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Supplementary information 

Proteins and buffers. The FokI protein was purified was purified from an over-producing strain of E-coli. 
DNA binding experiments were performed in a 20mM Tris-acetatie (pH 7.8), 50 mM potassium acetate, 
2 mM CaCl2 and I mM DTT buffer. Experiments on naked DNA were conducted in PBS. 

The analytical model. To determine the exerted force on tethered molecules it is important to 
understand the motion of the system. Apart from translational Brownian motion the microspheres also 
experiences rotational Brownian motion causing them to swivel around the attachment point as shown 
schematically for one dimension in Supplementary Fig. 2a,b. Existing force calibration methods for 
tethered microspheres, which are used for instance for MT, are not directly applicable to our system. 
Microsphere rotation is neglected in these models because of the fixed alignment of the paramagnetic 
microsphere with the external magnetic field1. Neglected microsphere rotation leads to an 
underestimation of the applied force (Supplementary Fig. 3). We therefore derived a power spectrum 
for the microspheres motion parallel to the surface using the Langevin equation for both the translation 
as the rotation2,3: 

𝑚𝑑𝑣�⃗
𝑑𝑡

= 𝐹⃗𝑏𝑟𝑜𝑤𝑛(𝑡) − 𝛾⃗ ∙ 𝑣⃗(𝑡) + 𝐹⃗𝑒𝑥𝑡(𝑡)    

    𝐼 𝑑𝜔���⃗
𝑑𝑡

= 𝑇�⃗𝑏𝑟𝑜𝑤𝑛(𝑡) − 𝛽 ∙ 𝜔��⃗ (𝑡) + 𝑇�⃗ 𝑒𝑥𝑡(𝑡) ,  (5) 

where  𝑣⃗ and 𝜔��⃗  are respectively the translational and angular velocity, 𝑚 is the particle mass and 𝐼 is the 
moment of inertia of the particle. The forces due to the laser, the tether, the surface, buoyancy and 



gravity are included in the external force term 𝐹⃗𝑒𝑥𝑡 and are described in detail bellow. Equations (5) 
account for the increased viscous drag near the surface, using Faxen’s law for both the translation and 

rotation coefficients  𝛾⃗ and 𝛽 (see section surface effects, equations (12)).  The external torque 𝑇�⃗ 𝑒𝑥𝑡 
results from the cross product of the vector between the microsphere center and the DNA attachment 

point 𝑅�⃗  and the DNA force 𝐹⃗𝐷𝑁𝐴 (Supplementary Fig. 2b).  𝐹⃗𝑏𝑟𝑜𝑤𝑛 and 𝑇�⃗𝑏𝑟𝑜𝑤𝑛 are the fluctuating 
thermal force and torque. The amplitude of these terms are described by the fluctuation-dissipation 
theorem and are Gaussian distributed with the following statistical properties4: 

〈𝐹𝑏𝑟𝑜𝑤𝑛(𝑡)〉 = 0  
〈𝑇𝑏𝑟𝑜𝑤𝑛(𝑡)〉 = 0  

〈𝐹𝑏𝑟𝑜𝑤𝑛(𝑡′)𝐹𝑏𝑟𝑜𝑤𝑛(𝑡′ + 𝑡)〉 = 2𝛾𝑘𝐵𝑇𝛿(𝑡)  

〈𝑇𝑏𝑟𝑜𝑤𝑛(𝑡′)𝑇𝑏𝑟𝑜𝑤𝑛(𝑡′ + 𝑡)〉 = 2𝛽𝑘𝐵𝑇𝛿(𝑡). (6) 

With 𝛿(𝑡) the Dirac delta function. The inertial terms in equations .5) are neglected since the Reynolds 
number is sufficiently low. For microspheres in the micro range the Reynolds number is in the order of 
1 ∙ 10−3 at room temperature (Supplementary Table 1). 

