Supplementary Materials

Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses

Authors: Morena Pappalardo†, Miguel Juliá†, Mark J. Howard, Jeremy S. Rossman*, Martin Michaelis*, Mark N. Wass*

Affiliation:

Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.

*Correspondence to: M.N.Wass@kent.ac.uk (Mark N. Wass), M.Michaelis@kent.ac.uk (Martin Michaelis), J.S.Rossman@kent.ac.uk (Jeremy S. Rossman)

+ equal contribution.

Supplementary Material

Supplementary Methods - Subsampling of sequence data

The sensitivity of the SDP analysis to the number of sequences available was considered by subsampling the sequences. Sampling was performed for; only the human pathogenic group; only the Reston group; and for both groups simultaneously. Subsampling was performed using between 10%-90% of sequences in the group, increasing in 10% increments. For each percentage setting the group was sampled 50 times. Where both groups were sampled simultaneously they were done so with the same percentage of sequences i.e. at 20% sampling the SDPs were predicted each time using 20% of the human pathogenic sequences in one group and 20% of the Reston sequences in the other. For each sample s3det was run to predict SDPs using the same settings as for the full dataset. Completely conserved SDPs are also compared to those that are not completely conserved. the The total number of SDPs predicted when sampled is shown in supplementary Figure 6. When the sequences of human pathogenic Ebolaviruses were sampled, while the number of Reston sequences remained constant, we observed that the number of SDPs predicted decreased as the proportion of sequences sampled increased. We further observed that even when a very high proportion of sequences was sampled (70%-90%), that there was still some variation in the number of SDPs, indicating that there was still further information present in the excluded sequences. When the Reston virus sequences were sampled, the pattern observed varied between the proteins (Supplementary Figure 6B). For GP, L and VP30, sampling resulted in more SDPs being predicted than in the full dataset, with the number reducing as the proportion of sequences sampled increased. For NP, sampling the Reston sequences generated some samples where fewer SDPs than the total present in the full dataset were predicted and other samples where a larger number of SDPs were predicted. This is possible for SDPs that are not completely conserved in the two groups, as sampling may generate some sets of sequences where these positions appear variable and others where they are conserved. For VP35, sampling led to fewer SDPs being predicted until 90% of sequences were used. The number of SDPs in VP24 and VP40 was invariant across all samples. When sampling both groups (Supplementary Figure 6C) we found that the number of SDPs predicted very quickly converged to the number of SDPs present in the full dataset.

We then considered the number of SDPs predicted that are present in the full dataset and those that are present only in sampling (Supplementary Figure 7). When the human pathogenic sequences were sampled (Supplementary Figure 7A), we found that the vast majority of SDPs in the full data set were predicted at all sampling levels. We also found that when a small proportion of sequences were sampled,

that many new SDPs were predicted, which for some proteins (e.g. GP, NP and VP40) may be greater than the total number of SDPs present in the full dataset. This may not be too surprising given that positions that are variable in the full dataset may appear to be conserved when a small sample of sequences was taken. As the proportion of sequences sampled increased, very few new SDPs were predicted. Sampling the Reston sequences (Supplementary Figure 7B) we again found that the vast majority of SDPs present in the full dataset was present in all samples. The number of new SDPs present in samples was much smaller than for sampling of the human pathogenic sequences, which is likely to be due to the smaller number of Reston sequences, resulting in fewer samples where positions are conserved that are not conserved in the full data set. When both groups were sampled, results were very similar to that observed when the human pathogenic group was sampled (Supplementary Figure 7C).

Finally, we considered the number of SDPs in the sampling sets that are completely conserved and those that are not (Supplementary Figure 8). In conjunction with the data from Supplementary Figure 7, this shows that sampling generates new SDPs that are completely conserved (i.e. only one amino acid in each group) and also some where there is variation within one or both groups. As the proportion of sequences sampled increased these numbers quickly converged to the numbers observed in the full dataset. Some of these included SDPs which in some samples were completely conserved but as further sequences were added, variation was introduced and they were no longer completely conserved. In such cases there was a change ranking for the SDP, as when completely conserved it was ranked 1, and this ranking was reduced once the position was not completely conserved.

Supplementary Figures

Supplementary Figure 1. Phylogenetic tree of the Ebolavirus genomes and individual proteins. Bayesian and Maximum Likelihood phylogenetic trees are shown for the Ebolavirus genomes and each of the Ebolavirus proteins. A) genome Bayesian tree. B) Genome maximum likelihood tree, C) Bayesian tree for protein L, D)Maximum likelihood tree for protein L, E)Bayesian tree for protein GP, G)Bayesian tree for protein NP, H)Maximum likelihood tree for protein NP, I)Bayesian tree for protein VP24, J)Maximum likelihood tree for protein VP24, K)Bayesian tree for protein VP30, L)Maximum likelihood tree for protein VP35, O)Bayesian tree for protein VP40. P)Maximum likelihood tree for protein VP40. All trees use Ebola virus as root (EBOV, Ebola virus; BDBV, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taï Forest virus; RESTV, Reston virus).

L

GP

Fig S1H

NP

Fig S1I.

Fig S1J.

Fig S1K.

Fig S1N.

Supplementary Figure 2. Ebolavirus protein consensus sequences and SDPs. The consensus sequence for each *Ebolavirus* species is shown for each Ebolavirus protein. The row above the alignment indicates positions that are 100% conserved across all Ebolavirus sequences (black) or specificity determining positions (SDPs) that discriminate Reston viruses from the four human pathogenic *Ebolavirus* species (red); R, Reston virus; E, Ebola virus; S, Sudan virus; B, Bundibugyo virus; T, Taï Forest virus. A) for VP24, B) for GP, C) for VP40, D) VP35, E)VP30, F) sGP, G) NP, H)L.

