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1 Reasons of Using Continuous-time Models than
Time-Discretization

The time horizon for state changes in medical conditions can vary dramatically.
In early stages of disease a state change might not occur for years, but in an acute
phase they could occur very frequently. For states with very short expected
dwelling times, the discrete time step needs to be sufficiently small. However,
this might be inefficient for dealing with changes that occur once several years.
On the other hand, if the discretization is too coarse, many transitions could be
collapsed into a single one, obscuring the real dynamics in continuous-time. In
contrast, CT model performs inference over arbitrary timescales using a single
matrix exponential. We believe CT is a better choice than DT for modeling
continuous-time processes such as disease progression and clinical data.

2 Comparison to Prior Art [4]

In [4], CTMC trajectories are sampled from the posterior p(S|O) (S: a CTMC
trajectory, O: observations) using MCMC sampling based on uniformization[5]
ideas. Its time complexity is dependent on maxiqi, the fastest transition rate
in the system, which suffers from the same discretization issue as we mentioned
(the authors also noted that in the paper). The benefit of [4] over our Expm
approach is that the time complexity only has quadratic dependency on the
state space size, rather than cubic when matrix exponential operation is ever
used. However, this benefit could be offset by the number of samples required for
an accurate estimate, and the aforementioned discretization issue. Besides, [4]
didnt talk about parameter learning, which is an important part of our work.
Presumably, their method could be used as a step in our EM algorithm for
computing the required statistics. However, our Expm approach computes those
statistics and is more robust to varying transition rates. The exact comparison
of which method is better is dependent on the distribution on the transition
time, as well as the desired accuracy.
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3 Additional Methods in Computing the End-
State Conditioned Statistics

3.1 The Uniformization Method

The uniformization method (Unif ) is an efficient approximation method for
computing matrix exponential P (t) = eQt [2, 1], which gives an alternative
description of the CTMC process, and show how CTMC and DTMC is equiv-
alence subordinated to a Poisson process (see [5]). Define q̂ = maxi qi, and
matrix R = Q

q̂ + I, where I is the identify matrix. Then, eQt = eq̂(R−I)t =∑∞
m=0R

m (q̂t)m

m! e
−q̂t =

∑∞
m=0R

mPois(m; q̂t), where Pois(m; q̂t) is the proba-
bility of m occurrences from a Poisson distribution with mean q̂t. Then the ex-
pectations can be expressed by directly inserting the eQt series into the integral:
E[τi, s(t) = l|s(0) = k] =

∑∞
m=0

t
m+1 [

∑m
n=0(Rn)ki(R

m−n)il]Pois(m; q̂t) and

E[nij , s(t) = l|s(0) = k] = Rij
∑∞
m=1[

∑m
n=1(Rn−1)ki(R

m−n)jl]Pois(m; q̂t) [1].
The main difficulty in using Unif in practice is to determine a truncation point
of the infinite sum. However, for large values of q̂t, we have Pois(q̂t) ≈ N(q̂t, q̂t),
where N(µ, σ2) is the normal distribution and one can then bound the trunca-
tion error from the tail of Poisson by using cumulative normal distribution [6].
A truncation point at M = p4+6

√
q̂t+(q̂t)q is suggested [6] to have error bound

of 10−8 when approximate P (t), which we adopt in our learning algorithm 1.

3.2 The Eigendecomposition Method

To compute τ i,ik,l(t) and τ i,jk,l (t), it is observed in [3] that the calculation of τ i,jk,l (t)
can be done in closed-form if Q is diagonalizable and one can act eigendecompo-
sition on Q (Eigen method). Consider the eigendecomposition of Q = UDU−1,
where the matrix U consists of all eigenvectors to the corresponding eigenvalues
of Q in the diagonal matrix D = diag(λ1, ..., λn). Then we have eQt = UeDtU−1

and the integral can be written as: τ i,jk,l (t) =
∑n
p=1 UkpU

−1
pi

∑n
q=1 UjqU

−1
ql Ψpq(t)

,where the symmetric matrix Ψ(t) = [Ψpq(t)]p,q∈S is defined as: Ψpq(t) =

tetλp if λp = λq, and Ψpq(t) = etλp−etλq
λp−λq if λp 6= λq.

4 Additional EM Algorithms

4.1 Unif Based Algorithm

We used Unif method for computing end-state conditioned statistic for CTMC
in Algorithm 1. In line 6 and 10, Sk→l (and Lk→l) represents the intermediate
states (edges) that can be passed from state k to l. The state accessibility
table can be precomputed using Dijkastra’s shortest path algorithm in O(S2).
The main benefits of Unif in evaluating all expectations is that the R series

(R,R2, ..., RM̂ ), can be precomputed (line 2) and reused, so that no additional
matrix multiplications is needed. One main property of Unif is that it can
evaluate the expectations for only the two specified end-states, and it has O(M2)
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complexity, which is not related to S (when given the precomputed R matrix
series). In hard EM the soft count table C(∆, k, l) (in line 5) becomes sparse
(≤ min(V, rS2) entries have positive values), and thus Unif in hard EM becomes
more time efficient than soft EM. One possible downside of Unif is that if q̂it
is very large, so is the truncation point M , then the computation can be very
time consuming. Thus, we find that Unif ’s running time performance highly
depends on the data and the underlying Q values. The time complexity analysis
is detailed in Algorithm 1 line 16.