To simplify calculations we assume a laser force 𝐹𝑙𝑎𝑠𝑒𝑟 ≫ 𝐹𝑏𝑟𝑜𝑤𝑛, leading to small angles of 𝜃, 𝛼, 𝜑, 𝛽 
and 𝜉 (Supplementary Fig. 2a,b). The DNA-microsphere system is in equilibrium when the DNA and 

vector 𝑅�⃗  are aligned with the z axis. If the system is pulled out of equilibrium due to Brownian 
fluctuations the DNA and the laser force will tend to force the microsphere back into equilibrium:    

𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔,𝑥 = 𝐹𝐷𝑁𝐴 ∙ 𝑠𝑖𝑛𝜃  

𝑇𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔,𝑦 = |𝑅| ∙ |𝐹𝐷𝑁𝐴| ∙ 𝑠𝑖𝑛𝛽.  (7) 

Assuming that |𝐹𝐷𝑁𝐴| = |𝐹𝑙𝑎𝑠𝑒𝑟| (for 𝜃 ≪1), |𝜑| + 𝛼 + 𝜉 ≪ 1 and 𝑥𝑐𝑚 = 𝑥𝐷𝑁𝐴 + 𝑅𝜑 (see 
Supplementary Figure 2a,b we derive the following linearized versions of equations (7): 

𝛽 = 𝜋 − (𝛼 + 𝜑) − 𝜉 

𝛼 = tan−1
𝑥𝑐𝑚
𝑧

≈
𝑥𝑐𝑚
𝑧

 

(𝑧 − 𝑅) 𝜉 ≈ 𝑅(𝛼 + 𝜑) → 𝜉 ≈
𝑅𝛼
𝑧 − 𝑅

+
𝑅|𝜑|
𝑧 − 𝑅

≈
𝑅𝑥𝑐𝑚
𝑧2 − 𝑧𝑅

+
𝑅|𝜑|
𝑧 − 𝑅

 

𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔,𝑥 = 𝐹𝑙𝑎𝑠𝑒𝑟 ∙
𝑥𝐷𝑁𝐴
𝑧−𝑅

= 𝐹𝑙𝑎𝑠𝑒𝑟 ∙
𝑥𝑐−𝑅𝜑
𝑧−𝑅

   

𝑇𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 = |𝑅| ∙ |𝐹𝑙𝑎𝑠𝑒𝑟| ∙ 𝑠𝑖𝑛(𝜋 − |𝜑| − 𝛼 − 𝜉) = |𝑅| ∙ |𝐹𝑙𝑎𝑠𝑒𝑟| ∙ 𝑠𝑖𝑛(|𝜑| + 𝛼 + 𝜉)   

 = |𝑅| ∙ |𝐹𝑙𝑎𝑠𝑒𝑟| ∙ �|𝜑| + 𝑥𝑐𝑚
𝑧

+ 𝑅𝑥𝑐𝑚
𝑧2−𝑧𝑅

+ 𝑅|𝜑|
𝑧−𝑅

�.   (8) 

See Supplementary Figure 2c how they compare to the non-linearized force and torque (using the 
numerical simulations described below). To calculate the power spectrum of equations (5) we 



implement the linearized restoring force and torque as the external force and torque in these equations 

and calculate the Fourier transform, with 𝑥�(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡∞
−∞ . Note that surface, buoyancy and 

gravity forces are neglected: 

𝐹�𝑏𝑟𝑜𝑤𝑛 = 𝑖𝜔𝛾𝑥�𝑐𝑚 − 𝐹𝑙𝑎𝑠𝑒𝑟
𝑧−𝑅

(𝑥�𝑐𝑚 − 𝑅𝜑�)   

𝑇�𝑏𝑟𝑜𝑤𝑛 = 𝑖𝜔𝛽𝜑� − 𝑅𝐹𝑙𝑎𝑠𝑒𝑟 �|𝜑�| + 𝑥�𝑐𝑚
𝑧

+ 𝑅𝑥�𝑐𝑚
𝑧2−𝑧𝑅

+ 𝑅|𝜑� |�

𝑧−𝑅
�.   (9) 