A – VP24

	1	10	20	30	40	50	60
R	MAKATGR	YNLVPPKKDME	KGVIFSDLCN	FLITQTLQGW	KVYWAGIEFD	VSQKGMALLI	ΓRL
Е	MAKATGR	YNLISPKKDLE	KGVVLSDLCN	FLVSQTIQGW	KVYWAGIEFD	VTHKGMALLH	IRL
s	MAKATGR	YNLVTPKRELE	QGVVFSDLCN	FLVTPTVQGW	KVYWAGLEFD	VNQKGITLLN	JRL
в	MAKATGR	YNLVSPKKDLE	RGLVLNDLCT	FLVDQTIQGW	RVTWVGIEFD	IAQKGMALLH	IRL
т	MAKATGR	YNLISPKKDLE	KGLVLNDLCT	LSVAQTVQGW	KVTWAGIEFD	VTQKGMALLH	IRL

708090100110120RKTNDFAPAWAMTRNLFPHLFQNPNSVIQSPIWALRVILAAGLQDQLLDHSLVEPLTGALGEKTNDFAPAWSMTRNLFPHLFQNPNSTIESPLWALRVILAAGIQDQLIDQSLIEPLAGALGSKVNDFAPAWAMTRNLFPHLFKNQQSEVQTPIWALRVILAAGILDQLMDHSLIEPLSGALNBKTADFAPAWSMTRNLFPHLFQNSNSTIESPLWALRVILAAGIQDQLIDQSLVEPLAGALSTKTSDFAPAWSMTRNLFPHLFQNPNSTIESPLWALRVILAAGIQDQLIDQSLIEPLAGALG

130 140 150 160 170 180 R LISDWLLTTTSTHFNLRTRSVKDQLSLRMLSLIRSNILQFINKLDALHVVNYNGLLSSIE E LISDWLLTTNTNHFNMRTQRVKEQLSLKMLSLIRSNILKFINKLDALHVVNYNGLLSSIE S LIADWLLTTSTNHFNMRTQRVKDQLSMRMLSLIRSNIINFINKLETLHVVNYKGLLSSVE **B**LVSDWLLTTNTNHFQMRTQHAKEQLSLKMLSLVRSNILKFISQLDALHVVNYNGLLSSIE T LIADWLLTTGTNHFQMRTQQAKEQLSLKMLSLVRSNILKFINQLDALHVVNYNGLLSSIE

190200210220230240RIGTSTHTIIITRTNMGFLVEVQEPDKSAMNSKRPGPVKFSLLHESAFKPFTRVPQSGMQSEIGTQNHTIIITRTNMGFLVELQEPDKSAMNRKKPGPAKFSLLHESTLKAFTQGSSTRMQSSIGTPSYAIIITRTNMGYLVEVQEPDKSAMDIRHPGPVKFSLLHESTLKPVATPKPSSITSBIGTRNHTIIITRTNMGFLVELQEPDKSAMNQKKPGPVKFSLLHESTFKALIKKPATKMQATIGTKSHTIIITRTNMGFLVELQEPDKSAMNTRKPGPVKFSLLHESTLKTLAKKPATQMQA

		250
R	LIMEFNS	SLLAI
Е	LILEFNS	SSLAI
s	LIMEFNS	SSLAI
в	LILEFNS	SSLAI
т	LILEENS	SSLAT

E	S - GP						
	1	10	20	30	40	50	60
R	MGSGYQLL	QLPRERFRKT	SFLVWVIILF	QRAISMPLGI	VTNSTLKATE	IDQLVCRDKLS	SS
Е	-MGVTGIL	QLPRDRFKRT	SFFLWVIILF	QRTFSIPLGV	IHNSTLQVSD	VDKLVCRDKLS	SS
S	-MGGLSLL	QLPRDKFRKS	SFFVWVIILF	QKAFSMPLGV	VTNSTLEVTE	IDQLVCKDHLA	AS
в	-MVTSGIL	QLPRERFRKT	SFFVWVIILF	HKVFPIPLGV	VHNNTLQVSD	IDKLVCRDKLS	S S
Т	-MGASGIL	QLPRERFRKT	SFFVWVIILF	HKVFSIPLGV	VHNNTLQVSD	IDKFVCRDKL	S S

70 80 90 100 110 120 R TSQLKSVGLNLEGNGIATDVPSATKRWGFRSGVPPKVVSYEAGEWAENCYNLEIKKSDGS E TNOLRSVGLNLEGNGVATDVPSVTKRWGFRSGVPPKVVNYEAGEWAENCYNLEIKKPDGS S TDQLKSVGLNLEGSGVSTDIPSATKRWGFRSGVPPKVVSYEAGEWAENCYNLEIKKPDGS B TSQLKSVGLNLEGNGVATDVPTATKRWGFRAGVPPKVVNYEAGEWAENCYNLDIKKADGS T TSQLKSVGLNLEGNGVATDVPTATKRWGFRAGVPPKVVNCEAGEWAENCYNLAIKKVDGS

130 140 150 160 170 180 R ECLPLPPDGVRGFPRCRYVHKVQGTGPCPGDLAFHKNGAFFLYDRLASTVIYRGTTFAEG E ECLPAAPDGIRGFPRCRYVHKVSGTGPCAGDFAFHKEGAFFLYDRLASTVIYRGTTFAEG S ECLPPPPDGVRGFPRCRYVHKAOGTGPCPGDYAFHKDGAFFLYDRLASTVIYRGVNFAEG BECLPEAPEGVRGFPRCRYVHKVSGTGPCPEGFAFHKEGAFFLYDRLASTIIYRSTTFSEG T ECLPEAPEGVRDFPRCRYVHKVSGTGPCPGGLAFHKEGAFFLYDRLASTIIYRGTTFAEG

