## Title: The Efficacy and Safety of Knotless Barbed Sutures in the Surgical Field: A Systematic Review and Meta-analysis of Randomized Controlled Trials

### Authors

Yifei Lin<sup>1</sup>, Sike Lai<sup>2</sup>, Liang Du<sup>3\*</sup>, Jin Huang<sup>3\*</sup>

1. Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan, 610041, China

2. West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan, 610041, China.

3. West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan, 610041, China.

\* Correspondence author

Correspondence should be addressed to

 Dr. Jin HUANG at West China Hospital, Sichuan University, Guoxuexiang 37 Chengdu, Sichuan 610041, China with E-mail address: michael\_huangjin@163.com
 Dr. Liang DU at West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan, China with E-mail address: 125798620@qq.com

Supplementary Figure Legends:

Appendix Figure 1: A forest plot of suturing time of different surgeries with or without barbed suture

Appendix Figure 2: A forest plot of suturing time of different barbed types with or without barbed suture

Appendix Figure 3: A forest plot of operative time of different surgeries with or without barbed suture

Appendix Figure 4: A forest plot of operative time of different barbed types with or without barbed suture

Appendix Figure 5: A forest plot of estimated blood loss of different surgeries with or without barbed suture

Appendix Figure 6: A forest plot of estimated blood loss of different barbed types with or without barbed suture

Appendix Figure 7: A forest plot of postoperative complications of different surgeries with or without barbed suture

Appendix Figure 8: A forest plot of postoperative complications of different barbed types with or without barbed suture

Appendix Figure 9: Sensitivity analyses of postoperative complications of different barbed types with or without barbed suture

Appendix Figure 10: Funnel plot of suturing time in all included studies

Appendix Figure 11: Funnel plot of operative time in all included studies

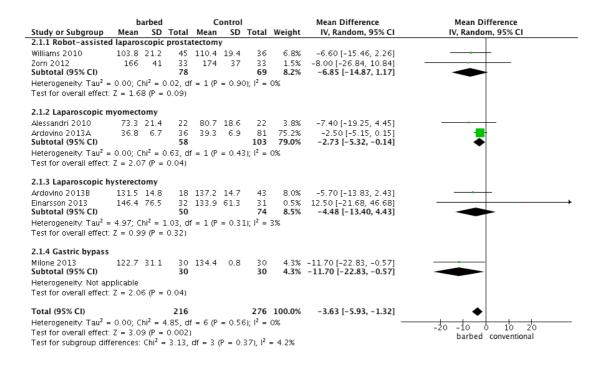
Appendix Figure 12: Funnel plot of estimate blood loss in all included studies

Appendix Figure 13: Funnel plot of postoperative complications in all included studies

Appendix Table 1: Quality assessment of studies in the meta-analysis based on Cochrane recommendations

