implying that the second ordering condition holds for sufficiently
small positive δ. Finally, the same argument can be applied if α1 > α2 (left-
skewed), also showing a local power advantage for positive δ near zero.
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Fig 2. Illustration of the beta density approximation with α1 = 5, α2 = 20. The region 1
rejected by pdouble is larger than the region 2 rejected by ptwo.

4. Appendix D: Kurtosis of rΠ

We scale both x and y so that
∑n
j=1 xj = 0,

∑n
j=1 x

2
j = 1 and

∑n
j=1 yj = 0,∑n

j=1 y
2
j = 1 .

r =
(
∑
xjyj)/(n− 1)− xy

sxsy

=

∑
xjyj

n−1√∑
j
x2
j

n−1

∑
j
y2
j

n−1

=
∑
j

xjyj (4.1)

We have

(
∑

xiyi)
4 =

∑
x4
i y

4
i + 4

∑
i

∑
j 6=i

x3
ixjy

3
i yj + 6

∑
i

∑
j 6=i

x2
ix

2
jy

2
i y

2
j

+ 12
∑
i

∑
j 6=i

∑
l 6⊆(i,j)

x2
ixjxly

2
i yjyl (4.2)

+
∑
i

∑
j 6=i

∑
k 6⊂(i,j)

∑
m 6⊂(i,j,k)

xixjxkxmyiyjykym
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We have the kurtosis of x (denoted kx and treating the vector x as a “pop-

ulation”), kx =

∑
j
x4
j

n

(

∑
j
x2
j

n )2

− 3 = n
∑
j x

4
j − 3, so we have

∑
j x

4
j = kx+3

n .

E[xjx
3
k] =

1

n(n− 1)

∑
xj(η − x3

j )

= − 1

n(n− 1)

∑
x4
j

= − 1

n2(n− 1)
(kx + 3)

E[x3
jxk] =

∑
j

∑
k 6=j

x3
jxkp(xjxk)

=
1

n(n− 1)

∑
j

x3
j (−xj)

= − 1

n(n− 1)

∑
j

x4
j

= − 1

n2(n− 1)
(kx + 3)

E[x2
jx

2
k] =

∑
j

∑
k 6=j

x2
jx

2
kp(xjxk)

=
1

n− 1

∑
j

x2
j (1− x2

j )

=
1

n− 1
− 1

n2(n− 1)
(kx + 3)

E[x2
jxkxl] =

1

n(n− 1)(n− 2)

∑
j

∑
k 6=j

∑
l 6⊂(j,k)

x2
jxkxl

=
1

n(n− 1)(n− 2)

∑
j

x2
j

∑
k 6=j

xk
∑

l 6⊂(j,k)

(−xj − xk)

= − 1

(n− 1)(n− 2)

∑
j

x3
j

∑
k 6=j

xk −
1

n(n− 1)(n− 2)

∑
j

x2
j

∑
k 6=j

x2
k

=
2

n2(n− 1)(n− 2)
(kx + 3)− 1

n(n− 1)(n− 2)
(4.3)
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E[xjxkxlxm] =
1

n(n− 1)(n− 2)(n− 3)

∑
j

∑
k 6=j

∑
l 6⊂(j,k)

∑
m6⊂(l,k,j)

xjxkxlxm

=
1

n(n− 1)(n− 2)(n− 3)

∑
j

∑
k 6=j

∑
l 6⊂(j,k)

∑
m6⊂(l,k,j)

xjxkxl−xj − xk − xl

=
1

n(n− 1)(n− 2)(n− 3)

∑
j

∑
k 6=j

∑
l 6⊂(j,k)

{−x2
jxkxl − xjx2

kxl − xjxkx2
l }

=
1

n(n− 1)(n− 2)(n− 3)
{−3(

2

n
(kx + 3)− 1)}

= − 6

n(n− 1)(n− 2)(n− 3)
(kx + 3) +

1

n(n− 1)(n− 2)(n− 3)
(4.4)

E[(
∑

xiyi)
4] = E[

∑
x4
i y

4
i ] + 4E[

∑
i

∑
j 6=i

x3
ixjy

3
i yj ] + 6E[

∑
i

∑
j 6=i

x2
ix

2
jy

2
i y

2
j ]

+ 12E[
∑
i

∑
j 6=i

∑
l 6⊂(i,j)

x2
ixjxly

2
i yjyl] + E[

∑
i

∑
j 6=i

∑
k 6⊂(i,j)

∑
m 6⊂(i,j,k)

xixjxkxmyiyjykym]

= nE[x4
i ]E[y4

i ] + 4n(n− 1)E[x3
ixj ]E[y3

i yj ] + 6n(n− 1)E[x2
ix

2
j ]E[y2

i y
2
j ]

+ 12n(n− 1)(n− 2)E[x2
ixjxl]E[y2

i yjyl]

+ n(n− 1)(n− 2)(n− 3)E[xixjxkxm]E[yiyjykym]

The kurtosis of rΠ is proportional to E[(
∑
xiyi)

4], and therefore can be
written in terms of the linear combinations of the kurtosis of x (kx), kurtosis of
y (ky), and kxky.

