Supplementary Material for "Efficient Continuous-Time Hidden Markov Model for Disease Modeling", NIPS 2015

1 Reasons of Using Continuous-time Models than Time-Discretization

The time horizon for state changes in medical conditions can vary dramatically. In early stages of disease a state change might not occur for years, but in an acute phase they could occur very frequently. For states with very short expected dwelling times, the discrete time step needs to be sufficiently small. However, this might be inefficient for dealing with changes that occur once several years. On the other hand, if the discretization is too coarse, many transitions could be collapsed into a single one, obscuring the real dynamics in continuous-time. In contrast, CT model performs inference over arbitrary timescales using a single matrix exponential. We believe CT is a better choice than DT for modeling continuous-time processes such as disease progression and clinical data.

2 Comparison to Prior Art [4]

In [4], CTMC trajectories are sampled from the posterior p(S|O) (S: a CTMC trajectory, O: observations) using MCMC sampling based on uniformization[5] ideas. Its time complexity is dependent on max_iq_i , the fastest transition rate in the system, which suffers from the same discretization issue as we mentioned (the authors also noted that in the paper). The benefit of [4] over our Expm approach is that the time complexity only has quadratic dependency on the state space size, rather than cubic when matrix exponential operation is ever used. However, this benefit could be offset by the number of samples required for an accurate estimate, and the aforementioned discretization issue. Besides, [4] didnt talk about parameter learning, which is an important part of our work. Presumably, their method could be used as a step in our EM algorithm for computing the required statistics. However, our Expm approach computes those statistics and is more robust to varying transition rates. The exact comparison of which method is better is dependent on the distribution on the transition time, as well as the desired accuracy.

3 Additional Methods in Computing the End-State Conditioned Statistics

3.1 The Uniformization Method

The uniformization method (Unif) is an efficient approximation method for computing matrix exponential $P(t) = e^{Qt}$ [2, 1], which gives an alternative description of the CTMC process, and show how CTMC and DTMC is equivalence subordinated to a *Poisson* process (see [5]). Define $\hat{q} = \max_i q_i$, and matrix $R = \frac{Q}{\hat{q}} + I$, where I is the identify matrix. Then, $e^{Qt} = e^{\hat{q}(R-I)t} =$ $\sum_{m=0}^{\infty} R^m \frac{(\hat{q}t)^m}{m!} e^{-\hat{q}t} = \sum_{m=0}^{\infty} R^m Pois(m; \hat{q}t)$, where $Pois(m; \hat{q}t)$ is the probability of m occurrences from a Poisson distribution with mean $\hat{q}t$. Then the expectations can be expressed by directly inserting the e^{Qt} series into the integral: $E[\tau_i, s(t) = l|s(0) = k] = \sum_{m=0}^{\infty} \frac{t}{m+1} [\sum_{n=0}^{m} (R^n)_{ki}(R^{m-n})_{il}] Pois(m; \hat{q}t)$ and $E[n_{ij}, s(t) = l|s(0) = k] = R_{ij} \sum_{m=1}^{\infty} [\sum_{n=1}^{m} (R^{n-1})_{ki}(R^{m-n})_{jl}] Pois(m; \hat{q}t)$ [1]. The main difficulty in using *Unif* in practice is to determine a truncation point of the infinite sum. However, for large values of $\hat{q}t$, we have $Pois(\hat{q}t) \approx N(\hat{q}t, \hat{q}t)$, where $N(\mu, \sigma^2)$ is the normal distribution and one can then bound the truncation error from the tail of Poisson by using cumulative normal distribution [6]. A truncation point at $M = \lceil 4 + 6\sqrt{\hat{q}t} + (\hat{q}t) \rceil$ is suggested [6] to have error bound of 10^{-8} when approximate P(t), which we adopt in our learning algorithm 1.

3.2 The Eigendecomposition Method

To compute $\tau_{k,l}^{i,i}(t)$ and $\tau_{k,l}^{i,j}(t)$, it is observed in [3] that the calculation of $\tau_{k,l}^{i,j}(t)$ can be done in closed-form if Q is diagonalizable and one can act eigendecomposition on Q (*Eigen* method). Consider the eigendecomposition of $Q = UDU^{-1}$, where the matrix U consists of all eigenvectors to the corresponding eigenvalues of Q in the diagonal matrix $D = diag(\lambda_1, ..., \lambda_n)$. Then we have $e^{Qt} = Ue^{Dt}U^{-1}$ and the integral can be written as: $\tau_{k,l}^{i,j}(t) = \sum_{p=1}^{n} U_{kp}U_{pi}^{-1}\sum_{q=1}^{n} U_{jq}U_{ql}^{-1}\Psi_{pq}(t)$, where the symmetric matrix $\Psi(t) = [\Psi_{pq}(t)]_{p,q\in S}$ is defined as: $\Psi_{pq}(t) = te^{t\lambda_p}$ if $\lambda_p = \lambda_q$, and $\Psi_{pq}(t) = \frac{e^{t\lambda_p - e^{t\lambda_q}}}{\lambda_p - \lambda_q}$ if $\lambda_p \neq \lambda_q$.

