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Note: Residue positions in all figures are listed alpha-numerically with the protein chain
(A, B, and G for the a-, - and 7-subunits, respectively), followed by the position number
according to the PDB file, and a single-letter code for the wild-type amino acid. Histidine
states may be singly protonated at d- or e-nitrogens and are listed with lower-case ‘d’ (or Ho)
and ‘e’ (or He), respectively; when it is doubly protonated, we indicate this with lower-case
‘p’ or with H+.
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1 Overview of computational protocol

A molecular dynamics simulation was performed on Ga;i 172, and protein conformations
were taken from 50-ns intervals over a 350-ns trajectory; a total of 40 snapshots were used in
our analysis (5 conformations from each interval,) as shown in Fig. S1. Every position in a
given protein conformation is mutated to each of the naturally occurring amino acids, except
proline and glycine, and the rotamers that are incompatible with a low-energy conformation
for a given sequence are discarded. From the remaining rotamer choices, the global minimum
energy conformation and additional structures within a designated energy cutoff from it are
identified. We have chosen a 30-kcal/mol cutoff for this, and have found that over 90% of
all possible single-site mutations satisfy this constraint.

2 Neutral mutations defined by energetic landscape

Neutral mutations, those that neither worsen nor improve fitness, were defined based on
the distribution of AAG,q and AAGy,q on the energy landscape, after referencing to
the wild-type sequence; the proportion of mutant sequences was highest around the origin,
suggesting that most mutations have a neutral effect. Sequences simultaneously sharing
AAG o4 and AAGyipg within a designated energy cutoff, €., were removed from the data
set (e.g. |AAG o] < cur and [AAGing| < €eut) (Fig. S2). The proportion of remaining
sequences was calculated for various energy cutoffs, and compared. At the 1.5-kcal/mol
cutoff, a significant reduction in sequence space is observed, and thus taken as the energetic
cutoff for defining neutrality (Fig. S3).

3 Effective temperature for DEE/A*

A Boltzmann-weighted average was computed for each mutation over all 40 snapshots, and
an effective temperature for the distribution is necessary to rescale computed results so
that the values could better reflect energetic changes due to conformational entropy. A
number of temperatures were tested to gauge the compatibility between structures found
and their computed energies; we focused on energetic changes after mutation at salt-bridges
and hydrogen bonds to set a baseline (Fig. S4).

Most hydrogen bonds, involving nitrogen and oxygen, are expected to have ~2-7
kcal/mol each, and we used this as a guideline to compare our calculations for specific
mutations at different temperatures (Tables S1-S3). Our goal was to identify a temperature
at which the loss or gain of hydrogen bonds would fall within the 2-7 kcal /mol interval, and
the lowest energy that achieves this is at 4500K.
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Flexible rotamers based on amino-acid type and
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Repeat for multiple backbone structures.

Figure S1: (Main-text figure 1b.) Representative protein backbones are mutated system-
atically until low-energy sequences within ., and their corresponding conformations are
found.
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Figure S3: The proportion of sequences remaining after removing neutral sequences,
defined by different e.,;, is shown.
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GaASP20

Figure S4: Temperature for effective energy was based on well-established intermolecular
interactions: (a) doubly-bonded salt bridge, GaD20-GSR52, (b) singly-bonded salt bridge,
GaE216-GPK57, and (c) a hydrogen-bond network between GSR68-GSE83-GST86

GaGLU216 GBTHR86

Table S1: (AAGy,q) in kcal/mol for select mutations at GaD20-GSR52 salt bridge.

Temp. (K) | GaD20A  GaD20E  GaD20N  GaD20Q | GGR52A  GpR5H2K
300 | -1.5+£0.2 -131+£20 -48=x07 -72£09|52£10 0.0=x0.0

1500 | -0.2 £0.1 -104+10 -29+£04 -56=£05|18£04 13x0.1

3000 | 2101 -67+£05 04+02 -26+03]22+02 1.8£0.1

4500 | 33 £01 -46+03 19+02 -11+£02]24+£01 20=£0.1

6000 | 40+02 -35+£03 27+£02 -03£02|26=x£01 22+0.1

9000 | 4902 -244+£02 36%+£02 07x02 2701 25=£0.1
300,000 | 7.7 03 0303 63*x03 33+£03 [30=x£01 32=x0.1

Table S2: (AAGhing) in keal/mol for select mutations at GaE216-GSK57 salt bridge.