5. Appendix E: The beta parameters α and β, in terms of skewness
and kurtosis of rΠ

We use k to denote the kurtosis of rΠ, and s to denote its skewness. For param-
eters α and β of the beta density can be expressed analytically in terms of the
kurtosis and skewness of the distribution. The skewness and kurtosis of a beta
density are given in Chapter 21 of Johnson et al. [7]. Solving for α and β, the
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inverse relationship is

α = (3k + 36s
−1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

− 18s3 −1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

− 3s2

+ 3k2s
−1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

− 3ks3 −1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

+ 24ks
−1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

+ 6)/(2k − 3s2)

− −6s2 + 6k + 12

2k − 3s2

(5.1)

If the above solution provides α < 0, then we instead use

α = (3k − 36s
−1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

+ 18s3 −1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

− 3s2

− 3k2s
−1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

+ 3ks3 −1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

− 24ks
−1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

+ 6)/(2k − 3s2)

− −6s2 + 6k + 12

2k − 3s2

(5.2)
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Similarly,

β = −(3k + 36s
−1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

− 18s3 −1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

− 3s2 + 3k2s
−1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

− 3ks3 −1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

+ 24ks
−1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

+ 6)/(2k − 3s2),

and if the above solution is β < 0, then

β = −(3k − 36s
−1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

+ 18s3 −1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

− 3s2 − 3k2s
−1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

+ 3ks3 −1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

− 24ks
−1

−k2s2 + 32k2 − 84ks2 + 96k + 36s4 − 180s2

1/2

+ 6)/(2k − 3s2)

If both x and y are highly skewed, occasionally there are no real solutions for α
and β, and we instead use a shifted gamma density as an approximation Zhou
et al. [13], although in our experience this is a rare occurrence. For example,
the approach was not needed for any of 7129 genes in the example in the next
section. In this instance, the parameters of a standard gamma density are chosen
to match k and s, and then the entire density is shifted to have a mean of zero.
The shifted gamma density is then used as an approximation to rΠ, providing
left- and right-tailed p-values as above.

6. Appendix F: Small sample perfomance with ties

We consider the case with 2 × 2 tables as producing the highest number of
tied rΠ values, because X and Y are both binary. The Fisher exact p-value
can be computed directly and depends on one cell in the table, so exhaustive
“permutation” is feasible. Supplementary Figures 3-5 shows the comparisons
of MCC vs. p-values from Fisher’s exact test. There is reasonable agreement
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Fig 3. Results for Fisher’s exact comparisons, sample size=10. In each plot, n is the total
sample size, and each 2× 2 table represents a comparison of binary X ∈ {0, 1} to Y ∈ {0, 1}.
prop1 is the proportion with x = 1, and prop2 the proportion with y = 1. The x-axis shows the
exact right-tail p-value (black dots are the mid p-value, grey x symbols are the conservative
exact p-values based on the 2× 2 odds ratio, PH0

(OR ≥ ORobs).

even for n = 20, but even for n = 30 and skewed X and Y (unbalanced table
margins), the extreme MCC p-values can differ noticeably anticonservatively
from the true values. We emphasize that 2 × 2 tables represent an extreme
instance for which MCC would not actually be needed.

Another example involving ties is shown using the Wilcoxon rank sum test
(X ranks, Y binary). Here again we compute exact p-values by enumerating
all possible combinations for the two-group comparisons of n1 vs. n2. Supple-
mentary Figure 6 shows the results, up to n1 = n2 = 12, which has 2.7 million
possible combinations, not considering tied observations. Here we chose to intro-
duce tied X values all with identical rank=1, which we reasoned would present a
worse-case scenario (as an extreme value), and under combination will produce
ties in rΠ due to a large number of equivalent assignments of the tiesd values to
groups 1 and 2. For total n as large as 24, we see some departure of MCC from
the exact p-value for p-values less than 10−4, and for such small sample sizes
recommend using MCC only in settings in which p-values of that magnitude
are adequate. The role of ties is mainly to prodice a slight “waviness” in the
p-values, due to multiple modes in the tail rΠ distribution.