From these equations we derive the power spectrum 𝑃(𝑓) ≡ 〈𝑥�𝑐𝑚𝑥�𝑐𝑚∗ 〉, with the frequency 𝑓 ( ∗ 

denotes the complex conjugate), using the relations 〈𝐹�𝑏𝑟𝑜𝑤𝑛2 〉 = 2𝛾𝑘𝐵𝑇 and 〈𝑇�𝑏𝑟𝑜𝑤𝑛2 〉 = 2𝛽𝑘𝐵𝑇: 

𝑃(𝑓) = 2𝑘𝑏𝑇
�𝛽+𝛾〈𝑧〉2�𝑅2𝐹2+(〈𝑧〉−𝑅)2𝛽2𝛾(2𝜋𝑓)2

�(𝑅−〈𝑧〉)𝛽𝛾(2𝜋𝑓)2+𝑅𝐹2�
2+(2(𝑅𝛾〈𝑧〉−𝛽)𝐹𝜋𝑓)2

.   (10) 

Note that the equation (10) reduces to the power spectrum of magnetic tweezers when  𝛽 = 0 
(neglecting rotation) is implemented (equation 4).  

Numerical simulations. To validate the assumptions made in the derivation of the analytical power 
spectrum we also simulated microsphere movement. The microsphere equation of translation and 
rotation was solved numerically using the following equations: 

𝑥⃗𝑛+1 = 𝑥⃗𝑛 + 𝛾⃗−1 ∙ �𝐹⃗𝑒𝑥𝑡 + 𝐹⃗𝑏𝑟𝑜𝑤𝑛�Δ𝑡   

𝜑�⃗ 𝑛+1 = 𝜑�⃗ 𝑛 + 𝛽−1 ∙ �𝑇�⃗ 𝑒𝑥𝑡 + 𝑇�⃗𝑏𝑟𝑜𝑤𝑛�Δ𝑡,  (11) 

where 𝑥⃗𝑛 and 𝑥⃗𝑛+1 is the microspheres three dimensional position at the step 𝑛 and 𝑛 + 1 of the 
simulation respectively. 𝜑�⃗ 𝑛 and 𝜑�⃗ 𝑛+1 denote the microspheres orientation. In order to simulate the 
microspheres trajectory we implemented an initial microsphere position and rotation, after which 
successive positions and rotations were calculated using equations (11). The Brownian force and torque 
terms were drawn from Gaussian distributions that suffice equations (6) where the Dirac delta 
distribution was set to 𝛿(𝑡) = 1/Δ𝑡, with Δ𝑡 the time step of the simulation for which we typically used 

10−5s. Decreasing Δ𝑡 did not affect the statistical properties (such as the RMS, correlation time and 
power spectra) of the simulated traces.  

Surface effects. Equations (5) account for the increased viscous drag near the surface, using Faxen’s law 
for both the translation and rotation coefficients for the parallel and perpendicular direction relative to 
the surface5: 

𝛾𝑥 = 𝛾𝑦 =
𝛾0
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𝛽𝑥 = 𝛽𝑦 =
𝛽0

1 − 1
8 �
𝑅
𝑧�

3 

𝛽𝑧 = 𝛽0
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3
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256�

𝑅
𝑧�

6  (12) 

where 𝛾0 and 𝛽0 are respectively the translational and rotational drag coefficients in bulk and are 
defined as 𝛾0 = 6𝜋𝜂𝑅 and 𝛽0 = 8𝜋𝜂𝑅3 , with 𝑅 is the microspheres radius and 𝑧 is the microsphere 
center-surface separation in the axial direction and 𝜂 representing the dynamic viscosity. 