Temp. (K) | Ga E216A Ga E216D Ga E216N  Ga E216Q | GB K57TA  Gp K57R
300 20£+£03 -26+04 87414 -76+11|-80%+13 -102+£1.6

1500 | 1.2+03 -074x01 -454+07 -70%x05 |-80x13 -102+1.6

3000 | 1.1 £0.2 1.3+£01 -154+£03 -50+£02 |-79+£13 -100+£1.6

4500 | 1.9 £ 0.1 23+£01 -02+02 42402 |-64+11 -78=+1.3

6000 | 2.4 £ 0.1 2.8 £ 0.1 05+02 -38+£011]-31+£08 -44+09

9000 | 2.9 £0.1 3.3 0.1 12+01 -33£01]23+04 -03+04
300,000 | 3.9 £ 0.1 44 + 0.1 24+01 -254+01 1| 80=£0.1 46 £ 0.2
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Table S3: (AAGnq) for select mutations in the hydrogen-bond network

Temp. (K) GS R68A GS R68K
300 93+ 1.3 -29+04
1500 3.7+04 -1.4 + 0.3
3000 3.1 +0.2 -0.1 £0.2
4500 3.2+ 0.2 0.6 £0.1
6000 3.3 £ 0.2 1.0 £0.1
9000 3.4+ 0.2 1.4 +£0.1
300,000 3.8+ 0.1 2.3 +£0.1
GGDS3A  GADS3E  GADSIN  GA DS3Q
300 -5.3£0.9 -1.5+£0.2 -4.3 £ 0.7 -5.3 £ 0.8
1500 -4.3 £ 0.6 2.8 £ 0.3 -3.2+04 -3.1£0.6
3000 -1.8 £ 0.3 4.2 +£0.2 -1.4 4+ 0.3 -1.0 £ 0.3
4500 -0.1 £0.2 4.8 £0.2 0.0 &£ 0.2 0.3 +£0.2
6000 0.8 £ 0.2 5.1 0.2 0.9+ 0.1 1.0 £ 0.2
9000 1.8 £0.1 5.7 & 0.2 1.9 £0.1 1.9+£0.2
300,000 3.5+ 0.2 7.1 4+ 0.2 4.0 £ 0.2 3.8 £ 0.2
G T86A Gf T86S Gp T86C
300 -3.1 £0.5 -21+£0.3 -3.0 £ 0.3
1500 -1.1£0.2 -0.5 £ 0.1 -22+0.2
3000 0.3 +£0.1 0.1 £0.1 -0.9 £0.1
4500 0.9 +£0.1 0.3 £0.1 -0.3 £ 0.1
6000 1.2 £0.1 0.5 £0.1 0.0+ 0.1
9000 1.5 £0.1 0.8 £0.1 0.4 £0.1
300,000 25+ 0.1 1.9+ 0.1 1.4 £0.1
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4 Complete mutation profiles for Ga; 517

For each mutant sequence, the energetic difference relative to wild type is computed over
an ensemble of states using backbone structures from the 40 chosen conformations, and an
effective temperature of 4500 K was used to compute a Boltzmann-weighted average over
them for each sequence. Energy profiles for each subunit of the heterotrimer were compiled
to identify regions of high and low mutational sensitivity. These energetic changes due to
mutation are shown with secondary structure for:

o Stability ((AAG/u4)) of Gar in context of a complete heterotrimer (Fig. S5).

e Stability ((AAGhina)) of fy-heterodimer in context of a complete heterotrimer
(Fig. S6).

e Binding interactions ((AAGhing)) of Ga to fy-heterodimer (Fig. S7).

e Binding interactions ((AAGyng)) of 57 to the a subunit (Fig. S8).

e Residues involved in binding that show significant energetic variation (Fig. S9).
e Maximum of either stability or binding in each Ga mutant (Fig. S10).