4 Additional EM Algorithms

4.1 Unif Based Algorithm

We used Unif method for computing end-state conditioned statistic for CTMC in Algorithm 1. In line 6 and 10, $S_{k\to l}$ (and $L_{k\to l}$) represents the intermediate states (edges) that can be passed from state k to l. The state accessibility table can be precomputed using *Dijkastra*'s shortest path algorithm in $O(S^2)$. The main benefits of *Unif* in evaluating all expectations is that the R series $(R, R^2, ..., R^{\hat{M}})$, can be precomputed (line 2) and reused, so that no additional matrix multiplications is needed. One main property of *Unif* is that it can evaluate the expectations for only the two specified end-states, and it has $O(M^2)$ complexity, which is not related to S (when given the precomputed R matrix series). In hard EM the soft count table $C(\Delta, k, l)$ (in line 5) becomes sparse $(\leq \min(V, rS^2)$ entries have positive values), and thus Unif in hard EM becomes more time efficient than soft EM. One possible downside of Unif is that if $\hat{q}_i t$ is very large, so is the truncation point M, then the computation can be very time consuming. Thus, we find that Unif's running time performance highly depends on the data and the underlying Q values. The time complexity analysis is detailed in Algorithm 1 line 16.

Algorithm 1 Unif Algorithm

1: Set $\hat{t} = max t_{\Delta}$; set $\hat{q} = max_i q_i$. 2: Let $R = Q/\hat{q} + I$. Compute $R, \hat{R}^2, ..., \hat{R^M}, \hat{M} = \lceil 4 + 6\sqrt{\hat{q}\hat{t}} + (\hat{q}\hat{t}) \rceil \Rightarrow O(\hat{M}S^3)$ 3: for $\Delta = 1$ to r do $M = \lceil 4 + 6\sqrt{\hat{q}t_{\Delta}} + (\hat{q}t_{\Delta}) \rceil$; set $t = t_{\Delta}$ 4: for each $C(\Delta, k, l) \neq 0$ do 5:for each state i in $S_{k \to l}$ do 6: $E[\tau_i|s(0) = k, s(t) = l] = \frac{\sum_{m=0}^{M} \frac{t}{m+1} [\sum_{n=0}^{m} (R^n)_{ki} (R^{m-n})_{il}] Pois(m; \hat{q}t)}{P_{kl}(t)} \Rightarrow$ 7: $O(M^2)$ $E[\tau_i|O, T] + = C(\Delta, k, l)E[\tau_i|s(0) = k, s(t) = l]$ 8: 9: end for for each edge (i, j) in $L_{k \to l}$ do 10: $E[n_{ij}|s(0) = k, s(t) = l] = \frac{R_{ij} \sum_{m=1}^{M} [\sum_{n=1}^{m} (R^{n-1})_{ki} (R^{m-n})_{jl}] Pois(m;\hat{q}t)}{P_{kl}(t)}$ 11: $\Rightarrow O(M^2)$ $E[n_{ij}|O,T] + = C(\Delta, k, l)E[n_{ij}|s(0) = k, s(t) = l]$ 12:end for 13:end for 14:15: end for $O(\hat{M}S^3 + rS^3M^2 + rS^2LM^2);$ Hard: $O(\hat{M}S^3 + min(V, rS^2)SM^2 +$ 16: Soft: $min(V, rS^2)LM^2)$

4.2 Eigen Based Algorithm

The algorithm with time complexity is listed in Algorithm 2. *Eigen* method also has the flexibility in evaluating the expectations only for the specified endstates, and thus it can be more efficient in hard than in soft EM. The main problem of *Eigen* is that it is not a stand-alone algorithm. When Q is not diagonalizable in any iteration, one needs alternative methods for that run.

