Supplementary Information Human EAG channels are directly modulated by PIP₂ as revealed by electrophysiological and optical interference investigations Bo Han¹, Kunyan He¹, Chunlin Cai¹, Yin Tang¹, Linli Yang¹, Stefan H. Heinemann², Toshinori Hoshi³, Shangwei Hou^{1,4,5,*} ¹Key Laboratory of Systems Biomedicine (Ministry of Education), Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China ²Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena & Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany ³Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA ⁴Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China ⁵State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China Figure S1: Both hEAG2 and hEAG1 channels are inhibited by PIP2. (A) Representative current traces of hEAG1 and hEAG2 channels before and 30 s following application of 3 μ M PIP2. The currents were elicited by pulses to 40 mV from a holding potential of -80 mV. (B) Normalized hEAG1 channel peak current before and after PIP2 (3 μ M) application. P < 0.01 compared to the control level before PIP2 applications (Statistical significances were evaluated by one-way ANOVA with Student-Newman-Keuls's multiple comparisons test). (C) Sequence alignment of Ν termini of hEAG1 and hEAG2 channels the using ClustalW (http://www.ebi.ac.uk/Tools/msa/clustalw2/). The residues shown in red indicate the conserved residues that are key determinants of PIP2 inhibition on hEAG1 channels as shown in Figure 6.