e Maximum of either stability or binding in each 7-heterodimer mutant (Fig. S11).
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Figure S9: Most positions show no change in binding energy after mutation. (a) Here,
the subset of positions with noticeable energetic variation are shown. (b) Structurally, these
positions correspond well with the switch II region and amino terminus of Ga, both of which
are known to bind with the S~-heterodimer. Residues involved in binding according to (a)
are shown in blue or red, superimposed onto the light blue-gray and light red subunits of
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5 Completeness of computational sampling

Sufficiency of sample size. Including additional backbone conformations for performing
DEE/A* is expected to improve the accuracy of our sampling, and these data can show
how mutations behave consistently over an ensemble of structures. To determine whether
or not a sufficient number of representations were used in our analysis, we considered the
average energy difference between sequential subsets of intervals. Only the energy data for
stability are considered in this analysis, since variance in binding energy is naturally low due
to a small number of positions actually involved in binding. From our data, we defined the
following subsets of conformations (Table S4):

Table S4: Structures are listed in intervals according to nanosecond in simulation.

A: [1,5]

B: [1,5] U [48,52]

C: [1,5] U [48,52] U [98,102]

D: [1,5] U [48,52] U [98,102] U [148,152]

E: [1,5] U [48,52] U [98,102] U [148,152] U [198, 202]

F: [1,5] U [48,52] U [98,102] U [148,152] U [198, 202] U [248, 252]

G: [1,5] U [48,52] U [98,102] U [148,152] U [198, 202] U [248, 252] U [298, 302]

H: [1,5] U [48,52] U [98,102] U [148,152] U [198, 202] U [248, 252] U [298, 302] U [346, 350]

The average energy of each sequence was computed for each subset, and we measured
how this average energy will change from one subset to another, in alphabetical order by
taking the absolute difference between corresponding sequences: [(A) — (B)|, [(B) — (C)]|,
|(C) — (D)|, and so forth. The difference in energy variation as the number of structural
ensembles increased was partitioned into 1-kcal/mol bins, and the distribution of variance
across them is measured to summarize how sampling improves the consistency of our ener-
getic data (Fig. S12). We found that including additional snapshots could dramatically
reduce the number of outliers in our protein sequence space. In practice, eliminating out-
liers entirely might not be possible, if flexible regions exist in the protein being studied; it is
expected that highly flexible proteins will require more structural conformations for analysis.

Selection of rotamer library. We were interested in seeing how well the augmented
Dunbrack—Karplus library (£10° to each y;- and xo-angle) performed by taking DEE/A*
results from a single backbone conformation, and applying a Newton—Rhapson energy min-
imization algorithm to it (Fig. S15). Due to the large energetic calculations and number
of residues involved in stability, our analysis only focused on changes in AAG t,4. As indi-
cated in the main text, approximately 14% of the sequences were found to be unfavorable in
one approach and favorable in the other. Unfavorable states remained unfavorable in about
60% of the sequences, while favorable sequences remained favorable in approximately 20%
of the data. This indicates that only about 7% of over 6000 sequences could be improved
in a meaningful way using energy minimization. Discrepancies in energy calculations tend
to arise with the aromatic amino acids, or the charged ones (Fig. S17). Most of the ener-
getic improvements that arise from off-rotamer sampling are very modest: the majority of
energy differences between the two methods were within 5 kcal/mol of each other, prior to
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any adjustment with effective temperature (Fig. S16). Furthermore, minimization of the
wild-type structure also contributed to energetic discrepancies between the two methods of