External forces. The external forces that are implemented in our numerical simulation are the laser 

force 𝐹⃗𝑙𝑎𝑠𝑒𝑟, the force of the DNA 𝐹⃗𝐷𝑁𝐴, the force of the surface 𝐹⃗𝑠𝑢𝑟𝑓𝑎𝑐𝑒, the buoyancy force 𝐹⃗𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 

and the gravitational force 𝐹⃗𝑔𝑟𝑎𝑣𝑖𝑡𝑦. The laser force is implemented as a constant force in z direction and 

is set manually: 

𝐹⃗𝑙𝑎𝑠𝑒𝑟 = 𝐹𝑙𝑎𝑠𝑒𝑟𝑧̂  (13) 

The force of the DNA is calculated with the extensible worm like chain model6: 

𝐹⃗𝐷𝑁𝐴 = −�𝑘𝐵𝑇
𝐿𝑝
� �1

4
�1 − 𝑎�⃗

𝐿𝑐
+ 𝐹⃗𝐷𝑁𝐴

𝑆
�
−2
− 1

4
+ 𝑎�⃗

𝐿𝑐
− 𝐹⃗𝐷𝑁𝐴

𝑆
� , (14) 

with 𝐿𝑝, 𝐿𝑐 and 𝑆  respectively the persistence length,  the contour length and the stretch modules of 

DNA (Supplementary Table 1). The vector 𝑎⃗ = (𝑥𝐷𝑁𝐴, 𝑦𝐷𝑁𝐴, 𝑧𝐷𝑁𝐴) points from the DNA-surface 
attachment point towards the DNA-microsphere attachment point. The surface force results from the 
electrostatic interaction between microsphere and surface7: 

𝐹⃗𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 4𝜋𝜖𝑊𝜖0𝜓02𝑅𝑒−(𝑧−𝑅)/𝑙𝑧̂ ,  (15) 

with 𝜖𝑊 and 𝜖0 respectively the permittivity of water and vacuum, 𝜓0 the effective surface potential, 𝑅 
the microsphere radius, 𝑧 the axial distance between surface and microsphere center and 𝑙 the Debye 
screening length. The buoyancy and gravity forces are implemented as follows: 

𝐹⃗𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 + 𝐹⃗𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 4
3
𝜋𝑅3𝑔(𝜌𝑚𝑒𝑑 − 𝜌𝑏𝑒𝑎𝑑)𝑧̂, (16) 

with  𝑔 the gravitational constant, 𝜌𝑚𝑒𝑑 the density of water and 𝜌𝑏𝑒𝑎𝑑 the density of the microsphere. 
See the supplementary information for the parameters used. 

Mie calculations. Radiation pressure exerted on a spherical particle by a beam of light is calculated using 
Mie theory8. The laser force is expressed in terms of the extinction coefficient 𝐶𝑒𝑥𝑡, the scattering cross 
section 𝐶𝑠𝑐𝑎 and the average cosine of the scattering angles 〈𝑐𝑜𝑠𝜃〉: 

𝐹𝑙𝑎𝑠𝑒𝑟 = 𝑛𝑚𝐼
𝑐

(𝐶𝑒𝑥𝑡 − 𝐶𝑠𝑐𝑎〈𝑐𝑜𝑠𝜃〉 ),  (17) 



with 𝑛𝑚 the refractive index of the surrounding medium, 𝐼 the laser intensity and 𝑐 the speed of light. 
𝐶𝑒𝑥𝑡, 𝐶𝑠𝑐𝑎 and 〈𝑐𝑜𝑠𝜃〉 are expressed by: 

𝐶𝑠𝑐𝑎 = 2
𝑥2
∑ (2𝑛 + 1)(|𝑎𝑛|2 + |𝑏𝑛|2)∞
𝑛=1 ,  

𝐶𝑒𝑥𝑡 = 2
𝑥2
∑ (2𝑛 + 1)𝑅𝑒∞
𝑛=1 {𝑎𝑛 + 𝑏𝑛},  

〈𝑐𝑜𝑠𝜃〉 = 4𝜋𝑅2

𝑥2𝐶𝑠𝑐𝑎
∑ �𝑛(𝑛+2)