# Appendix Figure 1: A forest plot of suturing time of different surgeries with or without barbed suture

| Study or Subgroup                   | Ba<br>Mean | arbed<br>SD                    | Total      | C<br>Mean | ontrol<br>SD | Total                | Weight        | Mean Difference<br>IV, Random, 95% CI        | Year | Mean Difference<br>IV, Random, 95% CI |
|-------------------------------------|------------|--------------------------------|------------|-----------|--------------|----------------------|---------------|----------------------------------------------|------|---------------------------------------|
| 1.1.1 Laparoscopic n                | yomecto    | omy                            |            |           |              |                      | -             |                                              |      |                                       |
| Alessandri 2010                     | 11.5       | 4.1                            | 22         | 17.4      | 3.8          | 22                   | 7.8%          | -5.90 [-8.24, -3.56]                         | 2010 | _ <b>—</b>                            |
| Ardovino 2013A                      | 6.6        | 4.7                            | 36         | 11.8      | 6.1          | 81                   | 7.9%          | -5.20 [-7.23, -3.17]                         |      | - <b>-</b>                            |
| Subtotal (95% CI)                   |            |                                | 58         |           |              | 103                  | 15.7%         | -5.50 [-7.03, -3.97]                         |      | •                                     |
| Heterogeneity: Tau <sup>2</sup> =   | 0.00: CI   | $hi^2 = 0$                     | 0.20. d    | f = 1 (P) | = 0.6        | 6): I <sup>2</sup> = | 0%            |                                              |      | -                                     |
| Test for overall effect:            |            |                                |            |           |              | - 17 -               |               |                                              |      |                                       |
| 112 Lanarosconis h                  | vetoroct   | -                              |            |           |              |                      |               |                                              |      |                                       |
| 1.1.2 Laparoscopic h                | ,          | ,                              | 10         |           |              |                      |               |                                              |      | _                                     |
| Ardovino 2013B                      | 3.9        | 2                              | 18         | 6.6       | 3.7          | 43                   | 8.1%          | -2.70 [-4.14, -1.26]                         |      |                                       |
| Einarsson 2013<br>Subtotal (95% CI) | 10.4       | 5.2                            | 32<br>50   | 9.6       | 4.8          | 31<br>74             | 7.7%<br>15.9% | 0.80 [-1.67, 3.27]<br>-1.10 [-4.52, 2.32]    |      |                                       |
| Heterogeneity. Tau <sup>2</sup> =   | 5.06: CI   | $hi^2 = 5$                     | 5.75 d     | f = 1 (P) | = 0.0        | $21:1^2 =$           | 83%           |                                              |      |                                       |
| Test for overall effect:            |            |                                |            |           |              | - ,, .               |               |                                              |      |                                       |
| 1.1.3 Arthroplasty                  |            |                                |            |           |              |                      |               |                                              |      |                                       |
|                                     | 0.0        | 4 7 7                          | 101        | 14.4      | 2.00         | 202                  | 0.2%          | 4 50 1 5 41 3 701                            | 2014 | _                                     |
| Gililland 2014<br>Smith 2014        | 9.8        |                                | 191        |           | 3.98         | 203                  | 8.3%          | -4.60 [-5.41, -3.79]                         |      | -                                     |
| Smith 2014<br>Sah 2015              | 26.5       |                                | 18<br>50   | 16.78     |              | 16<br>50             | 7.1%<br>8.3%  | 9.72 [6.18, 13.26]                           |      | _                                     |
| San 2015<br>Subtotal (95% CI)       | 11.4       | 2.2                            | 259        | 16.1      | 2.2          | 269                  | 8.3%<br>23.7% | -4.70 [-5.56, -3.84]<br>-0.66 [-4.43, 3.11]  |      |                                       |
| Heterogeneity: Tau <sup>2</sup> =   | 10.04.     | Chi² -                         |            | df - 2    | (P 2 (       |                      |               |                                              |      |                                       |
| Test for overall effect:            |            |                                |            | , ui = 2  | ( - < (      | .0000.               | 1), 1 = 9.    | / /0                                         |      |                                       |
| 1.1.4 Cosmotis surg                 |            |                                |            |           |              |                      |               |                                              |      |                                       |
| 1.1.4 Cosmetic surge                | ,          | 17.4                           | 20         | 12.26     | 1 77         | 20                   | 6.5%          | 4 40 1 0 07 0 041                            | 2012 |                                       |
| Grigoryants 2013                    | 7.87       |                                |            | 12.36     |              | 30                   | 6.5%          | -4.49 [-8.97, -0.01]                         |      |                                       |
| Rubin 2014<br>Subtotal (95% CI)     | 12         | 4.6                            | 229<br>259 | 19.2      | 6.7          | 229<br>259           | 8.3%<br>14.8% | -7.20 [-8.25, -6.15]<br>-6.76 [-8.72, -4.79] |      |                                       |
| Heterogeneity: Tau <sup>2</sup> =   | 0.92° CI   | bi <sup>2</sup> – <sup>2</sup> |            | f = 1 /P  | - 0.2        |                      |               | 010 [ 012, 115]                              |      | •                                     |
| Test for overall effect:            |            |                                |            |           |              | - ,, .               |               |                                              |      |                                       |
| 1.1.5 Sacrocolpopexy                | ,          |                                |            |           |              |                      |               |                                              |      |                                       |
| Tan-Kim 2014                        | 28.7       | 1 D G                          | 32         | 47.2      | 15.9         | 32                   | 5.0%          | -13.60 [-20.63, -6.57]                       | 2014 | <b></b>                               |
| Subtotal (95% CI)                   | 20.7       | 12.0                           | 32         | 42.5      | 15.9         | 32                   | 5.0%          | -13.60 [-20.63, -6.57]                       |      |                                       |
| Heterogeneity: Not ap               | plicable   |                                | 52         |           |              | 52                   | 5.070         | 15.00 [ 20.05, 0.57]                         |      |                                       |
| Test for overall effect:            |            | 0 /P _                         | 0.000      | 1)        |              |                      |               |                                              |      |                                       |
| resctor overall effect.             | 2 = 3.73   | 9 (P =                         | 0.000      | 1)        |              |                      |               |                                              |      |                                       |
| 1.1.6 Gastric bypass                |            |                                |            |           |              |                      |               |                                              |      |                                       |
| Milone 2013                         | 12.8       | 1.4                            | 30         | 24.1      | 2.2          | 30                   |               | -11.30 [-12.23, -10.37]                      |      | ÷ 1                                   |
| Subtotal (95% CI)                   |            |                                | 30         |           |              | 30                   | 8.3%          | -11.30 [-12.23, -10.37]                      |      | ◆                                     |
| Heterogeneity: Not ap               |            |                                |            |           |              |                      |               |                                              |      |                                       |
| Test for overall effect:            | Z = 23.3   | 73 (P                          | < 0.00     | 001)      |              |                      |               |                                              |      |                                       |
| 1.1.7 Robot-assisted                | laparos    | copic                          | prosta     | atectom   | v            |                      |               |                                              |      |                                       |
| Williams 2010                       | 9.7        | 0.2                            | 45         | 9.8       | 0.2          | 36                   | 8.4%          | -0.10 [-0.19, -0.01]                         | 2010 | 4                                     |
| Subtotal (95% CI)                   |            |                                | 45         |           |              | 36                   | 8.4%          | -0.10 [-0.19, -0.01]                         |      |                                       |
| Heterogeneity: Not ap               | plicable   |                                |            |           |              |                      |               |                                              |      |                                       |
| Test for overall effect:            |            | 4 (P =                         | 0.03)      |           |              |                      |               |                                              |      |                                       |
| 1.1.8 Cesarean deliv                | erv        |                                |            |           |              |                      |               |                                              |      |                                       |
| Murtha 2006                         | 9.5        | 3 22                           | 127        | 89        | 2.81         | 61                   | 8.3%          | 0.60 [-0.30, 1.50]                           | 2006 | <u> -</u>                             |
| Subtotal (95% CI)                   | 2.2        | 2.22                           | 127        | 0.9       | 2.01         | 61                   | 8.3%          | 0.60 [-0.30, 1.50]                           |      | •                                     |
| Heterogeneity: Not ap               | nlicable   |                                |            |           |              |                      | 2.270         |                                              |      | <b>T</b>                              |
| Test for overall effect:            |            | 1 (P =                         | 0.19)      |           |              |                      |               |                                              |      |                                       |
| Total (95% CI)                      |            |                                | 860        |           |              | 864                  | 100.0%        | -2561-601 113                                |      |                                       |
| Total (95% CI)                      | 10.01      | cu:2                           | 860        | 05 -10    | 4.7.17       |                      | 100.0%        | -3.56 [-6.01, -1.12]                         |      | , <b>, –</b> , ,                      |
| Heterogeneity: Tau <sup>2</sup> =   |            |                                |            |           | = 12 (F      | < 0.00               | JUU1); l*     | = 99%                                        |      | -20 -10 0 10                          |
| Test for overall effect:            |            |                                |            |           | - /-         |                      |               |                                              |      | barbed conventional                   |
| Test for subgroup diff              | erences:   | Chi <sup>2</sup> =             | = 654.2    | 28, df =  | 7 (P <       | : 0.000              | 01),  ' =     | 98.9%                                        |      |                                       |

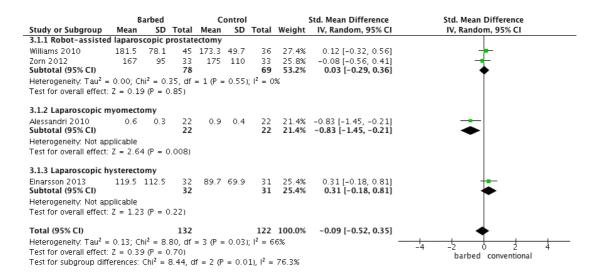

Appendix Figure 2: A forest plot of suturing time of different barbed types with or without

