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Supplementary Figure 1: Diagram of sequence feature extraction process. 

The DNA sequences surrounding experimentally identified TSSs (labeled TSS, green arrow) are 

extracted and the presence or absence of TFBSs within their ROEs are scored. The ROEs 

identified for each TF are shown in dotted lines. Red arrows denote the positions of randomly-

selected negative examples where no evidence of transcription was supported by the TSS-Seq 

dataset. 

 



 

Supplementary Figure 2: ROC Plot of SP + BR (ALL) vs NO Classifier. 



 

Supplementary Figure 3: PRC Plot of SP + BR (ALL) vs NO Classifier. 

  



 

Supplementary Figure 4: ROC plot of the BR vs NoTSS model when used to predict Single Peak 

initiation patterns. 



 

Supplementary Figure 5: PRC plot of the BR vs NoTSS model when used to predict Single Peak 

initiation patterns. 



 

Supplementary Figure 6: ROC plot of the SP vs NoTSS model when used to predict Broad 

initiation patterns. 



 

Supplementary Figure 7: PRC plot of the SP vs NoTSS model when used to predict Broad 

initiation patterns. 

  



 

Supplementary Figure 8: ROC of BR vs NoTSS Model. 



 

Supplementary Figure 9: PRC of BR vs NoTSS Model 



 

Supplementary Figure 10: ROC plot of SP vs NoTSS Model 



 

Supplementary Figure 11: PRC plot of SP vs NoTSS Model 

  



 

Supplementary Figure 12: ROC plot of S-Peaker Model on ALL Dataset 



 

Supplementary Figure 13: PRC plot of S-Peaker Model on ALL Dataset 



 

Supplementary Figure 14: ROC plot of S-Peaker Model on SP Dataset 



 

Supplementary Figure 15: PRC plot of S-Peaker Model on SP Dataset 



 

Supplementary Figure 16: ROC plot of S-Peaker Model on BR Dataset 

 



 

Supplementary Figure 17: PRC plot of S-Peaker Model on BR Dataset 

  



 

Supplementary Figure 18: ROC Plot of TIPR trained and tested on HG18 Narrow Peak dataset 

  



 

Supplementary Figure 19: PRC Plot of TIPR trained and tested on HG18 Narrow Peak dataset 

  



 

Supplementary Figure 20: ROC Plot of TIPR trained and tested on HG18 Weak (Broad) Peak 

dataset  

  



 

Supplementary Figure 21: PRC Plot of TIPR trained and tested on HG18 Weak (Broad) Peak 

dataset  

  



 

Supplementary Figure 22: ROC plot of SP vs BR model 



 

Supplementary Figure 23: PRC plot of SP vs BR model 

  



Supplementary Tables 

Supplementary tables are provided in the following Excel spreadsheet files. 

Supplementary Table 1: Regions of Enrichment defined for each set of TSSs by initiation pattern 

and DNA strand. The SP and BR sheets are defined on training examples of a single initiation 

pattern, and were used to construct the SP and BR models. The sheets labeled “Union of 

SP+BR” were used to build the 3 models used by the MSC classifier. The sheets labeled “ALL” 

contain ROEs defined by combining both the SP and BR TSSs together. (Supplementary Table 1 

– All_Model_ROEs.xls) 

Supplementary Table 2: Performance of classifiers in cross-validation tested on the validation 

partition of each cross-validation fold. This table shows the auROC and auPRC of each model 

used in the MSC and ALL classifiers built for each cross-validation fold on the validation 

partition. (Supplementary Table 2 - Cross-Validation Scores.xlsx). 

Supplementary Table 3: The feature coefficients of each final MSC sub-model. (Supplementary 

Table 3 – Feature Weights.xls) 

Supplementary Table 4: Confusion Matrices and additional statistics calculated from the test sets 

of each model. (Supplementary Table 4 – Confusion Matrices.xls) 

Supplementary Methods 

ROE Identification 
The identification of Regions of Enrichment is the first step in the TIPR model training 

procedure. After the DNA sequence surrounding TSS-Seq-supported TSSs is extracted, each 

TRANSFAC TFBS PWM is scanned along each extracted sequence, and a log-likelihood score 

is calculated at each nucleotide. This score is the log-likelihood that the sub-sequence beginning 

at this nucleotide is drawn from the TFBS PWM distribution compared to the promoter 

background distribution. This score is equivalent to the (log of) the quantity 

P(TFBS)/P(Background). The promoter background is calculated using a first-order Markov 

model over 500 nt surrounding the TSS (250 nt upstream and 250 nt downstream of the TSS). 

After this procedure is performed over the sequence surrounding each TSS, positive scores are 

averaged across all TSSs, producing an average log-likelihood score at each nucleotide, where 

position zero is the mode of each TSS tag cluster identified through TSS-Seq. 

Following this scanning procedure, ROEs are identified by first locating the nucleotide with the 

maximum averaged log-likelihood score within 100 nt of the TSS (upstream or downstream). 