190 200 210 220 230 240 R VVAFLILSEPKKHFWKATPAHEPVNTTDDSTSYYMTLTLSYEMSNFGGEESNTLFKVDNH E VVAFLILPOAKKDFFSSHPLREPVNATEDPSSGYYSTTIRYOATGFGTNETEYLFEVDNL S VIAFLILAKPKETFLQSPPIREAVNYTENTSSYYATSYLEYEIENFGAQHSTTLFKIDNN B VVAFLILPKTKKDFFQSPPLHEPANMTTDPSSYYHTVTLNYVADNFGTNMTNFLFQVDHL T VIAFLILPKARKDFFQSPPLHEPANMTTDPSSYYHTTTINYVVDNFGTNTTEFLFQVDHL

						2	50							2	26	0								27	70								28	80							29	0						1	30	0
_												_											~										_	_											_			_	~ .	_
н	T :	ΥV	QI	L D	R	2 F	IΤ	P	Q	5 L	V	Q	Г	N.	E :	I. 1		< F	< N	11	A F	(L	S	Ν	S	Т	G.	RI	61	L' V	N '1	Ľ	D	P	κ.	LE	P	D	V	έĽ	W.	AI	5. N	Ε	T.	KI	ΚN	F.	SÇ	2
E	T	YV	Q1	LΕ	S	RE	т	P	QI	f L	L	Q	Г	N	E '	r :	[]	(A	A S	6 0	ΞK	R	S	Ν	Т	т	G.	K 1	61	EV	ΝK	(V	'N	P	E 1		ЭΤ	Τ.	IC	ΞE	W.	AI	E. N	Ε	T.	Κł	ΚN	Г	ΤI	R
S	Τl	FV	RI	L D	R	ΡH	ΙT	P	QI	7 L	F	Q	L	N	D'	r :	E F	ΗI	H	IÇ	20	ĮΙ	S	Ν	Т	т	G.	R 1	63	EV	ΓW	'I	'D	A	N :	E N	IA	D.	IC	ΞE	W.	AI	ΕW	ΙE	N	ΚI	ΚN	L	SI	Ξ
в	T	YV	QI	LΕ	Pl	RE	Τ	P	QI	7 L	V	Q	L	N	E !	r :	E Y	ΓΊ	ľN	10	GF	R	S	Ν	Τ	Т	G	Т 1	C]	EV	ΝK	(V	'N	Ρ	ΤV	7 [Τ	G٦	VC	ΞE	W	AI	FW	ΙE	N	ΚI	ΚN	F	Τŀ	K
Т	T	YV	QI	LΕ	A	RE	Τ	P	QI	7 L	V	Γ	L	N	E !	r :	[]	ZS	5 E		1 F	R	S	N	Т	Т	G :	K 1	C]	EV	ΝK		N	Ρ	ΤV	7 [T	SI	MC	ΞE	W.	AI	E. M	Ε	N	Κł	ΚN	F	Τŀ	K

	310	320	330	340	350	360
0 1 1 1 1			A THE A THE A			

R QLHGENLHFQILSTHTNNSSDQSPAGTVQGKISYHPPTNNSELVPTDSPPVVSVLTAGRT
E KIRSEELSFTAVSNGPKNISGQSPARTSSDPETNTTNEDHKIMASENSSAMVQVHSQGRK
S QLRGEELSFEALSLNETEDDDAASSRITKGRISDRATRKYSDLVPKNSPGMVPLHIPEGE
B TLSSEELSVILVPRAQDPGSNQKTKVTPTSFANNQTSKNHEDLVPKDPASVVQVRDLQRE
T TLSSEELSFVPVPETQNQVLDTTATVSPPISAHNHAAEDHKELVSEDSTPVVQMQNIKGK

		370	380	390	400	410	420
R	EEMSTQG	LTNGETI?	IGFTANPMTTT	TIAPSPTMTSE	C V D N N V P S E Q E	? N N T A S I	ED
Е	AAVSHLT	TLATISTSPQI	PPTTKTGPDNS	STHNTPVYKLI	DISEATQVGQH	HRRADNDSTA	SD
s	TTLPSQN	STEGRRVS	SVNTQETITET	TAATIIGT	NGNHMQISTI	GIRPSSSQIP	SS
в	NTVPTSP	LNTVPTT-L-X	IPDTMEEQTTS	SHYELPNISGN	HQERNNTAHE	? E T I	AN
Т	DTMPTTV	TGVPTTT-P-S	SPFPINARNTI	OHTKSFIGLEG	POEDHSTTOP	AKT	TS

	430	440	450	460	470	480
R	S P P S A S	SNETIDHSEMNS	IQGSNNSAQSPQ	TKTTPAPTAS	P M 1	ſQDPQE
Е	Т – – – – РРАТТ	A – A G P L K A E N T I	NTSKSAD	- SLDLATTTS	PQNYS	- – – E T A
s	SPTTAPSPEAQ	TPTTHTSGPSVI	MATEE – PTTPPG	- S S P G P T T E A	PTI	LTTPEN
в	N P P D N T	TPSTPPQI	OGERTSSHTTPS	PRPVPTSTIK	PTTRETQIPT	CMITSH
Т	Q P T N S T	ESTTLNP	T S E P S S R G T G P S	SPTVPNTTES	HAELGKTTPT	ГLPEQH