barbed suture

|                                   | В         | arbed   |         | C        | ontrol |                      |                         | Std. Mean Difference |      | Std. Mean Difference               |
|-----------------------------------|-----------|---------|---------|----------|--------|----------------------|-------------------------|----------------------|------|------------------------------------|
| Study or Subgroup                 | Mean      | SD      | Total   | Mean     | SD     | Total                | Weight                  | IV, Random, 95% CI   | Year | IV, Random, 95% CI                 |
| 1.2.1 Unidirectional              | barbed    |         |         |          |        |                      |                         |                      |      |                                    |
| Williams 2010                     | 9.7       | 0.2     | 45      | 9.8      | 0.2    | 36                   | 8.0%                    | -0.50 [-0.94, -0.05] | 2010 | -                                  |
| Alessandri 2010                   | 11.5      | 4.1     | 22      | 17.4     | 3.8    | 22                   | 7.4%                    | -1.47 [-2.14, -0.79] | 2010 | -                                  |
| Milone 2013                       | 12.8      | 1.4     | 30      | 24.1     | 2.2    | 30                   | 5.5%                    | -6.05 [-7.28, -4.82] | 2013 |                                    |
| Grigoryants 2013                  | 7.87      | 12.4    | 30      | 12.36    | 1.72   | 30                   | 7.8%                    | -0.50 [-1.02, 0.01]  | 2013 | -                                  |
| Rubin 2014                        | 12        | 4.б     | 229     | 19.2     | 6.7    | 229                  | 8.4%                    | -1.25 [-1.45, -1.05] | 2014 | +                                  |
| Subtotal (95% CI)                 |           |         | 356     |          |        | 347                  | 37.1%                   | -1.75 [-2.69, -0.81] |      | •                                  |
| Heterogeneity: Tau <sup>2</sup> : | = 1.04; ( | Chi² =  | 77.26,  | df = 4 ( | P < 0. | 00001;               | i; l <sup>2</sup> = 959 | 6                    |      |                                    |
| Test for overall effect           | : Z = 3.6 | 55 (P = | 0.000   | 3)       |        |                      |                         |                      |      |                                    |
|                                   |           |         |         |          |        |                      |                         |                      |      |                                    |
| 1.2.2 Bidirectional b             | arbed     |         |         |          |        |                      |                         |                      |      |                                    |
| Murtha 2006                       | 9.5       | 3.22    | 127     | 8.9      | 2.81   | 61                   | 8.3%                    | 0.19 [-0.11, 0.50]   | 2006 | +                                  |
| Einarsson 2013                    | 10.4      | 5.2     | 32      | 9.6      | 4.8    | 31                   | 7.9%                    | 0.16 [-0.34, 0.65]   | 2013 | +                                  |
| Ardovino 2013B                    | 3.9       | 2       | 18      | 6.6      | 3.7    | 43                   | 7.7%                    | -0.81 [-1.38, -0.24] | 2013 |                                    |
| Ardovino 2013A                    | 6.6       | 4.7     | 36      | 11.8     | 6.1    | 81                   | 8.1%                    | -0.90 [-1.31, -0.49] | 2013 | +                                  |
| Gililland 2014                    | 9.8       | 4.22    | 191     | 14.4     | 3.98   | 203                  | 8.4%                    | -1.12 [-1.33, -0.91] | 2014 | -                                  |
| Tan-Kim 2014                      | 28.7      | 12.6    | 32      | 42.3     | 15.9   | 32                   | 7.8%                    | -0.94 [-1.45, -0.42] | 2014 | -                                  |
| Smith 2014                        | 26.5      | 6.83    | 18      | 16.78    | 3.28   | 16                   | 6.9%                    | 1.74 [0.93, 2.54]    | 2014 |                                    |
| Sah 2015                          | 11.4      | 2.2     | 50      | 16.1     | 2.2    | 50                   | 7.9%                    | -2.12 [-2.61, -1.63] | 2015 |                                    |
| Subtotal (95% CI)                 |           |         | 504     |          |        | 517                  | 62.9%                   | -0.51 [-1.13, 0.11]  |      | ◆                                  |
| Heterogeneity: Tau <sup>2</sup> : | = 0.74; ( | Chi² =  | 128.27  | , df = 7 | (P < 0 | 0.0000               | 1); $ ^2 = 95$          | 5%                   |      |                                    |
| Test for overall effect           | :Z = 1.6  | 50 (P = | 0.11)   |          |        |                      |                         |                      |      |                                    |
|                                   |           |         |         |          |        |                      |                         |                      |      |                                    |
| Total (95% CI)                    |           |         | 860     |          |        | 864                  | 100.0%                  | -0.95 [-1.43, -0.46] |      | •                                  |
| Heterogeneity: Tau <sup>2</sup> : | = 0.71; ( | Chi² =  | 223.09  | , df = 1 | 2 (P < | 0.000                | $(01);   ^2 = 5$        | 95%                  |      |                                    |
| Test for overall effect           | : Z = 3.8 | 33 (P = | 0.000   | 1)       |        |                      |                         |                      |      | -4 -2 0 2 4<br>barbed conventional |
| Test for subgroup dif             | ferences  | : Chi²  | = 4.67, | df = 1   | (P = 0 | .03), I <sup>2</sup> | = 78.6%                 |                      |      | barbea conventional                |

#### Appendix Figure 3: A forest plot of operative time of different surgeries with or without

#### barbed suture




Appendix Figure 4: A forest plot of operative time of different barbed types with or without barbed suture

|                                   | barbed Control |                     |           |          |        |                      | Std. Mean Difference  | Std. Mean Difference |                                    |
|-----------------------------------|----------------|---------------------|-----------|----------|--------|----------------------|-----------------------|----------------------|------------------------------------|
| Study or Subgroup                 | Mean           | SD                  | Total     | Mean     | SD     | Total                | Weight                | IV, Random, 95% CI   | IV, Random, 95% CI                 |
| 2.2.1 Unidirectional b            | arbed          |                     |           |          |        |                      |                       |                      |                                    |
| Alessandri 2010                   | 73.3           | 21.4                | 22        | 80.7     | 18.6   | 22                   | 9.5%                  | -0.36 [-0.96, 0.23]  | -++                                |
| Milone 2013                       | 122.7          | 31.1                | 30        | 134.4    | 0.8    | 30                   | 12.7%                 | -0.52 [-1.04, -0.01] |                                    |
| Williams 2010                     | 103.8          | 21.2                | 45        | 110.4    | 19.4   | 36                   | 17.3%                 | -0.32 [-0.76, 0.12]  |                                    |
| Zorn 2012<br>Subtotal (95% CI)    | 166            | 41                  | 33<br>130 | 174      | 37     | 33<br>121            | 14.4%<br><b>53.8%</b> |                      | •                                  |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; C        | hi <sup>2</sup> = ( | ).82, di  | = 3 (P   | = 0.85 | 5);   <sup>2</sup> = | 0%                    |                      |                                    |
| Test for overall effect:          | Z = 2.7        | 0 (P =              | 0.007)    |          |        |                      |                       |                      |                                    |
| 2.2.2 Bidirectional ba            | rbed           |                     |           |          |        |                      |                       |                      |                                    |
| Ardovino 2013A                    | 36.8           | б.7                 | 36        | 39.3     | 6.9    | 81                   | 21.5%                 | -0.36 [-0.76, 0.03]  | -=-                                |
| Ardovino 2013B                    | 131.5          | 14.8                | 18        | 137.2    | 14.7   | 43                   | 10.9%                 | -0.38 [-0.94, 0.17]  | -++                                |
| Einarsson 2013                    | 146.4          | 76.5                |           | 133.9    | 61.3   | 31                   | 13.7%                 |                      |                                    |
| Subtotal (95% CI)                 |                |                     | 86        |          |        | 155                  | 46.2%                 | -0.20 [-0.55, 0.16]  | •                                  |
| Heterogeneity: Tau <sup>2</sup> = | 0.04; C        | $hi^2 = 3$          | 3.30, di  | ' = 2 (P | = 0.19 | 9); l <sup>2</sup> = | 39%                   |                      |                                    |
| Test for overall effect:          | Z = 1.0        | 9 (P =              | 0.28)     |          |        |                      |                       |                      |                                    |
| Total (95% CI)                    |                |                     | 216       |          |        | 276                  | 100.0%                | -0.28 [-0.46, -0.10] | •                                  |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; C        | $hi^2 = 4$          | 1.66, di  | = 6 (P   | = 0.53 | 9); 1 <sup>2</sup> = | 0%                    |                      |                                    |
| Test for overall effect:          | Z = 3.0        | 0 (P =              | 0.003)    |          |        |                      |                       |                      | -4 -2 0 2 4<br>barbed conventional |
| Test for subgroup diffe           |                |                     |           |          | P = 0. | 50), I <sup>2</sup>  | = 0%                  |                      | barbed conventional                |

