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Figure S1  Structural basis for apoA-I binding to HDL surface: comparison with SAA. ApoA-I, 

which is the major protein on normal HDL, is partially replaced with SAA on acute-phase HDL. The 

apoA-I sequence is comprised of 11/22-mer tandem helical repeats punctuated by Pro. Pro-induced 

helical kinks (shown by arrows) confer the overall molecular curvature that is commensurate with 

the HDL diameter. X-ray crystal structure of the C-terminally truncated human lipid-free apoA-I, 

(185-243)apoA-I (PDB ID 3R2P) [1] is shown for one molecule from the crystallographic dimer. 

The highly dynamic hydrophobic C-terminal tail 185-243 (not shown) was truncated to augment 

crystallization. In the crystal, 1-184 fragment of lipid-free apoA-I dimerizes to form a semi-circular 

four-helix bundle; three helices come from molecule 1 of the dimer and the fourth from molecule 2 

(not shown). The dimer two-fold axis is indicated. Upon HDL binding, two N-terminal helical 

segments (in dark blue and teal) rotate around the flexible hinge away from the other apoA-I helices 

(circular arrow), thereby opening the four-helix bundle to expose the apolar helical faces to the lipid 

surface. The resulting pairs of helices wrap around the HDL perimeter in an antiparallel “double-

belt” conformation [2]. A similar mode of protein-lipid surface binding was inferred for other 

apolipoproteins. It is distinctly different from the proposed binding mode of SAA monomer to HDL, 

in which the relative orientation of helices 1 and 3 is similar to that observed in the crystal structures 

of lipid-free SAA (illustrated at the bottom, PDB ID 4IP8).  
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Figure S2  Alpha-helical propensity of selected SAA proteins obtained by using the ExPASy 

server with Levitt’s algorithm [3]. Other methods (e. g. Deleage and Roux, [4]) yielded similar 

profiles. Secondary structural elements observed by x-ray crystallography in lipid-free oligomeric 

hSAA1.1 and mSAA3 are shown at the bottom: rectangles – -helices; lines – non-helical structure. 

 

 

 

 

 

 

 

 

 

        Figure S3  Specific interactions between conserved residues near the h1-h3 helical junction 

which contribute to the relative packing of these helices at an ~45 angle. A part of hSAA1.1 

structure (PDP ID 4IP8) that encompasses h1, h2-h3 linker and h3 is shown. Main chains of the 

strictly conserved Gly, Ala and Pro groups that facilitate close helical spacing are color-coded to 

show A10, G13, G48, P49, G50, G51, A54, and A55. Main chains of A10 and G50 are packed 

unusually close to each other, with only a 3.6Å distance between A10 C and G50 C, a 3.6Å 

distance between A10 N and G50 C, and a 4.0 Å distance between A10 C and G50 C.  

Selected side chains involved in h1-h3 packing in this region are shown. Their interactions 

include aromatic stacking (F6 – W53), a salt bridge (D16 – R47), and an H-bond (COO- of E9 to 

the main chain N of G50). All these residues are highly conserved in the SAA family (Fig. 2). 
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Figure S4 Space-filling model of murine SAA3.3 (PDB ID 4Q5G) showing surface hydrophobicity.  
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