Algorithm 1 Unif Algorithm

1: Set t̂ = max t∆; set q̂ = maxiqi.

2: LetR = Q/q̂+I. ComputeR,R2, ..., RM̂ , M̂ = p4+6
√
q̂t̂+(q̂t̂)q⇒ O(M̂S3)

3: for ∆ = 1 to r do
4: M = p4 + 6

√
q̂t∆ + (q̂t∆)q; set t = t∆

5: for each C(∆, k, l) 6= 0 do
6: for each state i in Sk→l do

7: E[τi|s(0) = k, s(t) = l] =
∑M
m=0

t
m+1 [

∑m
n=0(Rn)ki(R

m−n)il]Pois(m;q̂t)

Pkl(t)
⇒

O(M2)
8: E[τi|O, T ]+ = C(∆, k, l)E[τi|s(0) = k, s(t) = l]
9: end for

10: for each edge (i, j) in Lk→l do

11: E[nij |s(0) = k, s(t) = l] =
Rij

∑M
m=1[

∑m
n=1(Rn−1)ki(R

m−n)jl]Pois(m;q̂t)

Pkl(t)

⇒ O(M2)
12: E[nij |O, T ]+ = C(∆, k, l)E[nij |s(0) = k, s(t) = l]
13: end for
14: end for
15: end for
16: Soft: O(M̂S3 + rS3M2 + rS2LM2); Hard: O(M̂S3 + min(V, rS2)SM2 +

min(V, rS2)LM2)

4.2 Eigen Based Algorithm

The algorithm with time complexity is listed in Algorithm 2. Eigen method
also has the flexibility in evaluating the expectations only for the specified end-
states, and thus it can be more efficient in hard than in soft EM. The main
problem of Eigen is that it is not a stand-alone algorithm. When Q is not
diagonalizable in any iteration, one needs alternative methods for that run.
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Algorithm 2 Eigen Algorithm

1: Perform eigendecomposition: Q = UDU−1 ⇒ O(S3)
2: for ∆ = 1 to r do
3: Compute matrix Ψ with t = t∆ ⇒ O(S2)
4: for each C(∆, k, l) 6= 0 do
5: for each state i in Sk→l do

6: E[τi|s(0) = k, s(t) = l] =
∑|S|
p=1 UkpU

−1
pi

∑|S|
q=1 UiqU

−1
ql Ψpq(t)

Pkl(t)
⇒ O(S2)

7: E[τi|O, T ]+ = C(∆, k, l)E[τi|s(0) = k, s(t) = l]
8: end for
9: for each link (i, j) in Lk→l do

10: E[nij |s(0) = k, s(t) = l] = qij

∑|S|
p=1 UkpU

−1
pi

∑|S|
q=1 UjqU

−1
ql Ψpq(t)

Pkl(t)
⇒

O(S2)
11: E[nij |O, T ]+ = C(∆, k, l)E[nij |s(0) = k, s(t) = l]
12: end for
13: end for
14: end for
15: Soft: O(rS5 + rLS4); Hard: O(min(rS2, V )S3 +min(rS2, V )LS2)

5 Details in the Glaucoma and Alzheimers Ex-
periments

5.1 The Glaucoma Experiment

Our glaucoma dataset contains 101 glaucomatous eyes from 74 patients followed
for an average of 11.7±4.5 years, and each eye has at least 5 visits (average
7.1±3.1 visits). 63 distinct time intervals are found. The state space is created
so that most states have at least 5 raw measurements mapped to it. The states
which are in the straight path in between two successive raw data are instan-
tiated, resulting in 105 states 1 . The data emission model is set as a normal
distribution with µ set to the center of the data band, and σ set to 0.25 of
the band width. Ten-fold cross validation is used and Soft(Expm) is adopted
in learning. Testing proceeds by decoding the first 4 visits using the learned
CT-HMM model and then predicting future states and observations.

5.2 The Alzheimers Dataset

In this experiment, we analyze the temporal interaction among the three kinds
of markers: amyloid beta (Aβ) level in cerebral spinal fluid (CSF) (bio-chemical
marker), hippocampus volume (structural marker), and ADAS cognition score
(functional marker) over the course of the disease. We obtained the ADNI (The

1 The grid [100.5 99.5 98 96 93 90 85 80 : (−10) : 20] is used for Visual Field Index (the
functional marker), and the grid [130 : (−5) : 80 70 : (−10) : 30] is used for the Retinal Nerve
Fiber Layer thickness (the structural marker) for the glaucoma prediction task.
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Alzheimers Disease Neuroimaging Initiative)1 dataset from the website [7]2 The
mild cognition impairment (MCI) and AD patients who have at least two visits
of all three indicated markers are included for our analysis, which results in
206 subjects of 2.38 ± 0.66 visits traced in 1.56 ± 0.86 years. Only 3 distinct
time intervals in month resolution are found. A 3D gridded state space with
forwarding links is defined such that for each marker, we have 14 bands that
span its value range. The procedure for constructing the state space and the
definition of data emission model is the same as in the Glaucoma experiment.
277 states are instantiated and the model is then trained using Soft(Expm).
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2Data were obtained from the ADNI database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild cog-
nitive impairment (MCI) and early Alzheimers disease (AD). For up-to-date information, see
http://www.adni-info.org
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