Appendix Figure 5: A forest plot of estimated blood loss of different surgeries with or

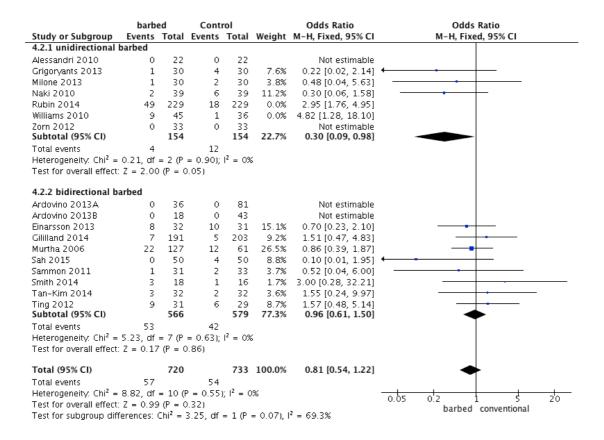
#### without barbed suture

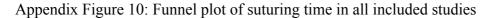


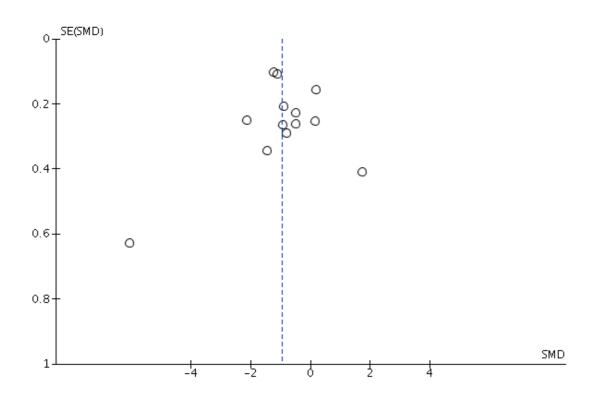
#### Appendix Figure 6: A forest plot of estimated blood loss of different barbed types with or

#### without barbed suture

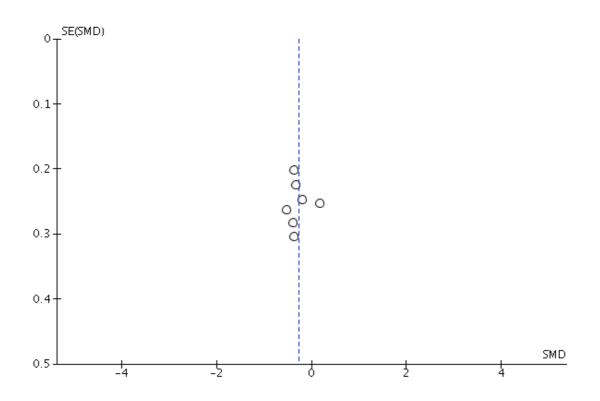
|                                            | B              | arbed                                                   |           | с        | ontrol  |                      |                       | Std. Mean Difference | :    | Std. Mean Difference |  |
|--------------------------------------------|----------------|---------------------------------------------------------|-----------|----------|---------|----------------------|-----------------------|----------------------|------|----------------------|--|
| Study or Subgroup                          | Mean           | SD                                                      | Total     | Mean     | SD      | Total                | Weight                | IV, Random, 95% CI   |      | IV, Random, 95% CI   |  |
| 3.2.1 Unidirectional                       | barbed         |                                                         |           |          |         |                      |                       |                      |      |                      |  |
| Alessandri 2010                            | 0.6            | 0.3                                                     | 22        | 0.9      | 0.4     | 22                   | 21.4%                 | -0.83 [-1.45, -0.21] |      | _ <b></b>            |  |
| Williams 2010                              | 181.5          | 78.1                                                    | 45        | 173.3    | 49.7    | 36                   | 27.4%                 | 0.12 [-0.32, 0.56]   |      | _ <b>_</b>           |  |
| Zorn 2012<br>Subtotal (95% CI)             | 167            | 95                                                      | 33<br>100 | 175      | 110     | 33<br>91             | 25.8%<br><b>74.6%</b> |                      |      | -                    |  |
| Heterogeneity: Tau <sup>2</sup> =          | 0.14; C        | hi <sup>2</sup> = б.                                    | 24. df    | = 2 (P = | 0.04)   | ; l <sup>2</sup> = 6 | 8%                    |                      |      | _                    |  |
| Test for overall effect:                   | Z = 0.82       | 5 (P = 0                                                | ).40)     |          |         |                      |                       |                      |      |                      |  |
| 3.2.2 Bidirectional ba                     | arbed<br>119.5 | 112.5                                                   | 32        | 89.7     | 69.9    | 31                   | 25.4%                 | 0.31 [-0.18, 0.81]   |      | <b></b>              |  |
| Subtotal (95% CI)                          |                |                                                         | 32        |          |         | 31                   | 25.4%                 | 0.31 [-0.18, 0.81]   |      | ★                    |  |
| Heterogeneity. Not ap                      |                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br> | וככו      |          |         |                      |                       |                      |      |                      |  |
| Test for overall effect:                   | Z = 1.2        | 5 (P = C                                                | ).22)     |          |         |                      |                       |                      |      |                      |  |
| Test for overall effect:<br>Total (95% CI) | Z = 1.2.       | 5 (P = (                                                | 132       |          |         | 122                  | 100.0%                | -0.09 [-0.52, 0.35]  |      | •                    |  |
|                                            |                |                                                         | 132       | = 3 (P = | • 0.03) |                      |                       | -0.09 [-0.52, 0.35]  | -4 - | <u> </u>             |  |


Appendix Figure 7: A forest plot of postoperative complications of different surgeries with or without barbed suture