	490	500	510	520	530	540
R	TANSSKPGTS	PGSAAEPSQP	GLTINTVSKV	ADSLSPTRKQI	KRSVRQNTANKC	NPDLHYWT
Е	GNNNTHHQDT	GEESASSGKL	GLITNTIAGV	AGLITGGRRTI	RREVIVNAQPKC	NPNLHYWT
s	ITTAVK	TVLPQESTSN	GLITSTVTGI	LGSLGLRKRSI	RRQTNTKATGKC	NPNLHYWT
в	DTDSNRPN	PIDISESTEP	GLLTNTIRGV	ANLLTGSRRT	RREITLRTQAKC	NPNLHYWT
т	TAASAIPR	AVHPDELSGP	GFLTNTIRGV	TNLLTGSRRKI	RRDVTPNTQPKC	NPNLHYWT

		550	560	570	580	590	600
R	AVDEGAAV	VGLAWIPYFGP	AAEGIYIEGV	MHNQNGLICO	GLRQLANETTQ	ALQLFLRATT	ΕL
Е	TQDEGAAI	IGLAWIPYFGP	AAEGIYTEGL	MHNQDGLICO	GLRQLANETTQ	ALQLFLRATT	ΕL
s	AQEQHNAA	AGIAWIPYFGP	GAEGIYTEGL	MHNQNALVCO	GLRQLANETTQ	ALQLFLRATT	ΕL
в	TQDEGAAI	IGLAWIPYFGP	AAEGIYTEGI	MHNQNGLICO	GLRQLANETTQ	ALQLFLRATT	ΕL
т	ALDEGAA	IGLAWIPYFGP	AAEGIYTEGI	MENQNGLICO	GLRQLANETTQ	ALQLFLRATT	ΕL

		610	620	630	640	650	660
R	RTYS	LLNRKAID	FLLQRWGGTCRI	LGPSCCIEPHI	OWTKNITDEI	NQIKHDFIDNE	LPDHG
Е	RTFS	ILNRKAID	FLLQRWGGTCHI	LGPDCCIEPHI	OWTKNITDKI	DQIIHDFVDKI	LPDQG
s	RTYT	ILNRKAID	FLLRRWGGTCRI	LGPDCCIEPHI	OWTKNITDKI	NQIIHDFIDNE	LPNQD
в	RTFS	ILNRKAID	FLLQRWGGTCHI	LGPDCCIEPHI	OWTKNITDKI	DQIIHDFIDKE	LPDQT
Т	RTFS	ILNRKAID	FLLQRWGGTCHI	LGPDCCIEPQI	OWTKNITDKI	DQIIHDFVDNN	ILPNQN

		_						67	70									68	30									6 9	0							
R	DD	L	N	L	W	Т	G	W	R	Q	W	Ι	Ρ	A	G	Ι	G	Ι	Ι	G	v	Ι	Ι	A	Ι	Ι	A	L	L	С	Ι	C	K	Ι	гC	;
Е	DN	D	N	W	W	Т	G	W	R	Q	W	Ι	Ρ	A	G	Ι	G	V	Т	G	V	Ι	Ι	A	V	Ι	A	L	F	С	Ι	C	K	F	VF	1
s	ND	D	N	W	W	Т	G	W	R	Q	W	Ι	Ρ	A	G	Ι	G	Ι	Т	G	Ι	Ι	Ι	A	Ι	Ι	A	L	L	С	V	C	K	L	ГC	;
в	DN	D	N	W	W	Т	G	W	R	Q	W	V	Ρ	A	G	Ι	G	Ι	Т	G	V	Ι	Ι	A	V	Ι	A	L	L	С	Ι	C	K	F	LΙ	
Т	DG	S	N	W	W	Т	G	W	K	Q	W	V	Ρ	A	G	Ι	G	Ι	Т	G	V	Ι	Ι	A	Ι	Ι	A	L	L	С	Ι	C	Κ	F	ΜI	

