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1 Flowchart of FALCON@home

Figure S1: Flowchart of FALCON@home protein structure prediction server.
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2 TBM module

In the TBM module, we first calculated the common structural frameworks,
and then aligned the query protein against the common structural frame-
works. The details of TBM module are described as below.

2.1 Identification of common framework shared by ho-

mologous proteins

For each template with known structure, all of its homologous proteins were
first identified based on sequence and structure similarity. Then, an integer
linear program was designed to identify the common framework shared by
these homologous proteins. The constraints of the integer linear program
guarantee the common framework to be conservative with respect to struc-
ture and sequence [1].

Figure S2 shows the common framework identified for protein 1b7y A as
an example. In general, a common framework consists of a set of dispersed
conserved segments. The sequence profiles, profile hidden Markov models
(HMM) of these segments, as well as the lengths of the gaps between neigh-
boring segments, are stored for further fold recognition and alignment steps.

Figure S2: Common framework (in red and purple) shared by protein 1b7y A

and its homologous proteins.

2.2 Alignment of the query protein against the com-

mon frameworks

We aligned a given query protein sequence against the identified common
frameworks to avoid vague alignments rooted in the structurally variable
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segments of templates. Specifically, using profile HMMs as a generative
model, the probability of the query protein generated from a certain common
framework was first calculated. The probability consists of two parts, i.e.,
the probability that the conserved segments generate the matched segments
in query protein and the probability that gaps in the framework generates
unmatched segments in query proteins. The common frameworks with high
probability were kept for final model generation.

After recognizing the likely folds by searching against the common frame-
works, the full-length alignments were generated via aligning the query se-
quence against identified templates using TreeThreader [2, 3]. The final
structural models were generated by MODELLER [4] and selected according
to the dDFIRE [5] energy function.
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3 FALCON ab initio module

FALCON [6] is an ab initio prediction approach that generates models from
the very beginning following an iterative strategy. To be specific, FALCON
uses Cosinemodel to describe the local bias of torsion angle pair (φ, ψ) of each
residue. A position specific HMM is used to capture the dependencies among
local biases of adjacent residues, based on carefully selected fragments. The
Fragment-HMM is used to sample a sequence of torsion angle pairs for the
given protein sequence. ROSETTA energy function is used to evaluate the
generated decoys, and to direct the sampling process to the better decoys.
The generated decoys are fed back to produce more accurate estimations
of local structural biases, a more accurate Fragment-HMM and thus, better
decoys. This step is executed iteratively to increase the quality of the final
decoys, until convergence.

In addition, we have tuned the weight of each ROSETTA energy item
when generating the model [7] and ranked the models according to the com-
bined energy scores of dDFIRE [5] and ROSETTA [8].
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4 The performance of FALCON@home and

HHsearch+Modeller in CASP11 evaluation

We registered a total of four servers in the CASP11 competition. Among
these servers, the FALCON TOPO server is equivalent to FALCON@home
(ranked 12th over TBM domains and 16th over FM domains according
to the Assessors’ formula). Another server, called FALCON EnvFold, is
an enhanced version of FALCON@home—besides the sequence information
used in FALCON@home, local structural information is also employed to
build query-template alignment in FALCON EnvFold. In CASP11, FAL-
CON EnvFold was ranked 9th over TBM category according to GDT TS
measure. Notice that the CASP11 website lists only the overall performance
of each participating server, which states that FALCON TOPO was ranked
12th and HHpredA was ranked 17th over the 81 TBM domains. For the sake
of detailed performance comparison, we listed the prediction model quality
for each query protein individually. In particular, we first downloaded from
CASP11 website the models predicted by FALCON TOPO and HHpredA;
then we run TM-score to calculate GDT TS of each predicted model. Over
the total of 105 TBM and FM domains, FALCON TOPO showed compara-
ble performance with HHpredA, and outperformed HHpredA when GDT TS
is over 0.6.

The comparison is summarized in Fig. S3, Tables S1 and S2.
FALCON TOPO server also shows the advantage in remote homologue

identification. Take the target T0678 as an example; the challenge was to de-
termine how to align the three N-terminal strands. Using the pre-calculated
common frameworks, the FALCON@home successfully identified the most
similar template as 4gt6 A and finally generated a high-quality prediction
model with a TM-score [9] of 0.84 to the native structure (Fig. S4).
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Figure S3: Comparison of FALCON TOPO with HHpredA using the
GDT TS measure over 105 CASP11 domains. Over the total of 105 CASP 11
domains, FALCON TOPO showed comparable performance with HHpredA,
and outperformed HHpredA when GDT TS is over 0.6.
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Domain HHpredA FALCON TOPO