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | barbed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           | trol                                                                                               | Walate                                                        | Peto Odds Ratio                                                                                                                                 | Peto Odds Ratio     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                                                    | weight                                                        | Peto, Fixed, 95% CI                                                                                                                             | Peto, Fixed, 95% CI |
| 4.1.1 Robot-assisted                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                         | -                                                                                                  | 1 .00/                                                        |                                                                                                                                                 |                     |
| Sammon 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | 2 33                                                                                               | 1.9%                                                          | 0.54 [0.05, 5.35]                                                                                                                               |                     |
| Williams 2010<br>Zarra 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | 1 36                                                                                               | 5.6%                                                          | 4.82 [1.28, 18.10]                                                                                                                              |                     |
| Zorn 2012<br><b>Subtotal (95% CI)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33 (<br>09                                                                                                                                | ) 33<br>102                                                                                        | 7.4%                                                          | Not estimable<br>2.79 [0.89, 8.79]                                                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                                                    | 1.4/0                                                         | 2.79 [0.09, 0.79]                                                                                                                               |                     |
| Total events<br>Heterogeneity: Chi² = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>262 df = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                           | 3                                                                                                  | · • /                                                         |                                                                                                                                                 |                     |
| Test for overall effect: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | 1, 1 = 02                                                                                          | /0                                                            |                                                                                                                                                 |                     |
| 4.1.2 Laparoscopic m                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                                                    |                                                               |                                                                                                                                                 |                     |
| Alessandri 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | 22                                                                                                 |                                                               | Not estimable                                                                                                                                   |                     |
| Ardovino 2013A<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36 (<br>58                                                                                                                                | 0 81<br>103                                                                                        |                                                               | Not estimable<br>Not estimable                                                                                                                  |                     |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                           | ) 105                                                                                              |                                                               | Not estimable                                                                                                                                   |                     |
| Heterogeneity: Not app                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | ,                                                                                                  |                                                               |                                                                                                                                                 |                     |
| Test for overall effect: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | le                                                                                                                                        |                                                                                                    |                                                               |                                                                                                                                                 |                     |
| 4.1.3 Laparoscopic hy                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sterectomy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                         |                                                                                                    |                                                               |                                                                                                                                                 |                     |
| Ardovino 2013B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 (                                                                                                                                      |                                                                                                    |                                                               | Not estimable                                                                                                                                   |                     |
| Einarsson 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32 10                                                                                                                                     |                                                                                                    | 8.3%                                                          | 0.70 [0.24, 2.08]                                                                                                                               |                     |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50                                                                                                                                        | 74                                                                                                 | 8.3%                                                          | 0.70 [0.24, 2.08]                                                                                                                               | -                   |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                        | )                                                                                                  |                                                               |                                                                                                                                                 |                     |
| Heterogeneity: Not app<br>Test for overall effect: 3                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 0.53)                                                                                                                                   |                                                                                                    |                                                               |                                                                                                                                                 |                     |
| 4.1.4 Cesarean delive                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                           |                                                                                                    |                                                               |                                                                                                                                                 |                     |
| Murtha 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27 12                                                                                                                                     | 2 61                                                                                               | 15.7%                                                         | 0.85 [0.39, 1.88]                                                                                                                               |                     |
| Naki 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | 5 39                                                                                               | 4.6%                                                          | 0.33 [0.08, 1.42]                                                                                                                               |                     |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66                                                                                                                                        | 100                                                                                                | 20.3%                                                         | 0.69 [0.34, 1.38]                                                                                                                               | ◆                   |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                                                                                                        | 3                                                                                                  |                                                               |                                                                                                                                                 |                     |
| Heterogeneity: Chi <sup>2</sup> = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.25, df = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (P = 0.26)                                                                                                                                | ); I <sup>2</sup> = 20                                                                             | 1%                                                            |                                                                                                                                                 |                     |
| Test for overall effect: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z = 1.05 (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 0.29)                                                                                                                                   |                                                                                                    |                                                               |                                                                                                                                                 |                     |
| 4.1.5 Arthroplasty                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                                                    |                                                               |                                                                                                                                                 |                     |
| Gililland 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 91 5                                                                                                                                      |                                                                                                    | 7.4%                                                          | 1.50 [0.48, 4.73]                                                                                                                               |                     |
| Sah 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50 é                                                                                                                                      | 4 50                                                                                               | 2.5%                                                          | 0.13 [0.02, 0.93]                                                                                                                               |                     |
| Smith 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | 1 16                                                                                               | 2.3%                                                          | 2.65 [0.34, 20.76]                                                                                                                              |                     |
| Ting 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | 5 29                                                                                               | 7.3%                                                          | 1.55 [0.49, 4.94]                                                                                                                               |                     |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90                                                                                                                                        | 298                                                                                                | 19.5%                                                         | 1.19 [0.58, 2.41]                                                                                                                               | -                   |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                        |                                                                                                    |                                                               |                                                                                                                                                 |                     |
| Heterogeneity: Chi <sup>2</sup> = 5<br>Test for overall effect: 3                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | ); l² = 48                                                                                         | 1%                                                            |                                                                                                                                                 |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                                                    |                                                               |                                                                                                                                                 |                     |
| 4.1.6 Cosmetic surge                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                                                    |                                                               |                                                                                                                                                 |                     |