calculation, by lowering the energy of the reference state.
(@) Distribution of Average Absolute Energy Differences in Ga
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1 e
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Figure S12: The proportion of data at [0,1)-, [1,2)-, [2,3)-, [3,4)-, [4,5)-kcal/mol or > 5-
kecal/mol as the number of conformations included in sampling increases (see Table S4) is
shown. Sequences for Ga and the fvy-heterodimer show similar patterns in convergence, as
the number of conformations used to represent an ensemble of states increases.
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Difference between <AAG;sy 4> for 35— and 40—snapshot data sets (a—subunit)
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Performance of Energy Minimization on DEE/A* Results
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Figure S15: A Newton—Rhapson algorithm was used to perform energy minimization on
all DEE/A* structures for one snapshot, to compare the two methods in searching rotamers.
The energy landscape is divided into four quadrants to illustrate regions in which energetic
improvements can and cannot be achieved when one approach is chosen instead of the other.
Red lines indicate where y = z, and boundaries that are —10, —5, 5 and 10 kcal/mol from
it are shown in dotted red lines.
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Figure S16: Energy difference between the two protocols was computed for each sequence,
and a cumulative distribution of all mutant sequences from a single conformation is shown
here, based on this computed difference. Colors correspond to the different quadrants defined
previously in Fig. S15, and gray lines indicate a difference of —5, 0 or 5 kcal/mol for visual
reference.
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Outlier Mutant Sequences
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Figure S17: Outlier sequences, those having a 20-kcal/mol difference or greater between
the two energy calculation methods, for the four quadrants (defined in Fig. S15) are shown
and reveal underlying substitutions that yield the greatest discrepancy in (a). An example
of a B-sheet with specific side-chain packing requirements that consistently favor wild type
is shown in (b).
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6 Reflecting evolutionary fitness pressures using
DEE/A* approach

Determining frequency of substitution, e;;. Similarity matrices traditionally compute
scores as half-bit units. In general, the observed frequencies of amino acid ¢ converted into
amino acid j, e;;, is computed, and compared with the expected probabilities of finding
each amino acid naturally (p; and p;, respectively.) The score, S;;, reflects how closely
the observed and theoretical (expected) probability are to each other by taking their ratio

(Eq. 1):
€ij
Pip;j

For computing e;;, the number of sequences found to satisfy the 1.5 kcal/mol energetic
cutoff for both structural stability and binding interactions simultaneously was counted, for
each (7, j)-pair of amino acids, and this number was normalized by the total number of
sequences satisfying this evolutionary pressure. Meanwhile, the distribution of wild-type
amino acids in Ga;1 8172 was used to compute independent probabilities, p; and p; (Fig.
S18). Unlike the standard similarity matrices, wild type and the mutant amino acid that
it transitions to is clearly defined in DEE/A*  and thus (i, 7)- and (j,¢)-pairs are unique;
these differences cannot be distinguished in PAM and BLOSUM, and so DEE/A* yields a
non-symmetric matrix instead.

By taking wild type as the probability distribution of each amino acid found in
G;a10172 (e.g. the p; and p; terms) we convert PAM and BLOSUM scores into the ap-
propriate e;; terms with these as theoretical probabilities. By rearrangement, the expected
frequency of substitution can be expressed as a function of these independent probabilities
and the score given by the similarity matrix, (Eq. 2).

Sij = 2[092 (Eq 1)

€;i 1
loga—2 = =Sy,
DiPj 277

Correlation between DEE/A* with PAM and BLOSUM) A strong correlation exists
between the expected values from DEE/A* and those derived starting from PAM or BLO-
SUM scores. To start, we looked at protein fitness as the sum of structural stability and
binding interactions, at different proportions, and found that a uniform contribution from
both aspects of fitness optimizes the correlation between the two different approaches of
computing e;;, regardless of the similarity matrix being used for comparison, Fig. S19 and
Fig. S20. The exact contribution of each term to overall fitness, of course, cannot be deter-
mined; regardless of the defined proportions, the comparison between DEE/A* with these
similarities matrices outperforms randomly generated data, either from drawing random val-
ues within the boundaries of PAM and BLOSUM scores or by shuffling the entries of each
respective similarity matrix. Computations are very quick for these random samples, and we
have found from 250, 500 and 1000 trials that the Pearson’s correlation coefficient remains
unchanged (Fig. S22, and Table S5). The influence of permuting PAM120 or BLOSUM62
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Distribution of Amino Acids in Heterotrimer

(QV)
—

M a-subunit
B PBy-heterodimer

Percentage of Positions

S IS>oQ0ouLz>xuwux-—nkFEFAQ-AL
Wildtype Amino Acid

Figure S18: Distribution of wild type amino acids in Gay; 81792 are normalized and used to
provide theoretical probabilities for assessing DEE/A* performance.