In summary, MCC in many ways performs adequately for small sample sizes
in the range 20-30, as long as p-values in the range 10−4 − 10−5 are adequate.
Otherwise, larger sample sizes may be needed.
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Fig 4. Results for Fisher’s exact comparisons, sample size=20. In each plot, n is the total
sample size, and each 2× 2 table represents a comparison of binary X ∈ {0, 1} to Y ∈ {0, 1}.
prop1 is the proportion with x = 1, and prop2 the proportion with y = 1. The x-axis shows the
exact right-tail p-value (black dots are the mid p-value, grey x symbols are the conservative
exact p-values based on the 2× 2 odds ratio, PH0

(OR ≥ ORobs).

Fig 5. Results for Fisher’s exact comparisons, sample size=30. In each plot, n is the total
sample size, and each 2× 2 table represents a comparison of binary X ∈ {0, 1} to Y ∈ {0, 1}.
prop1 is the proportion with x = 1, and prop2 the proportion with y = 1. The x-axis shows the
exact right-tail p-value (black dots are the mid p-value, grey x symbols are the conservative
exact p-values based on the 2× 2 odds ratio, PH0

(OR ≥ ORobs).
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Fig 6. Results for Wilcoxon rank-sum comparisons, small sample sizes and a high proportion
of ties raning from 0.2 to 0.5. In each plot, n1 and n2 represent the number of samples in group
1 and group 2, and “ties” is the proportion of all samples with rank=1. The x-axis provides
the exact mid p-values (although here the ordinary eact p-values are nearly identical), and the
y-axis shows the MCC approximating p-value. The fit is accurate to p-values near 10−4, and
often lower, for these small samples regardless of the tied proportion, and further improves
for larger sample sizes, as shown in the simulation results in the main manuscript.



/Moment Corrected Correlation 14

7. Appendix G: Saddlepoint comparisons

A well-studied example facilitates comparison to competing methods of permu-
tation approximation. The two-sample dataset (n = 16) analyzing the effect of
drugs on pain was described in Lehmann (Lehmann [8]) was further analyzed
by Robinson [11] and Booth and Butler [4] to demonstrate saddlepoint methods
as an alternative to permutation. The published results include tests and confi-
dence intervals using exact methods (originally based on 100,000 permutations,
improved here to 108 permutations), saddlepoint and Edgeworth expansions, to
which we add our MCC results (Supplementary Table 1). The MCC approach
is highly accurate, performing as well or better than the competing approxima-
tions, and is easier to implement.

Table 1
Hours of pain relief due to drugs, treatment A vs. treatment B. Data originally from

Lehmann (1975, p. 37)

A: 6.8,3.1,5.8,4.5,3.3,4.7,4.2,4.9;
B: 4.4,2.5,2.8,2.1,6.6,0.0,4.8,2.3.

pval/Sign. Level Exacta Exactb Skovgaard1c

0.102 0.101 0.097 0.089
0.991 (−1, 3.97) (−1.03, 3.98) (−0.96, 3.88)
0.975 (0.62, 3.53) (−0.62, 3.57) (−0.57, 3.5)
0.95 (−0.3, 3.26) (−0.32, 3.26) (−0.30, 3.26) (−0.27, 3.22)

pval/Sign. Level Robinson2a Edgewortha MCC MCC1

0.101 0.098 0.101 0.098
0.991 (−1.04, 3.95) (−0.93, 3.87) (−1.03, 3.98) (−1.03, 3.98)
0.975 (−0.64, 3.56) (−0.57, 3.51) (−0.61, 3.56) (−0.61, 3.56)
0.95 (−0.33, 3.28) (−0.29, 3.23) (−0.31, 3.26) (−0.31, 3.26)

a From Robinson(1982);
b Our more refined exact value based on 108 permutations;

c The Skovgaard p-value and confidence interval repeated from Booth and Butler [4].

As another example, Supplementary Table 2 show the results for the second
two-sample dataset, originally from Lehmann (Lehmann [8]) and further ana-
lyzed by Robinson [11] to demonstrate saddlepoint methods as an alternative
to permutation. The published results include tests and confidence intervals us-
ing exact methods (originally based on 100,000 permutations), saddlepoint and
Edgeworth expansions, to which we add more precise exact calculations and
our MCC results. The MCC approach is highly accurate, performing as well or
better than the competing approximations.