| Grigoryants 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                           | 4 30                                                                                               | 3.0%                                                          | 0.28 [0.04, 1.70]                                                                                                                               |                     |
| Grigoryants 2013<br>Rubin 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>49 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29 18                                                                                                                                     | 3 229                                                                                              | 36.6%                                                         | 2.95 [1.76, 4.95]                                                                                                                               |                     |
| Grigoryants 2013<br>Rubin 2014<br><b>Subtotal (95% CI)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>49 2<br><b>2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29 18<br>59                                                                                                                               | 3 229<br>259                                                                                       |                                                               |                                                                                                                                                 |                     |
| Grigoryants 2013<br>Rubin 2014<br><b>Subtotal (95% CI)</b><br>Total events                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>49 2<br><b>2</b><br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29 18<br>59<br>22                                                                                                                         | B 229<br>259<br>2                                                                                  | 36.6%<br><b>39.6%</b>                                         | 2.95 [1.76, 4.95]                                                                                                                               |                     |
| Grigoryants 2013<br>Rubin 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6                                                                                                                                                                                                                                                                                                                                                                             | 1<br>49 2<br><b>2</b><br>50<br>6.05, df = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29 18<br>59<br>(P = 0.01)                                                                                                                 | 8 229<br><b>259</b><br>2); I <sup>2</sup> = 83                                                     | 36.6%<br><b>39.6%</b>                                         | 2.95 [1.76, 4.95]                                                                                                                               | •                   |
| Grigoryants 2013<br>Rubin 2014<br><b>Subtotal (95% CI)</b><br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6<br>Test for overall effect: 3<br><b>4.1.7 Gastric bypass</b>                                                                                                                                                                                                                                                                                                                | 1<br>49 2<br><b>2</b><br>50<br>6.05, df = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29 18<br>59 22<br>(P = 0.01)<br>= 0.0004)                                                                                                 | 8 229<br><b>259</b><br>2); I <sup>2</sup> = 83                                                     | 36.6%<br><b>39.6%</b>                                         | 2.95 [1.76, 4.95]<br><b>2.47 [1.50, 4.06]</b>                                                                                                   | •                   |
| Grigoryants 2013<br>Rubin 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6<br>Test for overall effect: 3<br>4.1.7 Gastric bypass<br>Milone 2013                                                                                                                                                                                                                                                                                                               | 1<br>49 2<br>50<br>5.05, df = 1<br>Z = 3.56 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29 	 18 	 22 	 59 	 22 	 (P = 0.01) 	 = 0.0004) 	 30 	 2                                                                                  | 3 229<br><b>259</b><br>2; I <sup>2</sup> = 83<br>2 30                                              | 36.6%<br><b>39.6%</b><br>%                                    | 2.95 [1.76, 4.95]<br><b>2.47 [1.50, 4.06]</b><br>0.50 [0.05, 5.02]                                                                              | •                   |
| Grigoryants 2013<br>Rubin 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6<br>Test for overall effect: 3<br>4.1.7 Gastric bypass<br>Milone 2013<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                          | 1<br>49 2<br><b>2</b><br>50<br>6.05, df = 1<br>Z = 3.56 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29 18<br>59<br>(P = 0.01)<br>= 0.0004)<br>30 2<br><b>30</b>                                                                               | 3 229<br><b>259</b><br>2;   <sup>2</sup> = 83<br>2<br>30<br><b>30</b>                              | 36.6%<br><b>39.6%</b><br>%                                    | 2.95 [1.76, 4.95]<br><b>2.47 [1.50, 4.06]</b>                                                                                                   | *                   |
| Grigoryants 2013<br>Rubin 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6<br>Test for overall effect: 3<br>4.1.7 Gastric bypass<br>Milone 2013<br>Subtotal (95% CI)<br>Total events                                                                                                                                                                                                                                                                          | 1<br>49 2<br>2<br>50<br>5.05, df = 1<br>Z = 3.56 (P<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29 18<br>59<br>(P = 0.01)<br>= 0.0004)<br>30 2<br><b>30</b>                                                                               | 3 229<br><b>259</b><br>2; I <sup>2</sup> = 83<br>2 30                                              | 36.6%<br><b>39.6%</b><br>%                                    | 2.95 [1.76, 4.95]<br><b>2.47 [1.50, 4.06]</b><br>0.50 [0.05, 5.02]                                                                              | *                   |
| Grigoryants 2013<br>Rubin 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6<br>Test for overall effect: 7<br>4.1.7 Gastric bypass<br>Milone 2013<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Not app                                                                                                                                                                                                                                                | 1<br>49 2<br><b>2</b><br>50<br>6.05, df = 1<br>Z = 3.56 (P<br>1<br>1<br>blicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29 18<br>59<br>(P = 0.01)<br>= 0.0004)<br>30 2<br>30 2                                                                                    | 3 229<br><b>259</b><br>2;   <sup>2</sup> = 83<br>2<br>30<br><b>30</b>                              | 36.6%<br><b>39.6%</b><br>%                                    | 2.95 [1.76, 4.95]<br><b>2.47 [1.50, 4.06]</b><br>0.50 [0.05, 5.02]                                                                              | •                   |
| Grigoryants 2013<br>Rubin 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6<br>Test for overall effect: 3<br>4.1.7 Gastric bypass<br>Milone 2013                                                                                                                                                                                                                                                                                                               | 1<br>49 2<br><b>2</b><br>50<br>6.05, df = 1<br>Z = 3.56 (P<br>1<br>1<br>blicable<br>Z = 0.59 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29 18<br>59<br>(P = 0.01)<br>= 0.0004)<br>30 2<br>30 2                                                                                    | 3 229<br><b>259</b><br>2;   <sup>2</sup> = 83<br>2<br>30<br><b>30</b>                              | 36.6%<br><b>39.6%</b><br>%                                    | 2.95 [1.76, 4.95]<br><b>2.47 [1.50, 4.06]</b><br>0.50 [0.05, 5.02]                                                                              | *                   |
| Grigoryants 2013<br>Rubin 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6<br>Test for overall effect: 2<br>4.1.7 Gastric bypass<br>Milone 2013<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Not app<br>Test for overall effect: 2<br>4.1.8 Sacrocolpopexy<br>Tan-Kim 2014                                                                                                                                                                          | 1<br>49 2<br>50<br>6.05, df = 1<br>Z = 3.56 (P<br>1<br>1<br>blicable<br>Z = 0.59 (P<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29 18  59 27  (P = 0.01)  = 0.0004)  30 27  30 27  = 0.56)  32 27 27  32 27 27  32 37 27 27  32 37 27 27 27 27 27 27 27 27 27 27 27 27 27 | 3 229 259 259<br>2 30 30 22 30 30 22 32 32 32 32 32 32 32 32 32 32 32 32                           | 36.6%<br>39.6%<br>%<br>1.8%<br>1.8%<br>3.0%                   | 2.95 [1.76, 4.95]<br>2.47 [1.50, 4.06]<br>0.50 [0.05, 5.02]<br>0.50 [0.05, 5.02]                                                                | *                   |
| Grigoryants 2013<br>Rubin 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6<br>Test for overall effect: 2<br>4.1.7 Gastric bypass<br>Milone 2013<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Not app<br>Test for overall effect: 2<br>4.1.8 Sacrocolpopexy<br>Tan-Kim 2014<br>Subtotal (95% CI)                                                                                                                                                     | 1<br>49 2<br><b>2</b><br>50<br>6.05, df = 1<br>Z = 3.56 (P<br>1<br>1<br>blicable<br>Z = 0.59 (P<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29 18  59 22  (P = 0.01)  = 0.0004)  30 2  30 2  = 0.56)  32 2 3  32 32 3 32 3 32 3 32 3 33 3 3 3 3 3 3 3                                 | 3 229 <b>259</b><br>2; 1 <sup>2</sup> = 83<br>2 30<br>30<br>2 32<br>32<br>32                       | 36.6%<br><b>39.6%</b><br>%<br>1.8%<br><b>1.8%</b>             | 2.95 [1.76, 4.95]<br>2.47 [1.50, 4.06]<br>0.50 [0.05, 5.02]<br>0.50 [0.05, 5.02]                                                                |                     |
| Grigoryants 2013<br>Rubin 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6<br>Test for overall effect: 3<br>A.1.7 Gastric bypass<br>Milone 2013<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Not app<br>Test for overall effect: 3<br>4.1.8 Sacrocolpopexy<br>Tan-Kim 2014<br>Subtotal (95% CI)<br>Total events                                                                                                                                     | 1<br>49 2<br><b>2</b><br>50<br>6.05, df = 1<br>Z = 3.56 (P<br>1<br>1<br>blicable<br>Z = 0.59 (P<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29 18  59 22  (P = 0.01)  = 0.0004)  30 2  30 2  = 0.56)  32 2 3  32 32 3 32 3 32 3 32 3 33 3 3 3 3 3 3 3                                 | 3 229 259 259<br>2 30 30 22 30 30 22 32 32 32 32 32 32 32 32 32 32 32 32                           | 36.6%<br>39.6%<br>%<br>1.8%<br>1.8%<br>3.0%                   | 2.95 [1.76, 4.95]<br>2.47 [1.50, 4.06]<br>0.50 [0.05, 5.02]<br>0.50 [0.05, 5.02]                                                                |                     |
| Grigoryants 2013<br>Rubin 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6<br>A.1.7 Gastric bypass<br>Milone 2013<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Not app<br>Tan-Kim 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Not app<br>Tan-Kim 2014<br>Subtotal (95% CI)                                                                                                                                                          | $     \begin{array}{r}       1 \\       49 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\    $ | 29 18  59 22  (P = 0.012  = 0.0004)  30 2  30 2  = 0.56)  32 2 3  32 2 3  32 2 3  32 2 3  32 2 3 3 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3          | 3 229 <b>259</b><br>2; 1 <sup>2</sup> = 83<br>2 30<br>30<br>2 32<br>32<br>32                       | 36.6%<br>39.6%<br>%<br>1.8%<br>1.8%<br>3.0%                   | 2.95 [1.76, 4.95]<br>2.47 [1.50, 4.06]<br>0.50 [0.05, 5.02]<br>0.50 [0.05, 5.02]                                                                |                     |
| Grigoryants 2013<br>Rubin 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6<br>Test for overall effect: 2<br>4.1.7 Gastric bypass<br>Milone 2013<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Not app<br>Tan-Kim 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Not app<br>Tast for overall effect: 2                                                                                                                                   | $     \begin{array}{r}       1 \\       49 \\       2 \\       2 \\       50 \\       5.05, df = 1 \\       Z = 3.56 (P \\       1 \\       1 \\       1 \\       2 \\       2 \\       2 \\       2 \\       3.56 (P \\       1 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\      $    | 29 18  59 22  (P = 0.012  = 0.0004)  30 2  30 2  = 0.56)  32 2 3  32 2 3  32 2 3  32 2 3  32 2 3 3 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3          | 3 229<br>259<br>2; 1 <sup>2</sup> = 83<br>2 30<br>30<br>2<br>2 32<br>32<br>2 32<br>32              | 36.6%<br>39.6%<br>%<br>1.8%<br>1.8%<br>3.0%                   | 2.95 [1.76, 4.95]<br>2.47 [1.50, 4.06]<br>0.50 [0.05, 5.02]<br>0.50 [0.05, 5.02]<br>1.53 [0.25, 9.38]<br>1.53 [0.25, 9.38]                      |                     |
| Grigoryants 2013<br>Rubin 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6<br>Test for overall effect: 3<br>AL.7 Gastric bypass<br>Milone 2013<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Not app<br>Test for overall effect: 3<br>AL.8 Sacrocolpopexy<br>Tan-Kim 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Not app<br>Test for overall effect: 3<br>Test for overall effect: 3<br>Test for overall effect: 3<br>Total (95% CI) | $     \begin{array}{r}       1 \\       49 \\       2 \\       50 \\       5.05, df = 1 \\       2 = 3.56 (P \\       1 \\       1 \\       1 \\       2 = 0.59 (P \\       3 \\       3 \\       0licable \\       Z = 0.59 (P \\       3 \\       3 \\       0licable \\       Z = 0.46 (P \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       7 \\       9 \\       9 \\       9 \\       7 \\       9 \\       9 \\       7 \\       9 \\       9 \\       9 \\       7 \\       9 \\       9 \\       7 \\       9 \\       9 \\       7 \\       9 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\      7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 $        | 29 18 $59 22$ $(P = 0.01)$ $= 0.0004$ $30 2$ $30 2$ $= 0.56$ $32 2$ $= 0.64$ $94$                                                         | 3 229<br>259<br>2);   <sup>2</sup> = 83<br>2 30<br>2 30<br>2 30<br>2 30<br>2 32<br>32<br>32<br>998 | 36.6%<br>39.6%<br>%<br>1.8%<br>1.8%<br>3.0%<br>3.0%<br>3.0%   | 2.95 [1.76, 4.95]<br>2.47 [1.50, 4.06]<br>0.50 [0.05, 5.02]<br>0.50 [0.05, 5.02]                                                                |                     |
| Grigoryants 2013<br>Rubin 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 6<br>Test for overall effect: 2<br>4.1.7 Gastric bypass<br>Milone 2013<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Not app<br>Test for overall effect: 2<br>4.1.8 Sacrocolpopexy<br>Tan-Kim 2014<br>Subtotal (95% CI)                                                                                                                                                     | $     \begin{array}{r}       1 \\       49 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       50 \\       50 \\       50 \\       50 \\       50 \\       50 \\       50 \\       50 \\       7 \\       1 \\       1 \\       1 \\       1 \\       1 \\       2 = 3.56 (P \\       1 \\       1 \\       1 \\       2 = 0.59 (P \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\      $    | 29 	 18 	 59 	 22 	 (P = 0.01) 	 30 	 23 	 30 	 23 	 30 	 23 	 32 	 23 	 23                                                               | 3 229<br>259<br>2);   <sup>2</sup> = 83<br>2 30<br>30<br>2 32<br>32<br>32<br>998                   | 36.6%<br>39.6%<br>%<br>1.8%<br>1.8%<br>3.0%<br>3.0%<br>100.0% | 2.95 [1.76, 4.95]<br>2.47 [1.50, 4.06]<br>0.50 [0.05, 5.02]<br>0.50 [0.05, 5.02]<br>1.53 [0.25, 9.38]<br>1.53 [0.25, 9.38]<br>1.44 [1.05, 1.97] |                     |