118 is shown by comparing the correlation between the chosen original matrix and the permuted
119 wversion; a total of 250, 500 and 1000 trials were performed, and the correlation between these
120 two sets of matrices is consistent (p® ~ 0.7 or 0.8 for PAM120 and BLOSUM62, respectively.)
121 Furthermore, while some correlation between DEE/A* and the permuted matrices exist, this
122 relationship is strongest when the (4, 7) pairs are clearly identified, suggesting that DEE/A*
123 can discriminate between amino acids well (Fig. S21).
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PAM120 vs. DEE/A* with various weights to fitness
a=0,B=1 a=0.1,3=0.9 0=0.2,3=0.8

logio(ej) (PAM120)

No. of States

-8 -6 -4 -2 0

0
logso(ej) DEE/A* (AAAGtg +BAAGng)

Figure S19: Different proportions of stability and binding were used to define the energetic
criteria for survival. Correlation between the expected rate of substitution of amino acid @
with j, e;;, is compared between PAM120 and DEE/A* data. Pearson’s correlation coefficient
and the slope of the least-squares fit are included. The best-fit line is shown in black.
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BLOSUMG62 vs. DEE/A* with various weights to fithess
a=0,B=1 a=0.1,3=0.9 0=0.2,3=0.8

logio(e;) (BLOSUMG2)

No. of States

p? =0.72
m =1.24
I

I
-8 -6 -4 -2 0

0
log;o(ej) DEE/A* (0AAGg +BAAGng)

Figure S20: Starting with BLOSUMG62 scores, the expected frequency of finding amino acid
i replacing j, e;;, was calculated with DEE/A* data, for different combinations of energy
contribution from stability and binding interactions. Analogous values were computed from
BLOSUMG62, so that the two sets of substitution rates can be compared. Pearson’s correlation
coefficient as well as the slope of the least-squares fit is shown for each; the best-fit line is
also drawn.
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Comparing different scoring metrics with DEE/A* results
(@  only Stability (b)  only Binding (©)  Evenly Weighted

-2

logio(ej) (Specified Matrix)

No. of States
|
-4

Ioglo(eij) DEE/A* (O.S*AAGfO|d +0-5*AAGbind)

Figure S21: Assuming a uniform contribution from stability and binding, expected fre-
quencies of substitution, e;;, were compared to (from left to right) scores: (a) account-
ing only for stability; (b) accounting only for binding; (c¢) in which stability and bind-
ing are evenly weighted (50-50); (d) generated from a uniform distribution, bounded by
max(BLOSUMG62, PAM120) (e) permuted BLOSUM62 matrix; (f) permuted PAM120 ma-
trix; (g) original BLOSUMG62 matrix; and (h) original PAM120 matrix.



Au and Green, 2015 — Direct Calculation of Fitness Landscapes

Evaluation of Correlation Coefficients
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Figure S22: The Pearson’s correlation coefficient between DEE/A* data (with 50-50 dis-
tribution between stability and binding interactions) and permuted matrix from either a
random distribution (white), PAM120 (gray) or BLOSUM62 (light gray) was computed for
samples of size n = 250,500 and 1000. Distributions are generally consistent within each
family of distributions. Dotted lines indicate the correlation measured between the original
PAM120 (gray) or BLOSUMG62 (light gray) with DEE/A* based on a 50-50 contribution
from each aspect of fitness, as seen in Fig. S19 and Fig. S20. Solid, indigo lines indicate
the correlation between either PAM120 or BLOSUMG62 with the permuted version of itself.

Table S5: Average Pearson’s correlation coefficient between DEE/A* and randomly gener-
ated data for various sample sizes. Number of samples given by n.

Randomized matrix n = 250 n = 500 n = 1000

Uniform distribution 0.18 £0.03 0.18 = 0.04 0.18 £0.04
PAM120 values 0.40 +0.03 0.40 £0.03 0.40 £0.03
BLOSUMG62 values 0.57 +£0.02 0.56 £0.02 0.57 £0.02
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Table S6: Average Pearson’s correlation coefficient between original similarity matrix and
the permuted version. Number of samples given by n.