Starting from this location, the ROE is expanded upstream and downstream until the average 

log-likelihood score falls below the overall average (average of all average log-likelihood scores 

at all nucleotides surrounding the TSS within 2 kb of the TSS) for at least 5 nt. These positions 

define the boundaries of the TFBS’s Region of Enrichment. These regions are further subdivided 

into 5 overlapping windows of equal size, plus an additional 2 flanking the upstream and 

downstream edges (of the same width). The 7 windows are each considered separately during 

feature extraction. This entire procedure is performed on both the forward and reverse strands of 



DNA, identifying ROEs present on both strands. Further details are provided in Megraw et al. 

(2009), a visualizations are available in Supplementary Figure 2 and Megraw et al. (2009), 

Figure 3. 

Sequence Feature Extraction 
After regions of enrichment have been identified, the DNA sequence surrounding TSSs are 

transformed into numerical features characterizing the presence of TFBSs in the sequence which 

falls within the TF’s ROE. The log-likelihood procedure described above is repeated, except that 

only sequences falling within a specific TFBS’s ROE are considered. To generate features for a 

single genomic location (either as a positive training example containing a TSS, a negative non-

TSS training example, or to predict the probability of transcription initiating at that nucleotide), 

the sequence surrounding the nucleotide is extracted and the genomic positions of ROEs relative 

to the genomic position under investigation are calculated (Supplementary Figure 3). 

Within the ROE of each TFBS, log-likelihood scores are computed as described in the ROE 

Identification section. A numerical score is produced for each ROE sub-window by summing all 

positives scores of all nucleotides which fall within the window, producing a total of 7 features 

for each TFBS per strand. An additional 3 features containing dinucleotide sequence enrichments 

are included with each example. Sequence enrichment features are simply the proportion of 

bases within 250 nt of the genomic location which contain either of the nucleotides in the 

dinucleotide set. 

The TIPR-TFBS-Scan program performs this scoring function on input DNA sequence as 

FASTA files and produces as output a text or binary file containing the numerical features of 

each input sequence. The binary format is used in this model to decrease file size and increase 

training efficiency. 

l1_logreg modifications 
The l1_logreg software package (Koh et al., 2007) is a software package for efficiently training 

L1-regularized logistic regression models. We have modified l1_logreg to support the binary 

files produced by the TIPR-TFBS-Scan application. This increases training and testing speed by 

reducing the time required to load large input files containing thousands of features and 

examples. The modified l1_logreg package is included in supplementary materials. 

Model Training and Selection of Model Parameters 
Models are trained using 80% of available data, with the remaining 20% used for testing. 

Training data is used for both ROE identification and model training, while testing data is never 

used to inform the model in any way. Data was randomly partitioned into training and testing 

sets. Model parameters are selected using 10-fold cross-validation as follows: 

1. 80% of training data is used for training partitions, 10% for selection of parameter λ, and 

10% for selection of parameter d. 

2. The l1_logreg package is used to compute an approximation of the regularization path at 

23 points, with a minimum value of λ=0.0001 on the training partition of each fold. 



3. After the regularization path has been computed, the AUROC of at each point is 

computed on the validation partition of each fold. The λ yielding the highest AUROC of 

each fold is recorded.  

4. The model with optimal λ of each fold found in step 3 is used to classify the examples in 

the remaining 10% used for selection of parameter d. Using these labeled examples, 

probability threshold values of d between 0.0 and 1.0 (in increments of 0.02) are used to 

predict the class label. For each value of d, the F1 score of the resulting classification is 

calculated, and the d which maximizes this score is recorded. The average of these 

maximum values of d is computed across all cross-validation folds and used as the d 

value for the final model. This value represents the probability threshold which will result 

in the optimal F1 score when used to predict class labels from the probability output of a 

binary classifier prediction. 

5. The optimal λ values computed in step 3 are averaged together to choose the λ penalty of 

each final model. Final models are trained using these averaged λ values on the entire 

training set. 

 

Multi-Class Prediction Models 
During the development of TIPR, we experimented with several multi-class prediction 

algorithms. We describe the details of three models here, with results given in the next section. 

All models are similar, but vary in the order in which the three sub-models (Table 1 in the 

manuscript) are applied. 

Model 1: In this model, the ALL model (trained using a combination of SP and BR initiation 

patterns) is used to determine the probability of transcription initiation a particular genomic 

location under investigation. If the ALL model predicts the location is transcribed (probability of 

initiation greater than or equal to the ALL model’s d parameter), the SP vs BR model is used to 

predict if the genomic region under investigation is likely to form an SP or BR initiation pattern.  

Model 2: This model uses both of the initiation pattern-specific TSS prediction sub-models (SP 

vs NO and BR vs NO) to predict if a genomic location is transcribed by either model. The 

following algorithm is applied. P(x) represents the probability output of the specified model, 

while d(x) represents the value of the d parameter for a specific model. 