T0759-D1 0.9191 0.9853

T0759-D2 0.3750 0.3750

T0760-D1 0.7400 0.6928

T0761-D1 0.2358 0.2443

T0761-D2 0.1792 0.2434

T0762-D1 0.8473 0.8259

T0763-D1 0.1365 0.1500

T0764-D1 0.7578 0.7438

T0765-D1 0.4408 0.3421

T0766-D1 0.6736 0.9444

T0767-D1 0.2039 0.3618

T0767-D2 0.1458 0.1819

T0768-D1 0.4003 0.7815

T0769-D1 0.5851 0.5928

T0770-D1 0.6848 0.6003

T0771-D1 0.1738 0.1374

T0772-D1 0.6472 0.6367

T0773-D1 0.6045 0.6903

T0774-D1 0.4474 0.4197

T0776-D1 0.8037 0.8185

T0777-D1 0.0928 0.1181

T0780-D1 0.7237 0.7237

T0780-D2 0.6198 0.5547

T0781-D1 0.1150 0.1262

T0781-D2 0.3729 0.1757

T0782-D1 0.6750 0.6227

T0783-D1 0.7675 0.6667

T0783-D2 0.1635 0.4135

T0784-D1 0.8680 0.8760

T0785-D1 0.1786 0.1518

T0786-D1 0.6452 0.6463

T0789-D1 0.2028 0.1626

T0789-D2 0.1508 0.2063

T0790-D1 0.2352 0.2111

T0790-D2 0.1692 0.2058

T0791-D1 0.1594 0.1628

T0791-D2 0.1630 0.1866

T0792-D1 0.6667 0.6474

T0794-D1 0.6866 0.6068

T0794-D2 0.0901 0.1512

T0796-D1 0.4645 0.4130

T0800-D1 0.4080 0.3337

T0801-D1 0.8514 0.8444

T0803-D1 0.4291 0.4030

T0805-D1 0.7475 0.7183

T0806-D1 0.1084 0.0908

T0807-D1 0.7951 0.8313

T0808-D1 0.5458 0.1679

T0808-D2 0.0743 0.1013

T0810-D1 0.1394 0.2478

T0810-D2 0.6956 0.6567

Table S1: Comparison FALCON TOPO and HHpredA using the GDT TS
measures over CASP11 targets (Part I, from T0759 to T0810)
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Domain HHpredA FALCON TOPO

T0811-D1 0.8845 0.9044

T0812-D1 0.3324 0.3874

T0813-D1 0.7740 0.7922

T0814-D1 0.1350 0.1697

T0814-D2 0.1358 0.1401

T0814-D3 0.4062 0.3368

T0815-D1 0.8396 0.8750

T0816-D1 0.3125 0.3456

T0817-D1 0.8453 0.7811

T0817-D2 0.7905 0.7798

T0818-D1 0.3974 0.3153

T0819-D1 0.7909 0.8215

T0820-D1 0.2861 0.2917

T0820-D2 0.6250 0.5972

T0821-D1 0.5255 0.6137

T0822-D1 0.4627 0.4276

T0823-D1 0.5634 0.5833

T0824-D1 0.2407 0.2222

T0827-D1 0.3951 0.1969

T0827-D2 0.2917 0.1950

T0829-D1 0.4590 0.5187

T0830-D1 0.3483 0.4059

T0830-D2 0.1779 0.2230

T0831-D1 0.3742 0.2258

T0831-D2 0.1510 0.1396

T0832-D1 0.1400 0.1687

T0833-D1 0.7083 0.5764

T0834-D1 0.2576 0.1919

T0834-D2 0.2907 0.2442

T0835-D1 0.4202 0.4678

T0836-D1 0.1324 0.2169

T0837-D1 0.2293 0.2169

T0838-D1 0.5337 0.4345

T0840-D1 0.6368 0.9027

T0840-D2 0.5734 0.2989

T0841-D1 0.8712 0.9145

T0843-D1 0.7730 0.7852

T0845-D1 0.5825 0.5438

T0845-D2 0.4977 0.5334

T0847-D1 0.6908 0.7219

T0848-D1 0.2844 0.4982

T0848-D2 0.2923 0.1503

T0849-D1 0.5604 0.6091

T0851-D1 0.7483 0.7610

T0852-D1 0.7115 0.7201

T0852-D2 0.5198 0.3373

T0853-D1 0.5296 0.5164

T0853-D2 0.3090 0.3021

T0854-D1 0.9186 0.8920

T0854-D2 0.7214 0.7036

T0855-D1 0.2174 0.2109

T0856-D1 0.7500 0.7893

T0857-D1 0.3125 0.4896

T0858-D1 0.7656 0.7806

Table S2: Comparison FALCON TOPO and HHpredA using the GDT TS
measures over CASP11 targets (Part II, from T0811 to T0858)
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Figure S4: (a) Native structure of TBM protein T0768. (b) Prediction model
of T0768 by FALCON TOPO with a TM-score=0.84 compared with the
native structure.
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5 Comparision of FALCON@home with HH-

search+Modeller over 1263 PDB70 domains

Besides the CASP11 targets, we also compared FALCON@home against
HHsearch+Modeller over a collection of 1263 PDB70 proteins whose na-
tive structures were released after the CASP11 evaluation. The 1263 PDB70
proteins were selected from all proteins with newly-released structures by fil-
tering out the proteins that are too short (length < 50) or multiple-domains.
The list of the 1263 proteins can be downloaded from the following website:
http://protein.ict.ac.cn/FALCON/testset-1263proteins.tgz.

To avoid the overlap between query proteins and the template databases,
both FALCON@home and HHsearch were executed over the template databases
built before the CASP11 evaluation. Over these proteins, FALCON@home
exhibited an average GDT TS score of 0.68, which is slightly higher than HH-
search+Modeller (0.66). However, FALCON@home is more efficient: it took
∼23 hours for FALCON@home to make predictions for the 1263 proteins,
while HHsearch+Modeller used ∼74 hours.

The comparison is graphically shown in Fig. S5.
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Figure S5: Comparison of FALCON@home with HHsearch+Modeller us-
ing the GDT TS measure over 1263 PDB70 domains with native structures
released after the CASP11 evaluation. Over the 1263 PDB70 proteins, FAL-
CON@home exhibited an average GDT TS score of 0.68, which is slightly
higher than HHsearch+Modeller (0.66).
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