Similarity matrix n = 250 n = 500 n = 1000
PAM120 0.27£0.03 0.28 +0.03 0.28 +0.03
BLOSUMG62 0.46 +0.03 0.47 +0.03 0.47 +0.03

7 Comparisons with established experimental data

Alanine scan of Ga. A full-scale alanine scan was performed by Sun, et al. for Ga in
which thermal stability was measured relative to wild type (AT,,) for all single mutants. The
corresponding alanine mutations from our DEE/A* were used for comparison to these data.
In our analysis, a positive outcome was defined as a mutation that was destabilizing relative
to wild type (AAG o4 > +1.5 keal/mol), which would suggest that native interactions were
important for structural stability. We quantified the proportion of

e true positives (AAGyq > 1.5 keal/mol & AT, < —2°C)
o true negatives (AAG poq < 1.5 keal/mol & AT, > —2°C)
o false positives (AAG foq > 1.5 keal/mol & AT, < —2°C) and
o false negatives (AAG yq < 1.5 keal/mol & AT, > —2°C)

The relationship between thermal stability and our DEE/A* calculations is illustrated
in Figure S23, and we report additional statistics in Table S7. To provide a basis for
comparing these proportions, the mutation free energy for DEE/A* and thermal stability
were randomized for a total of 5000 independent trials, then compared again to measure
the proportion of different outcomes (Table S7 & Fig. S24). We found that the observed
number of correctly identified outcomes (true positives and true negatives) were consistently
higher than expected, and that the proportion of incorrect predictions (false positives and
false negatives) were consequently much lower. These results were further quantified in terms
of sensitivity and specificity (Table S8), and we found that sensitivity was much higher than
the randomized energy data. Here, there is a natural trade-off with specificity, which was
found to be relatively lower in comparison to the shuffled energy values.
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Comparison of Alanine Mutations
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Figure S23: The energetic difference between each wild-type residue and corresponding
alanine mutation in the stability of Ga—GDP are shown here. The thermal stability (AT},)
between alanine mutations and wild type measured by Sun, et al. were used for comparison
with the alanine mutants from our DEE/A* computations for structural stability. The red
vertical lines correspond to —2°C', the threshold used by Sun, et al. to indicate that native
interactions were important in stabilizing Ga—GDP, while the red horizontal line is the cutoff
used in our calculations to indicate that a substitution is unfavorable relative to the wild-type
residue. These red lines are used to define the four different quadrants, and the percentage
in each region is shown in red text within parentheses. (See also Fig. S7.)

Table S7: Correlation between alanine mutants for DEE/A* calculations and thermal sta-
bility data measured by Sun, et al. was quantified by the proportions of true positives,
false positives, true negatives and false negatives. The sensitivity and specificity of our
computational approach were also calculated. (See also Fig. S23.)

DEE/A* calculations

AAG o4 > +1.5 keal/mol | AAG fpq < 1.5 keal/mol

[ AT, < 2°C 18.0% (n = 59) 14.4% (n = 47)
Thermal Stability |37 =506 16.5% (n = 54) 195% (n = 162)
Sensitivity: Specificity:

0.52 0.78
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Table S8: After randomizing the DEE/A* alanine mutants, the proportion of true positives,
false positives, false negatives and true negatives were measured. The reported values are
the average and standard deviations for each category after 5000 independent calculations.
The sensitivity and specificity have also been measured. (See also Fig. S24.)