If P(SP vs NO) > d(SP vs NO):  // SP vs NO model predicts site is transcribed 

 if P(SP vs BR) > d(SP vs BR):  // SP vs BR model predicts site is an SP 

  predict SP 

 else: predict NO 

Else If P(BR vs NO) > d(BR vs NO): // BR vs NO model predicts site is transcribed 

 If P(SP vs BR) < d(SP vs BR):  // SP vs BR model predicts site is an SP 

  predict BR 

 else: predict NO 

Else: predict NO 

 



Model 3: This is the MSC model reported on and described in the manuscript. This is similar to 

Model 2, but the predicted label of the TSS (SP vs NO/BR vs NO) and initiation pattern (SP vs 

BR) models are not required to agree. The following algorithm is applied: 

 If P(SP vs NO) > d(SP vs NO) or P(BR vs NO) > d(BR vs NO): 

  if P(SP vs BR) > d(SP vs BR): predict SP 

  else: predict BR 

 else: predict NO 

 

Construction of FANTOM4 Human TSS Prediction Model 
To compare TIPR to the chromatin-based TSS prediction model described in Rach et al., 2011, 

we used the TSS location and initiation pattern classification dataset provided in the 

supplementary materials of Rach et al., 2011 (https://ohlerlab.mdc-berlin.de/publications/29/). 

As in the TIPR model, the dataset was partitioned into training and testing sets, with 80% of the 

TSSs being used for training. 100,000 random locations from the hg18 genome, along with 

randomized locations drawn from annotated exons, were used to construct the negative set. 

Unlike in the TIPR model, negative examples drawn from regions surrounding TSSs were not 

explicitly filtered to ensure that there were no TSSs within the regions used to draw negatives. 

This is the same procedure that was used to generate the negative set in Rach et al., 2011. Our 

algorithm for selecting regions of the genome which showed no evidence of transcription 

(negative examples) could not be applied to the dataset used to construct the Rach et al., model. 

This is likely because our algorithm finds only large swaths of the genome (4 kb) which show no 

evidence of transcription in regions surrounding TSSs. The dataset used in the Rach et al., model 

likely has few regions where no transcription occurs. A better negative filtering algorithm which 

identified smaller regions (10—100 nt) with no transcription could easily be applied, and would 

likely lead to increased performance of the TIPR model. 

 

  



Supplementary Results: Multi-Class Prediction Results 
The results of the MSC model are reported in the main manuscript. In this section, we compare 

the 3 multi-class models described in Supplementary Methods: Multi-Class Prediction Models. 

Overall, the 3 models performed approximately the same when evaluated on several metrics, 

though Model 3 identified the most SP and BR true positives correctly. In these results, class 0 is 

a negative (non-TSS) example, class 1 is an SP TSS, and class 2 is a BR TSS. 

Note that because these results were collected during development of the models, these results 

compare the 3 models with a testing set containing using only approximately 15,000 negative 

examples instead of the 100,000 reported in the manuscript. 

 

Model 1: 

Confusion Matrix and Statistics 

          Reference 

Prediction    -1     1     2 

        -1 15625    49    84 

        1     43   156    55 

        2     40    44   360 

                     Class: -1 Class: 1 Class: 2 

Sensitivity             0.9947  0.62651  0.72144 

Specificity             0.8222  0.99395  0.99474 

Pos Pred Value          0.9916  0.61417  0.81081 

Neg Pred Value          0.8811  0.99426  0.99132 

Prevalence              0.9545  0.01513  0.03032 

Detection Rate          0.9495  0.00948  0.02188 

Detection Prevalence    0.9576  0.01544  0.02698 

Balanced Accuracy       0.9085  0.81023  0.85809 

Micro F1:  0.980858  

Macro F1:  0.7923115 

 

  



Model 2: 

Confusion Matrix and Statistics 

          Reference 

Prediction    -1     1     2 

        -1 15613    49    79 

        1     25   156    48 

        2     70    44   372 

 

                     Class: -1 Class: 1 Class: 2 

Sensitivity             0.9940  0.62651  0.74549 

Specificity             0.8289  0.99550  0.99286 

Pos Pred Value          0.9919  0.68122  0.76543 

Neg Pred Value          0.8671  0.99427  0.99205 

Prevalence              0.9545  0.01513  0.03032 

Detection Rate          0.9488  0.00948  0.02261 

Detection Prevalence    0.9566  0.01392  0.02953 

Balanced Accuracy       0.9114  0.81100  0.86917 

Micro F1:  0.980858  

Macro F1:  0.8003196 

 



Model 3: MSC Classifier 

Confusion Matrix and Statistics 

          Reference 

Prediction    -1     1     2 

        -1 15605    45    72 

        1     32   160    55 

        2     71    44   372 

 

                     Class: -1 Class: 1 Class: 2 

Sensitivity             0.9934 0.642570  0.74549 

Specificity             0.8436 0.994632  0.99279 

Pos Pred Value          0.9926 0.647773  0.76386 

Neg Pred Value          0.8597 0.994509  0.99205 

Prevalence              0.9545 0.015131  0.03032 

Detection Rate          0.9483 0.009723  0.02261 

Detection Prevalence    0.9554 0.015010  0.02959 

Micro F1:  0.980615  

Macro F1:  0.7975752 