𝑛+1
𝑅𝑒{𝑎𝑛𝑎𝑛+1∗ + 𝑏𝑛𝑏𝑛+1∗ } + 2𝑛+1

𝑛(𝑛+1)𝑅𝑒{𝑎𝑛𝑏𝑛∗}� ,∞
𝑛=1  (18) 

where 𝑥 = 2𝜋𝑅/𝜆, 𝑅 is the particle radius, 𝜆 is the wavelength of the light in the surrounding medium 
and the asterisk denotes complex conjugation. 𝑎𝑛 and 𝑏𝑛are classical Mie coefficients depending on the 
particle size and material. The calculation of these coefficients is done according to Bohren et al8. See 
the Supplementary Table 1 for the material parameters. 

Once  𝑎𝑛 and 𝑏𝑛 are calculated the equation above are used to derive the laser force acting on the 
particles numerically. To decrease computation times, the summations are terminated after 𝑛𝑚𝑎𝑥=𝑥 +
4𝑥1/3 + 2. This amount a terms has proven to be sufficient to calculate 𝑎𝑛 and 𝑏𝑛 correctly8. 

Loading rates. Laser powers and therefore the laser forces on the microspheres can be altered with a 
frequency in the 100Mhz regime using AOMs.  The tension of the DNA will respond much slower due to 
the viscous drag of the microsphere. To calculate the response time of the system the following 
equation of motion for the microsphere is solved (inertia is neglected): 

𝐹𝑙𝑎𝑠𝑒𝑟(𝑡) − 𝛾𝑥̇(𝑡) − 𝑘𝑥(𝑡) = 0,  (19) 

with 𝑥̇ the time derivative of the position 𝑥 and 𝑘 the stiffness of the DNA.  If we assume that both the 
laser force and the stiffness of the DNA are constant, the solution of the equation of motion is 

(𝑡) = 𝐹𝑙𝑎𝑠𝑒𝑟
𝑘

�1 − 𝑒−
𝑘
𝛾𝑡� . The response time of the system is thus proportional to 

𝛾
𝑘

. Supplementary 

Figure 7a shows that the typical switching time lies in the order of 100 μs for 4μm microsphere in 
diameter and a DNA stiffness of 2,000 𝑝𝑁 𝜇𝑚⁄  (enthalpic regime of DNA with 𝐿𝑐=0.5 μm). Linear force 
ramps exerted on the DNA can be achieved below the response time of the system if a linearly 
increasing laser force is applied with an initial offset (Supplementary Fig. 7b). The initial laser offset that 
should be applied to create a linear loading rate on the DNA is proportional to the height of the loading 
rate. This limits the force range for high loading rates. Supplementary Figure 7b shows that it is possible 
to apply a loading rate of 106 𝑝𝑁 ⁄ 𝑠 over 50 % of the total force range. This range increases to 95 % for 

a loading rate of 105 𝑝𝑁 ⁄ 𝑠. The smallest achievable loading rate using OP is limited by the laser power 
stability, which typically fluctuates 1 % over 4 hours (IPG laser spec. sheet). To achieve a loading rate 
that is linear within an accuracy of 10 %, the loading rate should at least be ten times larger than the 

rate of the laser power fluctuations. This results in a minimal loading rate of 
𝐹𝑙𝑎𝑠𝑒𝑟,𝑚𝑎𝑥
1440𝑠

~3 ∙ 10−2 𝑝𝑁 ⁄ 𝑠 

for a maximum loading force of 40 pN. The power fluctuations of the laser can be reduced using a 
feedback loop to control the laser power. Laser intensity stabilizers can attenuate the noise by a factor 



of 400.9 This decreases the minimum force ramp to  ~1 ∙ 10−4 𝑝𝑁 ⁄ 𝑠 for a maximum loading force of 
40 pN. 

