
1 
 

Supporting Material 

A Simple Model of Multivalent Adhesion 

and Its Application to Influenza Infection 

Derivation of Eqs. 16–18 

We present here the outline of the derivation of Eqs. 16–18.  These equations estimate the 

affinity of adhesion mediated by a range of different receptors, each with a different binding 

affinity to the ligand.  Suppose that there are  receptors of type 1,2, … ,  with binding free 

energy ∆ ln ≡ ln eff .  We can write down the grand canonical partition 

function of the system as 
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Following the derivation of Eqs. 1 and 2 in the text, we obtain the equilibrium condition 
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and the probability of breaking all connections (i.e., 0	∀ ) 
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Defining ≡ ∑ , and taking the continuous limit by replacing the summation with the 

integral, we obtain Eqs. 16 and 17. 
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From Eq. S2, we have 

 1 eff , 1,2, …, (S4) 

Summing over , and taking the continuous limit, we obtain Eq. 18 in the text. 

Derivation of Eqs. 31 and 32  

We derive here Eqs. 31 and 32, which account for the cooperativity in the binding of SA 

molecules to monomers within a HA trimer.  If the binding of k = 1,2,3 SA molecules to the 

same HA trimer corresponds to the free energy change of ∆Gk, the partition function of the 

system is 
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where HA
	 	  is the number of ways to choose nk HA trimers to bind k = 1,2,3 SA molecules, 

3  accounts for the number of ways of choosing k monomers out of each HA trimer, and 

n = n1 + 2n2 + 3n3 is the total number of SA molecules bound to HA.  HA  = NHA / 3 is the total 

number of HA trimers. 

As before, we approximate Z with the largest term in the summand, which is given by  

 HA SA exp ∆
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 HA SA exp ∆ 1 

 HA SA SA exp ∆
 

 HA SA exp ∆ 1 

 HA SA SA SA exp ∆
 

 HA SA exp ∆ 1. (S6) 

The largest term thus corresponds to the equilibrium numbers of HA trimers bound to 1, 2, or 3 

SA molecules, satisfying 

 HA SA exp ∆
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The probability of breaking all connections (i.e., n1 = n2 = n3 = 0), is  
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Eqs. S7 and S8 are Eqs. 32 and 31 in the text. 

Derivation of Eqs. 33 and 34  

We outline here the derivation of Eqs. 33 and 34, which describe the inhibition of adhesion when 

there is cooperativity in the binding of SA molecules to different monomers within a HA trimer. 

Denoting mi as the number of HA trimers that have i = 0,1,2,3 inhibitors bound, and nij as the 

number HA trimers that have i inhibitors and j SA molecules bound, we can write the partition 

function of the system as 
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In Eq. S9, we assume that the inhibitors are in excess of the HA, such that the solution 

concentration of inhibitor [I] does not change with {mi}, and we assume that the affinity of 
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inhibitor-HA binding does not depend on the presence or absence of other inhibitor-HA or SA-

HA complexes. 

The largest term in the summand corresponds to the equilibrium condition 

 3 ∑
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and the probability of breaking all HA-SA connections (i.e., nij = 0 for j > 0), is 
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The last line is the result of replacing Z by the largest term in the summand, applying the Stirling 

approximation, and substituting in the equilibrium condition in Eq. S10.  Eqs. S10 and S11 are 

Eqs. 34 and 33 in the text. 
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Adhesion of influenza virus to a cell population with variable numbers of 

receptors 

Different cells have different SA densities on their surfaces, and thus different numbers of 

receptors at the interface.  Here we analyze the effect of this variability on adhesion.  Assuming 

that the expression and surface presentation of each individual receptor molecule is independent 

of other receptor molecules on the surface of a cell, the number of receptors at the interface in a 

cell population follows the Poisson distribution: 

 exp / !, (S12) 

where  is the average number of interface receptors in the cell population.  The viral 

concentration bound to cells with NR number of receptors, [CV](NR), satisfies 

 ,ad cell ,ad . (S13) 

The total fraction of viral particles bound to cells is thus given by 

 
∑

	∑
1

cell ∑ ,ad
. (S14) 

Typically, KD,ad
−1(NR) increases rapidly with NR around , while χ(NR) decreases rapidly with 

	 	 , and their product sharply peaks at a maximum near ,max	 	 .  The summation 

over NR in Eq. S14 can thus be well approximated by the term χ(NR,max)KD,ad
−1(NR,max), and 

Eq. S14 then reduces to Eq. 19, but with [cell] scaled by χ(NR,max).  This suggests that the 

conclusions drawn for adhesion to an individual cell remain largely unchanged for adhesion to a 

population of cells with variable receptor densities. 

To explore the quantitative difference resulting from the variability in NR, we computed the 

KD,max that corresponds to the HA-SA affinity at which half of the viral particles are bound (see 
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the discussion on the viable range of binding affinity in the main text), assuming the value 

SA (in Table 1), and assuming the other parameter values in Table 1.  Solving Eq. S14 for 

KD with f = 0.5 yields KD,max = 10.5 mM, which is essentially the same as the value obtained for 

adhesion to cells with a uniform number of receptors (see main text). 