DEE/A* calculations (randomized)

AAG pq > +1.5 keal/mol

AAG yq < 1.5 kecal/mol

Population Proportion

[ AT, < _—2°C 11.0 £ 1.2% 914+ 1.9%

Thermal Stability 7 ——55~ 931+ 1.2% 28L1.2%
Sensitivity: Specificity:

0.32 + 0.04 0.67 & 0.02

Performance of DEE/A* Alanine Mutants
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Figure S24: The proportions of different true positive, true negative, false positive and false
negative outcomes were calculated, and the distribution of these values from randomized data
are shown using box-and-whiskers for each outcome type. Red X’s are included to represent
the computed values of each category from the initial comparison of DEE/A* and thermal

stability.
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Oncogenic point mutations in Gf. The original list of point mutations was provided
by Yoda, et al. in the supplementary information of their publication. This included a
few mutations that were not suitable for comparison, such as mutations to glycine or using
splice variants, which are not covered by our computational protocol, and thus excluded
from analysis. Mutations to histidine were taken as the average mutation free energy of all
three possible histidine states (-, - and doubly-protonated) as modeled by CHARMM. A
total of 36 point mutations were available for analysis, and are listed in Table S9. From our
DEE/A* calculations for each point mutation listed, the stability and binding interactions
relative to wild type were used to categorize mutations as gain-of-function, neutral or loss-
of-function. These energetic cutoffs were based on previous definitions using +1.5 keal /mol.
Mutations were assessed as independent aspects of fitness, and also simultaneously. For
the latter, we measured the maximum magnitude of either structural stability or binding
interactions. (See main text.)
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Table S9: The original list of GNB1 mutations was compiled and amended by Yoda, et
al. A condensed version of point mutations that could be compared to our DEE/A* data

(e.g.

not a glycine mutation, splice variant or non-specific mutation) is provided here,

along with the computed DEE/A* values for Gf structural stability (AAG 4q4) and binding
interactions (AAGy,q). References may be from Yoda, et al., COSMIC, cBioPortal or a
specific publication, in which the PubMed identification number is provided.

Mutation | AAG fo1q | AAGhing | References Mutation | AAG fo1q | AAGhing | References
Al11V —4.0 0.0 COSMIC D118Y -7.3 -7.9 COSMIC
RI19L —11.5 0.0 COSMIC S147A —14.7 -3.2 Yoda, et al.
A21S 2.1 0.0 COSMIC B177K —10 0.0 24220272
Q32K 0.6 0.0 COSMIC S191C —13 0.0 COSMIC
T47M —11.6 0.0 COSMIC D205N —14.7 0.5 COSMIC
pb4N —16.8 —17.0 COSMIC E215D -5.9 0.0 cBioPortal
K57E —-1.2 4.3 Yoda, et al. || d225L —24.3 -0.1 23292937
COSMIC D228N —-17.9 -7.1 cBioPortal
L57E —-1.2 4.3 Yoda, et al. || N230S —4.4 —11.0 COSMIC
COSMIC R256H 5.1 5.1 cBioPortal
24220272 D258N —25.4 0.0 COSMIC
23443460 E260K -9.8 0.0 COSMIC
K57N —8.4 —2.2 23443460 M262T 2.8 0.0 COSMIC
K57T —2.7 -1.9 COSMIC 1269T —22.4 0.0 COSMIC
K78E —4.0 0.3 COSMIC K280N -5.8 0.0 cBioPortal
cBioPortal S281N —-1.1 0.0 COSMIC
K78Q —10.0 -3.7 Yoda, et al. || R283C —15.5 0.0 COSMIC
ISON -3.8 —1.8 Yoda, et al. || R314H -5.3 -5.3 23699601
22343534 A326T 4.8 0.0 cBioPortal
180T 2.5 —11.1 Yoda, et al.
COSMIC
23699601
24220272
N88D 2.4 —18.1 Yoda, et al.
K89E —-17.9 —-17.1 Yoda, et al.
K89T —20.5 —20.6 24220272
R96H 0.4 —-0.4 COSMIC
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8 Statistical analysis for predictions

The Boltzmann-weighted mean of each mutant sequence was computed to determine the
average change in all 40 structural states used. For each position, this provided twenty
unique values (one for each amino acid) which summarized all mutational effects. From this
vector of numbers, values on the [—1.5, 1.5]-kcal/mol interval were assigned zero to represent
no change. A 20-dimensional zero vector was thus chosen for the null hypothesis, and the
Mann—Whitney—Wilcoxon test was performed using R for every position in the heterotrimer.
Computed p-values are shown in Fig. S25 and grouped according to (1) whether or not
position is known to have binding interactions (according to Wall, et al.) and (2) whether
mutation free energy is based on AAG g or AAGhing.