Force calibration using RMS motion. To calibrate the forces on the small beads (𝜙 440 nm) in the 
entropic regime (<0.1 pN) we used our numerical simulations (see Figure 3c). To determine the 

calibration factor we calculated the root mean square difference (𝑅𝑀𝑆𝐷 = �∑ (𝑅𝑀𝑆𝑚𝑒𝑎𝑠−𝑅𝑀𝑆𝑠𝑖𝑚)2𝑁
𝑁

) 

between the simulated and measured data points as a function of calibration factor (see Supplementary 
Figure 11) 

Sample heating. Since a high intensity laser is used to apply forces in the sample, it is important to 
quantify any potentially harmful heating effects. It has been shown that in an optical tweezers 
experiment, where the light (100mW at 1064nm) is tightly focused, there is a small temperature 
increase of approximately 0.8 K in the focus, which does not damage the biological sample10.  The laser 
powers used in the Optical Pushing instrument is two orders of magnitude higher (up to 15W), but the 
laser beam is not focused in the sample. Therefore it is of interest to calculate the heating, using the 
theoretical model that is derived by Peterman et al. 10  and applying it to a collimated beam. 

Laser induced heating is mainly determined by the heating of the buffer in the sample and has a 
maximum in the center of the flow cell. A solvent’s ability to absorb a plane wave of light with intensity 𝐼 
travelling in the x-direction through the solvent is determined by its extinction coefficient 𝛾, which is 
translated to the heat per volume, 𝑄, generated per time in the solvent: 

 ( ) 0
xI x I e γ−= , (19) 

 
dQ dI I
dt dx

γ= − = . (20) 

This generated heat will be dissipated by a heat flow 𝐽 that is calculated using the local differential 
equation: 

 ( ) ( )( )J r C T r= − ∇ ∆
 

, (21) 

 where 𝐶 is the thermal conductivity of the solvent and Δ𝑇(𝑟) is the temperature deviation from 
ambient temperature due to heating at position 𝑟. In a steady state solution the heat generated is in 
equilibrium with the amount of heat dissipated:  ∇𝐽 = 𝑑𝑄 𝑑𝑡⁄ , leading to (using equations (20) and(21)): 

 ( )( ) ( )2 T r I r
C
γ

∇ ∆ = −
 

. (22) 

Solving equation 22 for 𝑟 = 0 will give the temperature increase in the center of the laser beam. To 
solve equation 22 the Green’s function is used that satisfies: 

 ( ) ( )2 3, ' , 'G r r r rδ∇ =
   

, (23) 

with 𝛿 the Dirac delta function. Setting the argument 𝑟′ to zero and implementing the boundary 
condition of 𝐺 = 0 at a radial distance 𝑆 leads to: 



 ( ) 1 1 1 .
4

G r
r Sπ

 = − − 
 

 (24) 

This boundary condition represents the quartz surface that is present at a distance 𝑆 and acts as a heat 
sink. To calculate the maximum temperature in the center of the flow cell, an 𝑆 of 50 μm is taken into 
account. In terms of 𝐺(𝑟), the solution of equation (22) at the center of the laser beam is: 

 ( ) ( ) ( )0T G r I r dV
C
γ ∆ = − 

 ∫ . (25) 

Setting 𝑑𝑉 = 𝑟2𝑑𝑟𝑑Ω and implementing 𝐺(𝑟) and 𝐼(𝑟), leads to: 
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<
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   ∫ ∫ , (26) 

where 𝐼𝑡𝑜𝑡 is the total laser intensity and 𝛽 = 𝐹𝑊𝐻𝑀/2√2𝑙𝑛2. This integral is solved numerically, which 
results in a heating of approximately 0.72 K at the center of the flow chamber when the following 
parameters are implemented: 𝛼 = 14.2m−1 (extinction coefficient of water), 𝐶 = 0.6 W/mK (thermal 
conductivity of water) and 𝐼𝑡𝑜𝑡 = 1 W. Note that the temperature increase at the assay, which is close to 
the surface, is less due to the high thermal conductivity of quartz  
 
 

 

Parameter Variable Value  
(for 1𝜇𝑚 polystyrene microsphere 
at 21℃) 