C – VP40						
	10	20	30	40	50 6	50
R MRRGVLP	TAPPAYNDIA	YPMSILPTRPS	SVIVNETKSD	VLAVPGADVPS	SNSMRPVADDNI	D
E MRRVILP	TAPPEYMEAI	YPARSNSTIAN	RGGNSNTGFL	T P E S V N G D T P S	SNPLRPIADDTI	D
S MRRVTVP	TAPPAYADIG	YPMSMLPIKSS	SRAVSGIQQK	QEVLPGMDTPS	SNSMRPVADDNI	D
BMRRAILP	TAPPEYMEAV	YPMRTVSTNIS	SSTSSGPNFP	APDVMMSDTPS	SNSLRPIADDNI	D
TMRRIILP	TAPPEYMEAV	YPMRTMNSGAI	DNTASGPNYT	TTGVMTNDTPS	SNSLRPVADDNI	D
	70	80	90	100	110 12	20
	70	80	90	100	110 12	20
R HSSHTPS	70 GVASAFILEA	80 TVNVISGTKVI	90 LMKQIPIWLPI	100 LGVADQKIYSE	110 12 FDSTTAAIMLAS	20 Y
R HSSHTPS E HASHTPG	70 GVASAFILEA SVSSAFILEA	80 TVNVISGTKVI MVNVISGPKVI	90 LMKQIPIWLP LMKQIPIWLP	100 LGVADQKIYSE LGVADQKTYSE	110 12 FDSTTAAIMLAS FDSTTAAIMLAS	20 ¥ Y
R HSSHTPS E HASHTPG S HTSHTPN	70 GVASAFILEA SVSSAFILEA GVASAFILEA	80 TVNVISGTKVI MVNVISGPKVI TVNVISGPKVI	90 LMKQIPIWLP LMKQIPIWLP LMKQIPIWLP	100 LGVADQKIYSE LGVADQKTYSE LGIADQKTYSE	110 12 FDSTTAAIMLAS FDSTTAAIMLAS FDSTTAAIMLAS	20 Y Y Y Y
R HSSHTPS E HASHTPG S HTSHTPN B HPSHTPT	70 GVASAFILEA SVSSAFILEA GVASAFILEA SVSSAFILEA	80 TVNVISGTKVI MVNVISGPKVI TVNVISGPKVI MVNVISGPKVI	90 LMKQIPIWLP LMKQIPIWLP LMKQIPIWLP LMKQIPIWLP	100 LGVADQKIYSE LGVADQKTYSE LGIADQKTYSE LGVADQKTYSE	110 12 FDSTTAAIMLAS FDSTTAAIMLAS FDSTTAAIMLAS FDSTTAAIMLAS	20 Y Y Y Y Y
R HSSHTPS E HASHTPG S HTSHTPN B HPSHTPT T HPSHTPN	70 GVASAFILEA SVSSAFILEA GVASAFILEA SVSSAFILEA SVASAFILEA	80 TVNVISGTKVI MVNVISGPKVI TVNVISGPKVI MVNVISGPKVI	90 LMKQIPIWLP LMKQIPIWLP LMKQIPIWLP LMKQIPIWLP	100 LGVADQKIYSE LGVADQKTYSE LGIADQKTYSE LGVADQKTYSE LGVSDQKTYSE	110 12 FDSTTAAIMLAS FDSTTAAIMLAS FDSTTAAIMLAS FDSTTAAIMLAS	20 Y Y Y Y Y Y Y
R HSSHTPS E HASHTPG S HTSHTPN B HPSHTPT T HPSHTPN	70 GVASAFILEA SVSSAFILEA GVASAFILEA SVSSAFILEA SVASAFILEA	80 TVNVISGTKVI MVNVISGPKVI TVNVISGPKVI MVNVISGPKVI	90 LMKQIPIWLP LMKQIPIWLP LMKQIPIWLP LMKQIPIWLP LMKQIPIWLP	100 LGVADQKIYSE LGVADQKTYSE LGIADQKTYSE LGVADQKTYSE LGVSDQKTYSE	110 12 FDSTTAAIMLAS FDSTTAAIMLAS FDSTTAAIMLAS FDSTTAAIMLAS FDSTTAAIMLAS	20 Y Y Y Y Y Y

130140150160170180RTVTHFGKISNPLVRVNRLGPGIPDHPLRLLRLGNQAFLQEFVLPPVQLPQYFTFDLTALKETITHFGKATNPLVRVNRLGPGIPDHPLRLLRIGNQAFLQEFVLPPVQLPQYFTFDLTALKSTITHFGKTSNPLVRVNRLGPGIPDHPLRLLRIGNQAFLQEFVLPPVQLPQYFTFDLTALKBTITHFGKTSNPLVRINRLGPGIPDHPLRLLRIGNQAFLQEFVLPPVQLPQYFTFDLTALKTTITHFGKTSNPLVRINRLGPGIPDHPLRLLRIGNQAFLQEFVLPPVQLPQYFTFDLTALK

190200210220230240RLITQPLPAATWTDETPAGAVNALRPGLSLHPKLRPILLPGKTGKKGHASDLTSPDKIQTIELITQPLPAATWTDDTPTGSNGALRPGISFHPKLRPILLPNKSGKKGNSADLTSPEKIQAISLVTQPLPAATWTDETPSNLSGALRPGISFHPKLRPVLLPGKTGKKGSSSDLTSPDKIQTIBLITQPLPAATWTDDTPTGPTGILRPGISFHPKLRPILLPGKTGKRGSSSDLTSPDKIQAITLITQPLPAATWTDETPAVSTGTLRPGISFHPKLRPILLPGRAGKKGSNSDLTSPDKIQAI

250260270280290300R MNAIPDLKIVPIDPTKNIVGIEVPELLVQRLTGKKPQPKNGQPIIPVLLPKYVGLDPISPE MTSLQDFKIVPIDPTKNIMGIEVPETLVHKLTGKKVTSKNGQPIIPVLLPKYIGLDPVAPS VNLMQDFKIVPIDPAKSIIGIEVPELLVHKLTGKKMSQKNGQPIIPVLLPKYIGLDPISPB MNFLQDLKLVPIDPAKNIMGIEVPELLVHRLTGKKITTKNGQPIIPILLPKYIGMDPISQT MNFLQDLKIVPIDPTKNIMGIEVPELLVHRLTGKKTTTKNGQPIIPILLPKYIGLDPLSQ

					31	0							1	32	0								1	33	0	
R	GDL	ТΜ	V	ΓT	Q	D	CD	S	С	Η	S	P	A	S	Η	b.	Y	ΗI	MI	DI	K	QI	N	S	ΥĢ	2
Е	GDL	ТΜ	V	ΓT	Q	D	CD	T	С	Η	S	P	А	S	L	P	A.	V	V	E]	K٠		-	-		-
s	GDL	ТΜ	V	ΓT	Ρ	D	ΥD	D	С	Н	S	P	А	S	С	S	Y	L	S I	E]	K٠		-	-		-
в	GDL	ТΜ	V	ΓT	Q	D	CD	T	С	Н	S	P	A	S	L	P	b.	V	S I	E]	К·		-	-		-
т	GDL	ТΜ	V	ΓT	Q	D	CD	S	С	Н	S	P	A	S	L	P	Ð.	V	NI	E]	ĸ٠		-	-		_