The findings for data based on binding interactions are discussed in the main text. A
detailed list for true positives, false negatives and predicted positions can be found in Tables
S10 & S11. The calculations for stabilizing interactions, however, suggest that nearly all
positions have a meaningful contribution to protein tertiary structure (low p-values). Given
that this protein family is highly evolved and that the mutational profiles (Fig. S5-S11)
suggested that most substitutions are unfavorable, alternative metrics would need to be
applied to further separate side chains into varying degrees of involvement.

Predictions for side chain contributions to overall fitness

@ binding (positions known for binding) @ stability (positions known for binding)
@ binding (positions all others) O stability (positions all others)

(a) (b) 1 4 Known positions evaluated for AAGping

RN | P

All others evaluated for AAGpng
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] ‘ Known positions evaluated for AAGog

Group of side chains
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Figure S25: Positions known for binding interactions were separated from all other posi-
tions, then mutational differences based on AAG;,q and AAG f,q were computed (blue and
red, respectively.) The analysis was applied to all other positions based on AAGy;,q and
AAG yq4 (purple and pink, respectively) for comparison. These data are shown as distribu-
tions in (a) box-and-whiskers plots and (b) as a histogram to illustrate how the majority of
side chains within each subgroup shifts as the premise for analysis changes.
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Table S10: The positions known to have binding interactions according to Wall, et al. are
provided here. The computed p-values are the untruncated output from R and based on

AAGy;ng energetic differences from wild type.

Position p-value Position p-value
A12A 1.453066e-04 | B5H2R 3.046867e-10
A13V 0.4871795 B55L 3.276003e-03
A15R 1.541715e-07 | B57K 3.046867e-10
A16S 4.509515e-05 | B59Y 4.712405e-02
A191 1.288433e-05 | B75Q 2.019602e-02
A20D 3.351553e-09 | BT78K 3.046867e-10
A23L 4.359198e-04 | B80I 1.288433e-05
A24R 0.4871795 B88N 2.019602e-02
A26D 4.509515e-05 | B89K 3.046867e-10
A182T 0.1060291 BI0OV 0.1060291
A1841 4.359198e-04 | B9le 4.712405e-02
A186E 3.351553e-09 | B99W 7.708573e-07
A199F 4.712405e-02 B101M 0.1060291
A204Q 4.359198e-04 | BI117L 2.569524e-08
A206S 4.359198e-04 | B119N 1.453066¢-04
A207E 2.569524e-08 | B132N 1.0000000
A209K 0.2307692 B143T 1.0000000
A210K 1.453066e-04 | B145Y 2.019602e-02
A211W 1.228501e-03 | B186D 3.276003e-03
A213e 4.509515e-05 | B188M 0.4871795
A214C 3.276003e-03 | B204C 4.359198e-04
A215F 0.1060291 B228D 0.1060291
A216E 8.316008e-03 | B230N 4.712405e-02
A258W 3.046867e-10 | B246D 3.276003e-03

B332W

3.340382¢-06
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Table S11: Using AAG;,q data, these positions were predicted to be at the binding inter-
faces of the heterotrimer. Values are untruncated R output.

Position

p-value

Position

p-value

A6S
ASE
A9D
A17TK
A21R
A29K
A30A
A35K
A197K
A218V

3.276003e-03
1.288433e-05
2.569524e-08
2.019602¢-02
2.569524e-08
4.712405e-02
8.316008e-03
3.340382e-06
3.276003e-03
4.359198e-04

Bb4p
B56A
B68R
B74S
B76D
B83D
B84S
B85Y
B86T
B92A
B97S
B98S
B118D
B1201I
B129R
B147S
B274T
B313N
B314R
B316S

2.569524e-08
2.019602e-02
3.351553e-09
3.276003e-03
2.019602e-02
4.712405e-02
4.359198e-04
4.712405e-02
4.359198e-04
1.453066e-04
1.453066e-04
4.712405e-02
7.708573e-07
8.316008e-03
1.288433e-05
4.509515e-05
1.453066e-04
1.228501e-03
7.708573e-07
1.453066e-04