Appendix Figure 8: A forest plot of postoperative complications of different barbed types with or without barbed suture

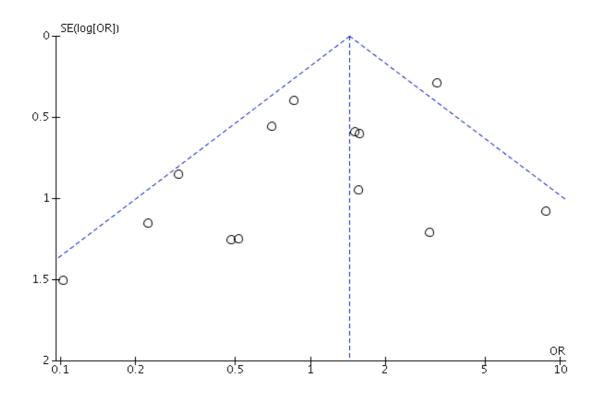
|                                   | barb     |           | Cont               |             |         | Odds Ratio           | Odds Ratio          |
|-----------------------------------|----------|-----------|--------------------|-------------|---------|----------------------|---------------------|
| Study or Subgroup                 |          | Total     | Events             | Total       | Weight  | M-H, Fixed, 95% CI   | M–H, Fixed, 95% CI  |
| 4.2.1 unidirectional              | barbed   |           |                    |             |         |                      |                     |
| Alessandri 2010                   | 0        | 22        | 0                  | 22          |         | Not estimable        |                     |
| Grigoryants 2013                  | 1        | 30        | 4                  | 30          | 5.9%    | 0.22 [0.02, 2.14]    | ←                   |
| Milone 2013                       | 1        | 30        | 2                  | 30          | 2.9%    | 0.48 [0.04, 5.63]    |                     |
| Naki 2010                         | 2        | 39        | 6                  | 39          | 8.7%    | 0.30 [0.06, 1.58]    |                     |
| Rubin 2014                        | 49       | 229       | 18                 | 229         | 21.6%   | 3.19 [1.79, 5.67]    |                     |
| Williams 2010                     | 9        | 45        | 1                  | 36          | 1.4%    | 8.75 [1.05, 72.73]   |                     |
| Zorn 2012                         | 0        | 33        | 0                  | 33          |         | Not estimable        |                     |
| Subtotal (95% CI)                 |          | 428       |                    | 419         | 40.4%   | 2.13 [1.35, 3.35]    | •                   |
| Total events                      | 62       |           | 31                 |             |         |                      |                     |
| Heterogeneity. Chi <sup>2</sup> = | 14.20, d | f = 4 (F) | $P = 0.00^{\circ}$ | 7); 12 =    | 72%     |                      |                     |
| Test for overall effect:          | Z = 3.25 | 5 (P = 0  | 0.001)             |             |         |                      |                     |
|                                   |          |           |                    |             |         |                      |                     |
| 4.2.2 bidirectional b             |          |           |                    |             |         |                      |                     |
| Ardovino 2013A                    | 0        | 36        | 0                  | 81          |         | Not estimable        |                     |
| Ardovino 2013B                    | 0        | 18        | 0                  | 43          |         | Not estimable        |                     |
| Einarsson 2013                    | 8        | 32        | 10                 | 31          | 11.6%   | 0.70 [0.23, 2.10]    |                     |
| Gililland 2014                    | 7        | 191       | 5                  | 203         | 7.1%    | 1.51 [0.47, 4.83]    |                     |
| Murtha 2006                       | 22       | 127       | 12                 | 61          | 20.4%   | 0.86 [0.39, 1.87]    |                     |
| Sah 2015                          | 0        | 50        | 4                  | 50          | 6.8%    | 0.10 [0.01, 1.95]    | <b>←</b>            |
| Sammon 2011                       | 1        | 31        | 2                  | 33          | 2.9%    | 0.52 [0.04, 6.00]    |                     |
| Smith 2014                        | 3        | 18        | 1                  | 16          | 1.3%    | 3.00 [0.28, 32.21]   |                     |
| Tan-Kim 2014                      | 3        | 32        | 2                  | 32          | 2.8%    | 1.55 [0.24, 9.97]    |                     |
| Ting 2012                         | 9        | 31        | 6                  | 29          | 6.7%    | 1.57 [0.48, 5.14]    |                     |
| Subtotal (95% CI)                 |          | 566       |                    | 579         | 59.6%   | 0.96 [0.61, 1.50]    | <b>•</b>            |
| Total events                      | 53       |           | 42                 |             |         |                      |                     |
| Heterogeneity: Chi <sup>2</sup> = |          |           |                    | $ ^2 = 0\%$ | 5       |                      |                     |
| Test for overall effect:          | Z = 0.17 | 7 (P = C  | ).86)              |             |         |                      |                     |
| Total (95% CI)                    |          | 994       |                    | 998         | 100.0%  | 1.43 [1.05, 1.96]    | <b>◆</b>            |
| Total events                      | 115      |           | 73                 |             |         |                      | -                   |
| Heterogeneity: Chi <sup>2</sup> = | 24.47. d | f = 12    | (P = 0.0)          | 2): $ ^2 =$ | 51%     |                      |                     |
| Test for overall effect:          |          |           |                    | .,          |         |                      | 0.65 0.2 1 5 2'0    |
| Test for subaroup dif             |          |           |                    | – 1 (P      | = 0.01) | <sup>2</sup> = 83.7% | barbed conventional |