Viscosity  of medium 𝜂  1.00 mPa s 
Refractive index medium at 1070 nm 𝑛𝑚𝑒𝑑  1.32 + 10−6𝑖  
Refractive index polystyrene at 1070 nm 𝑛𝑝𝑜𝑙𝑦  1.58 + 0𝑖  
Refractive index melamine at 1070 nm 𝑛𝑚𝑒𝑙  1.68 + 0𝑖  
Refractive index titania at 1070 nm 𝑛𝑡𝑖𝑡  2.50 + 0𝑖  
Refractive index gold at 1070 nm 𝑛𝑔𝑜𝑙𝑑  0.27 + 7.15𝑖  
Density polystyrene 𝜌𝑝𝑜𝑙𝑦  1.05 g c𝑚−3 

Density melamine 𝜌𝑚𝑒𝑙  1.57 g c𝑚−3 
Density titania 𝜌𝑡𝑖𝑡  4.23 g c𝑚−3 
Density gold 𝜌𝑔𝑜𝑙𝑑  19.3 g c𝑚−3 

Viscous drag of microsphere 𝛾 = 6𝜋𝑅𝜂  9.42 pN s 𝜇𝑚−1 
Average thermal microsphere velocity 𝜐𝑡ℎ = �𝑘𝐵𝑇/𝑚  2.71 mm 𝑠−1 

Reynolds number 𝑅𝑒 = 𝑅𝜐𝑡ℎ𝜌/𝜂  1.4 ⋅ 10−3  
Absolute permittivity of water 𝜖0𝜖𝑊 70.832 ∙ 10−13 Fm−1 
Effective surface potential 𝜓0 5 mV 
Debye screening length 𝑙 10 nm 



Persistence length of DNA 𝐿𝑝  50 nm 

Stretch modulus of DNA 𝑆 1500 pN 

Supplementary Table 1: parameters used for calculations. 

 

Supplementary figures 

 

Supplementary Figure 1  |  Relative height determination of a microsphere using a look up 
table (LUT). a.  Images of the microsphere (inset) are converted to a radial profile. Radial 
profiles of 6 images are averaged and binned over 100 nm. The radial profile is measured 
as a function of the microsphere height, using the piezo stage to control the height. (b) 
Stack of radial profiles as a function of the relative microsphere height. During a 
measurement the microspheres radial profile is compared to the radial profiles in the LUT 
to obtain the microspheres height. c.  To determine the accuracy of our microsphere 



tracking in z (at 25 Hz) we measured the height of a stuck microsphere (2.1 um diameter) 
that is moved up and down in a sinusoidal manner using the piezo stage. The standard 
deviation of the residues from the sinusoidal fit of the height data is 4 nm, which is the 
accuracy we achieve in z. d.  The residues in the x- and y-dimension, determined in the 
same way as in c but moving the piezo stage in respectively x and y. In both these 
dimensions  we achieve an accuracy of approximately 2nm (at 25 Hz).  

 

Supplementary Figure 2 |  Schematic overview of a DNA tether pushed out of its 
equilibrium position by the Brownian force. a. The displacement due to the Brownian 
motion leads to a small angle θ, giving rise to a restoring force. Note that there is also a 
difference between the observed center of the microsphere and the real attachment point 
of the DNA. b. The displacement and rotation of the microsphere (φ) lead to a different 
anchor point position of the DNA and to a restoring torque acting on the center of the 
microsphere. The angles α, β, ξ  are introduced to assist the calculations. c. Comparison of 
the restoring torque and force for the linearized (red) and full model (black). The 
residuals (blue) are symmetrical and have a standard deviation of 0.01 pN and 26 pN·nm 
for the force and torque respectively. d.  Power spectra of the simulated data sets and 
plots  of the analytical model using the same parameters (𝜙 4.26 µm, 1.1 kbp DNA). The 
spectra from top to bottom are simulated and calculated using applied forces of 0 pN, 0.5 



pN, 1 pN, 10 pN, 60 pN for the spectra from top to bottom. The spectrum and plot in the 
absence of force is given in blue for reference.    