Algorithm 2 Eigen Algorithm

1: Perform eigendecomposition: $Q = UDU^{-1} \Rightarrow O(S^3)$ 2: for $\Delta = 1$ to r do Compute matrix Ψ with $t = t_{\Delta} \Rightarrow O(S^2)$ 3: for each $C(\Delta, k, l) \neq 0$ do 4: for each state *i* in $S_{k\to l}$ do $E[\tau_i|s(0) = k, s(t) = l] = \frac{\sum_{p=1}^{|S|} U_{kp} U_{pi}^{-1} \sum_{q=1}^{|S|} U_{iq} U_{ql}^{-1} \Psi_{pq}(t)}{P_{kl}(t)} \Rightarrow O(S^2)$ $E[\tau_i|O,T] + = C(\Delta, k, l) E[\tau_i|s(0) = k, s(t) = l]$ 5:6: 7: end for 8: for each link (i, j) in $L_{k \to l}$ do 9: $E[n_{ij}|s(0) = k, s(t) = l] = q_{ij} \frac{\sum_{p=1}^{|S|} U_{kp} U_{pi}^{-1} \sum_{q=1}^{|S|} U_{jq} U_{ql}^{-1} \Psi_{pq}(t)}{P_{kl}(t)} \Rightarrow$ 10: $O(S^2)$ $E[n_{ij}|O,T] + = C(\Delta,k,l)E[n_{ij}|s(0) = k, s(t) = l]$ 11: end for 12:end for 13:end for 14:15: Soft: $O(rS^5 + rLS^4)$; Hard: $O(min(rS^2, V)S^3 + min(rS^2, V)LS^2)$

5 Details in the Glaucoma and Alzheimers Experiments

5.1 The Glaucoma Experiment

Our glaucoma dataset contains 101 glaucomatous eyes from 74 patients followed for an average of 11.7 ± 4.5 years, and each eye has at least 5 visits (average 7.1 ± 3.1 visits). 63 distinct time intervals are found. The state space is created so that most states have at least 5 raw measurements mapped to it. The states which are in the straight path in between two successive raw data are instantiated, resulting in 105 states ¹. The data emission model is set as a normal distribution with μ set to the center of the data band, and σ set to 0.25 of the band width. Ten-fold cross validation is used and Soft(Expm) is adopted in learning. Testing proceeds by decoding the first 4 visits using the learned CT-HMM model and then predicting future states and observations.

5.2 The Alzheimers Dataset

In this experiment, we analyze the temporal interaction among the three kinds of markers: amyloid beta $(A\beta)$ level in cerebral spinal fluid (CSF) (bio-chemical marker), hippocampus volume (structural marker), and ADAS cognition score (functional marker) over the course of the disease. We obtained the *ADNI* (The

¹ The grid [100.5 99.5 98 96 93 90 85 80 : (-10) : 20] is used for Visual Field Index (the functional marker), and the grid [130 : (-5) : 80 70 : (-10) : 30] is used for the Retinal Nerve Fiber Layer thickness (the structural marker) for the glaucoma prediction task.

Alzheimers Disease Neuroimaging Initiative)1 dataset from the website $[7]^2$ The mild cognition impairment (MCI) and AD patients who have at least two visits of all three indicated markers are included for our analysis, which results in 206 subjects of 2.38 ± 0.66 visits traced in 1.56 ± 0.86 years. Only 3 distinct time intervals in month resolution are found. A 3D gridded state space with forwarding links is defined such that for each marker, we have 14 bands that span its value range. The procedure for constructing the state space and the definition of data emission model is the same as in the Glaucoma experiment. 277 states are instantiated and the model is then trained using Soft(Expm).

References

- Asger Hobolth and Jens Ledet Jensen. Summary statistics for endpointconditioned continuous-time markov chains. *Journal of Applied Probability*, 48(4):911–924, 2011.
- [2] A. Jensen. Markoff chains as an aid in the study of markoff processes. Skand. Aktuarietidskr, 36:87–91, 1953.
- [3] Philipp Metzner and et al. Generator estimation of markov jump processes based on incomplete observations nonequidistant in time. *Physical Review* E, 76(066702), 2007.
- [4] Vinayak Rao and Yee Whye Teh. Fast mcmc sampling for markov jump processes and extensions. *Journal of Machine Learning Research*, 14, 2013.
- [5] S. M. Ross. Stochastic Processes. John Wiley, New York, 1983.
- [6] Paula Tataru and Asger Hobolth. Comparison of methods for calculating conditional expectations of sufficient statistics for continuous time markov chains. *BMC Bioinformatics*, 12(465), 2011.
- [7] The Alzheimers Disease Neuroimaging Initiative. http://adni.loni.usc. edu.

²Data were obtained from the ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimers disease (AD). For up-to-date information, see http://www.adni-info.org