Appendix Figure 9: Sensitivity analyses of postoperative complications of different barbed types with or without barbed suture








Appendix Figure 11: Funnel plot of operative time in all included studies



Appendix Figure 12: Funnel plot of estimate blood loss in all included studies



Appendix Figure 13: Funnel plot of postoperative complications in all included studies



| Author         | Random sequence                                                                                                                        | Allocation                        | Blinding of participants and                                           | Blinding of outcome                        | Incomplete outcome data                                         | Selective  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|------------|
| year           | generation                                                                                                                             | concealment                       | personnel                                                              | assessment                                 |                                                                 | reporting  |
| Murtha<br>2006 | Subjects were<br>randomized within strata<br>in the ratio of two barbed<br>suture subjects for every<br>one control subject            | Using a closed<br>envelope system | Subjects, but not the operating surgeon/investigators, were blinded    | Primary endpoint<br>assessment was blinded | Lost follow-up in barbed/control<br>group N(%): 4(3.1) / 2(3.2) | Not stated |
| Alessand       |                                                                                                                                        | Sealed opaque                     |                                                                        |                                            | No                                                              |            |
| ri 2010        | Computer generated                                                                                                                     | envelope                          | Not stated                                                             | Not stated                                 |                                                                 | Not stated |
| Naki<br>2010   | Computer generated                                                                                                                     | Sealed opaque<br>envelopes        | Neither subjects nor the operating surgeon/ investigators were blinded | No                                         | No                                                              | No         |
| Williams       | • • •                                                                                                                                  | *                                 |                                                                        |                                            | Lost follow-up in barbed/control                                |            |
| 2010           | Computer generated                                                                                                                     | Not stated                        | Not stated                                                             | Not stated                                 | group N(%): 1(2.2)/0                                            | Not stated |
| Sammon         |                                                                                                                                        |                                   |                                                                        |                                            | No                                                              |            |
| 2011           | Computer generated                                                                                                                     | Not stated                        | Not stated                                                             | Not stated                                 |                                                                 | Not stated |
| Ting           |                                                                                                                                        | Sealed opaque                     |                                                                        |                                            | No                                                              |            |
| 2012           | Computer generated                                                                                                                     | envelopes                         | Patients                                                               | No                                         |                                                                 | No         |
| Zorn<br>2012   | After specimen<br>entrapment, patients were<br>randomized to either<br>double-armed<br>monofilament or barbed<br>suture for PR and VUA | Not stated                        | Not stated                                                             | Not stated                                 | No                                                              | Not stated |
| Ardovin        |                                                                                                                                        |                                   |                                                                        |                                            | No                                                              |            |
| o 2013         | Computer generated                                                                                                                     | Not stated                        | Not stated                                                             | Not stated                                 |                                                                 | Not stated |
| Ardovin        | • • • •                                                                                                                                |                                   |                                                                        |                                            | No                                                              |            |
| o 2013         | Computer generated                                                                                                                     | Not stated                        | Not stated                                                             | Not stated                                 |                                                                 | Not stated |
| Einarsso       |                                                                                                                                        | Opaque sealed                     |                                                                        |                                            | No                                                              |            |
| n 2013         | Computer generated                                                                                                                     | envelopes                         | Not stated                                                             | Not stated                                 |                                                                 | No         |
| Grigorya       |                                                                                                                                        | ·                                 |                                                                        |                                            | No                                                              |            |
| nts 2013       | Coin toss                                                                                                                              | Not stated                        | Not stated                                                             | A blinded evaluator                        |                                                                 | Not stated |
| Milone         |                                                                                                                                        |                                   |                                                                        |                                            | No                                                              |            |
| 2013           | Computer generated                                                                                                                     | Sealed envelopes                  | Not stated                                                             | Not stated                                 |                                                                 | Not stated |

Appendix Table 1: Quality assessment of studies in the meta-analysis based on Cochrane recommendations

| Gililland<br>2014 | The randomization<br>occurred in the operating<br>room | Not stated       | All patients were blinded            | Not stated          | No                               | Not stated |
|-------------------|--------------------------------------------------------|------------------|--------------------------------------|---------------------|----------------------------------|------------|
| Rubin             |                                                        |                  |                                      | Evaluated by an     | Lost follow-up in barbed/control |            |
| 2014              |                                                        |                  |                                      | independent blinded | group N(%): 21(18.2)/4(3.5)      |            |
|                   | Computer generated                                     | Not stated       | Patients                             | plastic surgeon.    |                                  | No         |
| Smith             | A random envelope was drawn which dictated the         |                  | Blinding the patients to the type of |                     | No                               |            |
| 2014              | type of suture to be used                              | Sealed envelopes | suture they received.                | Not stated          |                                  | Not stated |
| Tan-Kim           |                                                        | The sealed       |                                      |                     | No                               |            |
| 2014              | Computer generated                                     | envelope         | Not stated                           | Blinded examiner    |                                  | No         |
| Sah 2015          | Computer generated                                     | Not stated       | Not stated                           | Blind evaluation.   | No                               | Not stated |