8. Appendix H: Computational complexity

For the 36 scenarios decribed in the main text, m ranged from 1024 to 262,144,
and n ranged from 512 to 4096. Elapsed time in seconds was computed using the
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Table 2
Robinson table 2

Data for Robinson Table2:
Effect of analgesia for two classes. Data originally from Lehmann (1975, p 92)

Class I: 17.9,13.3,10.6,7.6,5.7,5.6,5.4,3.3,3.1,0.9
Class II: 7.7,5.0,1.7,0.0,-3.0,-3.1,-10.5.

Sign. Level Exacta Exactb Skovgaard1c Robinson1a

0.012 0.011 0.011 0.010
0.990 (−0.10, 16.13) (−0.14, 15.97) (0.06, 15.96)
0.975 (0.92, 14.68) (0.96, 14.61) (1.18, 14.51)
0.95 (1.88, 13.52) (1.88, 13.52) (2.07, 13.46)

Robinson2a Edgewortha MCC MCC1

0.011 0.014 0.011 0.096
(−0.15, 16.19) (−0.02, 15.76) (−0.16, 15.39) (−0.16, 15.40)
(0.98, 14.72) (1.07, 14.44) (0.96, 14.29) (0.96, 14.31)
(1.86, 13.64) (1.95, 13.45) (1.88, 13.40) (1.88, 13.41)

a From Robinson(1982); b Our more refined exact value based on 108 permutations; c The Skovgaard p-value and
95% CI as repeated in Booth and Butler [4].

system.time function in R for the Xeon 2.65 GHz processor. A simple regression
model fit to the model time = βmn+ ε, with the resulting fits shown as lines in
Supplementary Figure 7. The time is approximately linear on the log scale, as
expected. For large m and n, the model fits well, although variations from the
fit occur for smaller values.

9. Appendix I: Derivation of the MCC1 terms

For a given permutation π, denote the first chosen y value as yπ[1]. Then

rπ =
∑
j

xjyπ[j]

= x1yπ[1] +

n∑
j=2

xjyπ[j]

Using “−” to represent the removal of an element, we have

r−π[1] = corr(x−1, y−π[1])

=
(
∑n
j=2 xjyπ[j])(n− 1)−

∑n
j=2 xj

∑n
j=2 yπ[j]√

n
∑n
j=2 x

2
j − (

∑n
j=2 xj)

2
√
n
∑n
j=2 y

2
π[j] − (

∑n
j=2 yπ[j])2

=
(
∑n
j=2 xjyπ[j])(n− 1)− (−x1)(−yπ[1])√

n(1− x2
1)− (−x1)2

√
n(1− y2

π[1])− (−yπ[1])2
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Fig 7. Elapsed time in seconds to run MCC vs. m for various values of n (axes on log10
scale). Lines indicate fits from regression modeling.

Rearranging terms provides

rπ = x1yπ[1] + b0,π[1] + b1,π[1]r−π[1],

where

b0,π[1] = (
√
n(1− x2

1)− (−x1)2
√
n(1− y2

π[1])− (−yπ[1])2)(−x1)(−yπ[1]),

b1,π[1] = (
√
n(1− x2

1)− (−x1)2
√
n(1− y2

π[1])− (−yπ[1])2)(n− 1).

10. Appendix J: Example from the Golub data

We further illustrate the concepts with an example from the highly cited Golub
ALL/AML expression dataset (R/ Bioconductor golubEsets, data signed square
root transformed). The data represent expression of m = 7129 genes for n = 38
samples, 27 of which are from patients with Acute Lymphoblastoid Leukemia,
and 11 from patients with Acute Myeloid Leukemia. Differential expression anal-
ysis of AML/ALL status by equal-variance t-tests reveals that the gene LCTS4
shows the most evidence, with p = 9.6× 10−11. Here x is the gene’s expression,
and y is a {0, 1} indicator vector for AML status. Other parametric tests provide
wildly differing evidence (8 orders of magnitude), with p = 3.0 × 10−6 for an
unequal variance t-test, and p = 8.6×10−3 for a logistic regression of ALL/AML
status on the gene’s expression. These differences result in different qualitative
conclusions − for example, a Bonferroni multiple-test correction applied to the
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Fig 8. Expression of LCTS4 vs. AML/ALL status, Golub dataset. The data (left panel) show
a large mean difference between the leukemia types. Middle panel: the permuted correlation
coefficient between x and y, with the overlaid standard and MCC density approximations
appearing almost identical. Right panel: the histogram values on the log scale better highlight
the contrast between parametric analysis (two-sample t) and permutation, which is closely
matched by the MCC approximation.

equal variance t results in pBonferroni = 6.8× 10−7, while for logistic regression
is pBonferroni = 1.