U - VF33

	1	10	20	30	40	50	60
_							
R		– – – – – – – – M Y	NNKLKVCSGP	ETTGWISEQL	MTGKIPVTDI	FIDIDNKPDQ	MEVRLK
Е	-MTT	RTKGRGHTVA	TTQNDRMPGP	ELSGWISEQL	MTGRIPVNDI	FCDIENNPGL	CYASQM
s		MQ	QDRTYRHHGP	EVSGWFSEQL	MTGKIPLTEV	FVDVENKPSP	APITII
В	MTSN	RARVTYNPPP	TTTGTRSCGP	ELSGWISEQL	MTGKIPITDI	FNEIETLPSI	SPSIHS
T	MIST	RAAAINDPSL	PIRNQCTRGP	ELSGWISEQL	MTGKIPVHEI	FNDTEPHISS	GSDCLP

70 80 90 100 110 120 R PSSRSSTRTCTSSSQTEVNYVPLLKKVEDTLTMLVNATSRQNAAIEALENRLSTLESSLK E QQTKPNPKMRNSQTQTDPICNHSFEEVVQTLASLATVVQQQTIASESLEQRITSLENGLK S SKNPKTTRKSDKQVQTDDASSLLTEEVKAAINSVISAVRRQTNAIESLEGRVTTLEASLK B KIKTPSVQTRSVQTQTDPNCNHDFAEVVKMLTSLTLVVQKQTLATESLEQRITDLEGSLK T RPKNTAPRTRNTQTQTDPVCNHNFEDVTQALTSLTNVIQKQALNLESLEQRIIDLENGLK

130140150160170180R PIQDMGKVISSLNRSCAEMVAKYDLLVMTTGRATSTAAAVDAYWKEHKQPPPGPALYEENE PVYDMAKTISSLNRVCAEMVAKYDLLVMTTGRATATAAATEAYWAEHGQPPPGPSLYEESS PVQDMAKTISSLNRSCAEMVAKYDLLVMTTGRATATAAATEAYWNEHGQAPPGPSLYEDDB PVSEITKIVSALNRSCAEMVAKYDLLVMTTGRATATAAATEAYWAEHGRPPPGPSLYEEDT PMYDMAKVISALNRSCAEMVAKYDLLVMTTGRATATAAATEAYWEEHGQPPPGPSLYEES

190 200 210 220 230 240 RALKGKIDDPNSYVPDAVQEAYKNLDSTSTLTEENFGKPYISAKDLKEIMYDHLPGFGTAF E AIRGKIESRDETVPQSVREAFNNLDSTTSLTEENFGKPDISAKDLRNIMYDHLPGFGTAF SAIKAKLKDPNGKVPESVKQAYTNLDSTSALNEENFGRPYISAKDLKEIIYDHLPGFGTAF BAIRTKIEKQGDIVPKEVQEAFRNLDSTALLTEENFGKPDISAKDLRNIMYDHLPGFGTAF TAIRGKINKQEDKVPKEVQEAFRNLDSTSSLTEENFGKPDISAKDLRDIMYDHLPGFGTAF

250 260 270 280 290 300 R HQLVQVICKIGKDNNLLDTIHAEFQASLADGDSPQCALIQITKRVPIFQDVPPPIIHIRS E HQLVQVICKLGKDSNSLDIIHAEFQASLAEGDSPQCALIQITKRVPIFQDAAPPVIHIRS S HQLVQVICKIGKDNNILDIIHAEFQASLAEGDSPQCALIQITKRIPAFQDASPPIVHIKS B HQLVQVICKLGKDNSSLDVIHAEFQASLAEGDSPQCALIQITKRIPIFQDAAPPVIHIRS T HQLVQVICKLGKDNSALDIIHAEFQASLAEGDSPQCALIQITKRIPIFQDATPPTIHIRS

310320330340R RGDIPRACQKSLRPAPPSPKIDRGWVCLFKMQDGKTLGLKIE RGDIPRACQKSLRPVPPSPKIDRGWVCVFQLQDGKTLGLKIS RGDIPKACQKSLRPVPPSPKIDRGWVCIFQFQDGKALGLKIB RGDIPKACQKSLRPVPPSPKIDRGWVCIFQLQDGKTLGLKIT RGDIPRACQKSLRPVPPSPKIDRGWVCIFQLQDGKTLGLKI

E	– VP30						
	1	10	20	30	40	50	60
R	MMEHSRER	GRSSNN	IRHNSREPYENP	SRSRSLSRI	DPNQVDRRQPR	SASQIRVPNLI	FHRKKT
Е	- MEASYER	GRPRAA	RQHSRDGHDHH	VRARSSSRI	ENYRGEYRQSR	SASQVRVPTV	FHKKRV
s	- MERGRER	GRSRNS	RADQQNSTGPQ	FRTRSISRI	OKTTTDYRSSR	STSQVRVPTV	FHKKGT
в	- M D S F H E R	GRSRTI	RQSARDGPSHQ	VRTRSSSRI	DSHRSEYHTPR	SSSQVRVPTVI	FHRKRT
Т	-MEVVHER	GRSRIS	RQNTRDGPSHL	VRARSSSR	ASYRSEYHTPR	SASQIRVPTV	FHRKKT

708090100110120RDALIVPPAPKDICPTLKKGFLCDSKFCKKDHQLDSLNDHELLLLIARRTCGIIESNSQITEEPLTVPPAPKDICPTLKKGFLCDSSFCKKDHQLESLTDRELLLLIARKTCGSVEQQLNITSGTLTVPPAPKDICPTLRKGFLCDSNFCKKDHQLESLTDRELLLLIARKTCGSTDSSLNIABDFLTVPPAPKDICPTLRKGFLCDSNFCKKDHQLESLTDRELLLIARKTCGSLEQQLNITTDLLTVPPAPKDVCPTLKKGFLCDSNFCKKDHQLESLTDRELLLIARKTCGSTEQQLSIV

