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Supplementary material

A Appendix 1: Integrating the global intracellular impedance
in models

In this appendix, we relate the impedance z(m)
e in the generalized cable, to the impedance

measurements reported in the present paper. In the generalized cable (Bedard and
Destexhe, 2013), the extracellular impedance was modeled by parameter z(m)

e . Starting
from the expression of the extracellular impedance,

Ze =
z
(m)
e

Asoma

=
z
(m)
e

4πR2
soma

(A.1)

and condisering a single-compartment model, according to Eq. 13, we can write

z(m)
e ≈ AsomaZe = Asoma[Zeq(ω)− Rm

1 + iωτm
] . (A.2)

Thus, by assuming a typical somatic membrane area, we can estimate Ze, and thus
also estimate z(m)

e . The other parameters, Rm, τm, Zeq, can also be estimated from the
present measurements.

B Appendix 2: Establishing the linearity of the system

In this Appendix, we explain how to determine the linearity of the system, in temporal
and frequency space.

B.1 Linearity in Fourier frequency space

In the Fourier frequency domain, the experiments show that the ratio ∆V (ω) / Ig(ω)
is a bounded function for variations around the resting membrane potential. In these
conditions, a sinusoid in current gives a sinusoid voltage with the same frequency, and
with no additional peak in the spectrum. This is true for relatively small variations (a
few millivolts), keeping the membrane far away from spike threshold. As shown in
Fig. 1D, a combination of sine-wave currents generates a voltage power spectrum with
peaks at the same position in frequency, and where no additional peak or harmonics
appear. We can say that in this case, the membrane potential of the neuron is linear in
Fourier frequency space. This implies that each component of this system in this space
is also linear, and in particular, the V-I relation of ion channels in the membrane are lin-
ear, because the membrane capacitance is approximately constant (White, 1970). This
is an expression of Ohm’s law, in which the ion channels are equivalent to a resistor,
with no voltage-dependent effects (see Section B.2).
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To demonstrate this, we note that the ratio between V and Ig is a continuous bounded
function in Fourier frequency space, with the constraint V (0) = g(ω, 0) = 0 for ω 6= 0
(the latter condition means that the neuron is at rest when the transmembrane current
is zero). In these conditions, we have

V (ω) = g(ω, Ig(ω)) . (B.1)

We can develop g in Taylor series relative to the current, because the domain of def-
inition of g is necessarily compact in experimental situations. Consequently, we can
write:

∆V (ω) = V (ω)− V (0) = ∂g
∂Ig

(ω, 0)Ig(ω) + 1
2!

∂2g
∂Ig2

(ω, 0)Ig2(ω) + · · ·

= b1(ω)Ig(ω) + b2(ω)Ig2(ω) + · · · .

(B.2)

The impedance is then given by:

Z(ω) =
∆V (ω)

Ig(ω)
= b1(ω) + b2(ω)Ig(ω) + · · · . (B.3)

We can see that, if the spectrum I(ω) is a discrete Fourier spectrum composed of Dirac
delta functions, then Z(ω) cannot be a bounded function when bn 6= 0 for n > 1. Thus,
we obtain

∆V ω = b1(ω)Ig(ω) (B.4)

when the ratio V (ω)/Ig(ω) is a bounded function. In other words, the system is nec-
essarily linear in Frequency space because the V-I relation does not depend on the
current amplitude. Note that this independence is only true in the absence of voltage-
dependent conductances, so it can apply to the subthreshold range, near the resting
membrane potential. Such a linear dependence also implies that the position of spec-
tral lines is necessarily identical between V (ω) and Ig(ω).

B.2 Linearity of traditional V-I curves

We now address the question of whether the V-I relation of ion channels is linear when
these channels are linear in Fourier frequency space, and vice-versa.

In general, for a membrane containing ion channels, we have:

V = f(I) , (B.5)

with V = f(0)= cst for zero current (resting membrane potential).

We can approximate V as precise as we want using a polynomial of the current,
because V is necessarily a continuous function of this variable since the electric field
is finite ( ~E = −∇V ). This is by virtue of the Stone-Weierstrass theorem (Rudin, 1976),
which states that every continuous function defined over a closed and bounded do-
main, can be approximated as close as we want by a polynomial. Thus, for a given
population of ion channels, we can write

∆V (t) = V (t)− V (0) = a1I + a2I
2 + · · · . (B.6)

If we express I as I(t) = eiωt, we obtain

∆V (t) = a1e
iωt + a2e

2iωt + · · · (B.7)
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such that the Fourier transform of the variations of V around V (0) generally gives a
spectrum very different from that of the current. Indeed, applying the Fourier trans-
form gives

∆V (ω) = a1 δ(ω
′ − ω) + a2 δ(ω

′ − 2ω) + · · · (B.8)

Thus, it is necessary that ∀n > 1 we have an = 0 if we want that the position of the
spectral lines of ∆V (ω) is the same as that of I(ω).

Moreover, it is evident that if the function f is linear, then the position of the spectral
lines of ∆V (ω) is the same as that of I(ω).

Thus, the linearity in Fourier frequency space implies linearity of the V-I relation of
the ion channels activated in the range of V where V = f(I). The linearity in Fourier
frequency space constitutes a full condition of linearity, because the V-I relation can be
more complex, for example V = f(ω, I).
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