Supplementary Figure 8 shows the results for this gene. For much of the
range, the histogram is closely approximated by the standard r density, the
difference between standard r and MCC is almost imperceptible. However, the
standard density fails in the extremes, as can be seen on the log scale in the
figure, while the MCC approach continues to work well in the extremes. For
this gene, we performed 2× 109 permutations, determining pdouble = 2.3× 108

and ptwo = 1.1 × 108, while MCC gives estimates of pdouble = 2.1 × 108 and
ptwo = 1.1× 108.

We note that the standard density approximation is intended for uncondi-
tional inference, i.e. not conditioning on the observed x and y. Thus it is in
some sense unfair to expect a close correspondence to the permutation distribu-
tion, which is inherently conditional on the data. However, as we show below, if
the densities of X and Y are skewed, standard parametric p-values tend to be
inaccurate on average, in a manner that is largely reflected in comparisons such
as shown in Figure 8.

11. Appendix K: Derivation of the moments of stratified A=
∑
Ak

Here we propose an approximation to exact testing in which permutation is
performed within each stratum level for covariate z.

Suppose we have K strata for z. Let Jk denote the nk samples belonging to
stratum k. Also, define Ak =

∑
j∈Jk xjyj and A =

∑
j xjyj =

∑
k Ak.

Without loss of generality, we can center the y values within each stratum,
so that

∑
j∈I yj = 0. This implies EΠ(A) = 0, which simplifies analysis. We

need to solve for the first four moments of A under permutation, i.e., EΠ(A2),
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EΠ(A3), EΠ(A4), and note that the {Ak} are independent of each other. Thus
we must obtain EΠ(A2

k), EΠ(A3
k), EΠ(A4

k) for each k. After obtaining these
moments, we can find EΠ(A2), etc., following standard rules for independent
random variables. Similar to Appendix C, ultimately we need only compute
moments for x and y separately. However, here x and y are not scaled, and so
we re-derive the needed quantities.

(
∑

xi)
4 =

∑
x4
i + 4

∑
i

∑
j 6=i

x3
ixj + 6

∑
i

∑
j 6=i

x2
ix

2
j (11.1)

+ 12
∑
i

∑
j 6=i

∑
k 6=i,k 6=j

x2
ixjxk +

∑
i

∑
j 6=i

∑
k 6=i,j

∑
l 6=i,j,k

xixjxkxl(11.2)

(
∑

xi)
3 =

∑
x3
i + 3

∑
i

∑
j 6=i

x2
ixj +

∑
i

∑
j 6=i

∑
k 6=i,k 6=j

xixjxk∑
i

∑
j 6=i

x3
ixj =

∑
i

∑
j

x3
ixj −

∑
i

x4
i (11.3)

= (
∑

x3
i )(
∑

xj)−
∑

x4
j∑

i

∑
j 6=i

x2
ix

2
j =

∑
i

∑
j

x2
ix

2
j −

∑
x4
i

= (
∑

x2
i )(
∑

x2
j )−

∑
x4
i (11.4)

E(x3
i ) =

∑
x3
i /n∑

i

∑
j 6=i

∑
k 6=i,j

x2
ixjxk =

∑
i

∑
j

∑
k

x2
ixjxk −

∑
x4
i − (11.3)− 2(11.4)

=
∑

x2
i (
∑

xj)
2 −

∑
x4
i − (11.3)− 2(11.4)



/Moment Corrected Correlation 19

E(x2
ixj |i 6= j) =

∑
i

∑
j 6=i x

2
ixj

n(n− 1)
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∑
i

∑
j x

2
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∑
i x

3
i
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i x
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∑
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∑
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3
i
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i x
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∑
i x

3
i
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∑
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∑
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j

∑
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i
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j 6=i x

2
ixj −

∑
i x
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i
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i xi(

∑
j xj(
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j x

2
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i x

3
i
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2
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i x

3
i
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EΠ(A4
k) = E[(

∑
xiyi)

4]

=
∑

E(x4
i )E(y4

i ) +
∑
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E(x3
ixj)E(y3

i yj)
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i
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Fig 9. Simulation scenarios (i)-(vi), sample size n=1000. See legend from main text Figure
5 for details.
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Fig 10. Scenario (i)-(vi), sample size n=2000. See legend from main text Figure 5 for details
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