 

Supplementary Figure 3  |  Calculated power spectra of the Daldrop et al.,  Velthuis et al. 
and the model used in the paper for for a microsphere that is 3 µm in diameter, a DNA 
molecule with a contour length of 0.3 µm and an exerted force of 10 pN. The graph shows 
good agreement between the model used in the paper and the Daldrop model. The power 
spectrum calculated with the Velthuis model differs significantly below the cut of 
frequency. 

 

  



 

Supplementary Figure 4  |  The measured force profile within a field of view on the camera. 
This plot is acquired by measuring the force on the same bead at 25 different locations 
within the field of view using the same laser power. The profile has a FWHM of 74 ± 9 nm 
(using a 2D Gaussian fit).  



 

Supplementary Figure 5  | The calculated optical pushing force for different materials 
using Mie theory (gravity force is substracted). In general materials with a higher 
refractive index experience a bigger force using the same intensity. Calculations were 
performed for particles in the center of a 1064nm, 100µm FWHM  and 8W laser. 

  



 

Supplementary Figure 6  | a. Raw data traces of the X (black) and Y (red) position of 
a tethered microsphere (𝜙 440 nm) in the absence (top) and presence (bottom) of 
the FokI restriction enzyme under a constant force of ~10 fN. If FokI is present, 
looping behavior is observed resulting in smaller bead motion in both dimensions. 
b.  Root mean square (RMS) traces (2s time window) of simultaneous measured 
microspheres under constant force of ~ 10 fN, show clear looping behavior (indicated by 
the dashed lines) in the presence of the FokI restriction enzyme. The length of the DNA in 
the unlooped state is 180 nm and I the looped state 115 nm. 

  



 

Supplementary Figure 7  |  The calculated volume exclusion force of a tethered 
microsphere (𝜙 440 nm) as a function of DNA contour length1 1. This plot shows that the 
volume exclusion force decreases less than 10 fN going from looped to unlooped state.  

  



 

Supplementary Figure 8  |  Calculated free energy change ∆𝐺 at different forces for both 
the uncorrected and corrected forces (volume exclusion force taken into account). The 
linear fit is used to determine the standard free energy change 𝛥𝐺0. 

  



 

Supplementary Figure 9  |  a. Force response on the DNA (𝐿𝑐 = 400𝑛𝑚) if 40pN is applied 
instantaneously on the microsphere (𝜙 4.26𝜇𝑚). The response time of the system is ~ 
100µs. b.  It is possible to achieve a linear force response on the DNA if an initial offset is 
applied to the force ramp of the laser. Note that a higher ramp results in a lower 
maximum force on the DNA. 

  



 

Supplementary Figure 10  |  a. Power spectra of the Magnetic Tweezer (MT) model (same 
as Velthuis et al mode in Supplementary Figure 3) and the Optical Pushing (OP) model 
(same as Sitters et al. model in Supplementary Figure 3) calculated for a microsphere that 
is 3 µm in diameter, a DNA with a contour length of 0.3 µm and a exerted force of 10 pN. 
The graph shows that the microspheres fluctuations are higher at lower frequencies if 
microsphere rotation is taken into account, leading to a higher plateau in the power 
spectrum for the OP case. b. Fitting power spectra of simulated data (acquired from 
trajectories of 600s) shows the MT model clearly underestimates the applied force, 
whereas the OP model predicts the forces accurately. c. The error of the fitted force 
(using 10pN) for simulated microsphere trajectories using the MT and the OP model. For 
microsphere-tether systems with 𝐿𝑐 𝑅⁄ < 2 the OP model is clearly able to fit applied 
forces more accurately than the MT model.  

  



 

Supplementary Figure 11 |  The root mean squared error (RMSE) as a function of force 
calibration factor for the small beads (𝜙 440 nm). The minimum error corresponds to a 
calibration factor of 10.6 fN/W. 
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