180 130 140 150 170 160 R SPKDMRLANPTAEDFSQGNSPKLTLAVLLQIAEHWATRDLRQIEDSKLRALLTLCAVLTR E APKDSRLANPTADDFQQEEGPKITLLTLIKTAEHWARQDIRTIEDSKLRALLTLCAVMTR S APKDLRLANPTADDFKQDGSPKLTLKLLVETAEFWANQNINEVDDAKLRALLTLSAVLVR **B**APKDTRLANPIADDFQQKDGPKITLLTLLETAEYWSKQDIKGIDDSRLRALLTLCAVMTR T APKDSRLANPIAEDFQQKDGPKVTLSMLIETAEYWSKQDIKNIDDSRLRALLTLCAVMTR

190200210220230240RKFSKSQLGLLCETHLRHEGLGQDQADSVLEVYQRLHSDKGGNFEAALWQQWDRQSLIMFIEKFSKSQLSLLCETHLRREGLGQDQAEPVLEVYQRLHSDKGGSFEAALWQQWDRQSLIMFISKFSKSQLSQLCESHLRRENLGQDQAESVLEVYQRLHSDKGGAFEAALWQQWDRQSLIMFIBKFSKSQLSLLCESHLRREGLGQDQSESVLEVYQRLHSDKGGNFEAALWQQWDRQSLIMFITKFSKSQLSLLCESHLRREGLGQDQSESVLEVYQRLHSDKGGNFEAALWQQWDRQSLIMFI

		250	260	270	280	290
R	SAFLN	IALQIPCESS	SVVVSGLATI	JYPAQDNSTPS	SEATNDTTWS	STVE
Е	TAFLN	IALQLPCESS	AVVVSGLRTI	V P Q S D N E E A S	STNPGTCSWS	DEGTP-
s	SAFLHY	VALQLSCESS	TVVISGLRLI	APPSVNEGL	PAPGEYTWS	EDSTT-
в	TAFLN	IALQLPCESS	SVVISGLRLI	VPQSEDTETS	STYTETRAWS	EEGGPH
т	TAFLN	IALQLPCESS	SVVISGLRMI	LIPQSEATEVN	TPSETCTWS	EGGSSH

F – sGP						
1	10	20	30	40	50	60
				•		
R				MGS	SGYQLLQLPRE	RF
E				M(GVTGILQLPRI) R F
s				M(GGLSLLQLPRI) K F
В				MV	/TSGILQLPRE	ERF
Т				M(GASGILQLPRE	ERF

	70)			80)				90					100					110					120)
RKTSFL	VWVI	ILF	QR.	AIS	SMP	LG	ΙV	TN	SΤΙ	ΓK1	ΑT	ΕI	DQ	LV	CR	DK	LS	ST	SQ	ΓK	SV	GΓ	ΝL	ΕG	NO	3
KRTSFF	LWVI	ILF	QR	ΤFS	SIP	LG	VΙ	HN	SΤΙ	<u>'</u> Q'	VS	DV	DK	LV	CR	DK	LS	ST	NQ	LR	sv	GΓ	ΝL	ΕG	NO	3

R E

SRKSSFFVWVIILFQKAFSMPLGVVTNSTLEVTEIDQLVCKDHLASTDQLKSVGLNLEGSG BRKTSFFVWVIILFHKVFPIPLGVVHNNTLQVSDIDKLVCRDKLSSTSQLKSVGLNLEGNG TRKTSFFVWVIILFHKVFSIPLGVVHNNTLQVSDIDKFVCRDKLSSTSQLKSVGLNLEGNG

130 140 150 160 170 180 RIATDVPSATKRWGFRSGVPPKVVSYEAGEWAENCYNLEIKKSDGSECLPLPPDGVRGFPR EVATDVPSVTKRWGFRSGVPPKVVNYEAGEWAENCYNLEIKKPDGSECLPAAPDGIRGFPR SVSTDIPSATKRWGFRSGVPPKVVSYEAGEWAENCYNLEIKKPDGSECLPPPPDGVRGFPR BVATDVPTATKRWGFRAGVPPKVVNYEAGEWAENCYNLDIKKADGSECLPEAPEGVRGFPR TVATDVPTATKRWGFRAGVPPKVVNCEAGEWAENCYNLAIKKVDGSECLPEAPEGVRDFPR

190200210220230240R CRYVHKVQGTGPCPGDLAFHKNGAFFLYDRLASTVIYRGTTFAEGVVAFLILSEPKKHFWE CRYVHKVSGTGPCAGDFAFHKEGAFFLYDRLASTVIYRGTTFAEGVVAFLILPQAKKDFFS CRYVHKAQGTGPCPGDYAFHKDGAFFLYDRLASTVIYRGVNFAEGVIAFLILAKPKETFLB CRYVHKVSGTGPCPEGYAFHKEGAFFLYDRLASTIIYRSTTFSEGVVAFLILPETKKDFFT CRYVHKVSGTGPCPGGLAFHKEGAFFLYDRLASTIIYRGTTFAEGVIAFLILPKARKDFF

						2	25	0						2	260)						2	70						28	0					2	.90						30	0
_						_											_													_		_	l										
R	K	A 'I	' P	A	ΗE	Р	VI	ТИ	т	DI	DS	SТ	S	Y :	ΥM	1 T	Г	Τl	LS	Υ	ΕI	MS	N	FG	G	ΕĿ	S	N 'I	Ľ	F' K	. V	DN	H	ΓY	V	ΣL	D	R P	Ч'	'P	QĿ	L, L	V
Е	S	SH	ΙP	LI	RE	P.	VI	AN	T	ΕI	DE	? S	S	G	ΥY	S	т	T I	IR	łΥ	Q	ΓA	'G	FG	T	N E	T	ΕY	ĽΓ	FΕ	V	DN	L'	ΓY	V	ΣL	E	SR	Fl	Ρ	QE	ΓL	L
s	Q	S F	Ρ	IJ	RE	A.	VI	ΥN	Т	El	ΓN	C S	S	Y	YA	Υ	S	Y]	LΕ	Y	E	ΙE	N	FG	А	QH	IS	ΤΊ	ΓL	FΚ	Ι	DN	N '	ΓF	V]	RΙ	DI	R P	Ηľ	'P	QE	ΓL	F
в	Q	S F	Ρ	Γl	ΗE	P.	Al	MN	Т	ΤI	DE	? S	S	Y	ΥH	ΙT	V	ΤJ	ΓN	ΙY	V.	ΑĽ	N	FO	T	ΝM	1 T	NE	ΓL	FQ	V	DΗ	Ľ	ΓY	V	ΣŢ	E I	P R	Fľ	'P	QE	L.	V
Т	Q	S F	Ρ	Γl	ΗE	P.	Al	MN	Т	ΤI	DE	? S	S	Ϋ́	ΥH	ΙT	Т	T I	ΙN	ΙY	V	VE	N	FG	T	ΝΊ	T	ΕE	ΓL	FQ	V	DH	Ľ	ΓY	V	ΣL	ΕJ	AR	Fľ	P	QE	Ľ	V

310 320 330 340 350 360 R QLNETLRRNNRLSNSTGRLTWTLDPKIEPDVGEWAFWETKKTFPNNFMEKTCISKFYQPT E QLNETIYASGKRSNTTGKLIWKVNPEIDTTIGEWAFWETKKTSLEKFAVKSCLSQLYQT-S QLNDTIHLHQQLSNTTGRLIWTLDANINADIGEWAFWENKKISPNNYVEKSCLSKLYRST B QLNETIYTNGRRSNTTGTLIWKVNPTVDTGVGEWAFWENKKTSQNPFQ--S-S-----T LLNETIYSDNRRSNTTGKLIWKINPTVDTSMGEWAFWENKKTHQNPFQ-------

		370	380	390	400	410	420
R	PTTPQIR	ARRELSKEKL	ATTHPPTTPS	WFQRIPLQWF	QCSLQDGQRKO	C R P K V	
Е	PKTSVVR	VRRELLPTQ-	ΡΤQQ-ΚΤΤΚS	WLQKIPLQWF	KCTVKEGKLQO	CRI	
s	RQKTMMR	HRRELQREES	PTGPPGSIRT	WFQRIPLGWFH	HCTYQKGKQHO	CRLRIRQKVEE	2 2
в	AA	SAS-		- F F -	S	H S	
т							

	G – NP						
		10	20	30	40	50	60
R	MDRGTRRI	WVSQNQGI	DTDLDYHKII	LTAGLTVQQG	IVRQKIISVY	LVDNLEAMCQL	VIQAF
Е	MDSRPQKV	WMTPSLTI	ESDMDYHKII	LTAGLSVQQG	IVRQRVIPVY	QVNNLEEICQL	IIQAF
s	MDKRVRGS	WALGGQSI	EVDLDYHKI	LTAGLSVQQG	IVRQRVIPVY	VVSDLEGICQH	IIQAF
Е	MDPRPIRT	WMMHNTSI	EVEADYHKII	LTAGLSVQQG	IVRQRIIPVY	QISNLEEVCQL	IIQAF
Т	MESRAHKAN	WMTHTAS	GFETDYHKII	LTAGLSVQQG	IVRQRVIQVH	QVTNLEEICQL	IIQAF
		70	80	90	100	110	120
R	EAGIDFQE	NADSFLLN	ИГСГННУЛО	GDYKLFLESNA	AVQYLEGHGF	KFELRKKDGVN	IRLEEL
Е	EAGVDFQES	SADSFLLM	ALCLHHAYQ	GDYKLFLESGA	AVKYLEGHGF	RFEVKKCDGVK	RLEEL

S EAGVDFQDNADSFLLLLCLHHAYQGDHRLFLKSDAVQYLEGHGFRFEVREKENVHRLDEL
B EAGVDFQDSADSFLLMLCLHHAYQGDYKQFLESNAVKYLEGHGFRFEMKKKEGVKRLEEL
T EAGVDFQESADSFLLMLCLHHAYQGDYKQFLESNAVKYLEGHGFRFEVRKKEGVKRLEEL

		130	140	150	160	170	180
R	LPAATS	GKNIRRTL	AALPEEETTEA	NAGQFLSFAS	SLFLPKLVV	GEKACLEKVQRQ	ĮIQVHA
Е	LPAVSS	GRNIKRTL	AAMPEEETTEA	NAGQFLSFAS	SLFLPKLVV	GEKACLEKVQRQ	ĮIQVHA
s	LPNVTG	GKNLRRTL	AAMPEEETTEA	NAGQFLSFAS	STLTKK	GEKACLEKVQRQ	QVHA IQVHA
в	LPAASS	GKNIKRTL	AAMPEEETTEA	NAGQFLSFAS	CLETDKTAA	GEKACLEKVQRQ	<u>IQVHA</u>
Т	LPAASS	GKSIRRTL	AAMPEEETTEA	NAGQFLSFAS	STLTLKTVV	GEKACLEKVQRQ	ĮIQVHS

190200210220230240REQGLIQYPTAWQSVGHMMVIFRLMRTNFLIKYLLIHQGMHMVAGHDANDAVIANSVAQAREEQGLIQYPTAWQSVGHMMVIFRLMRTNFLIKFLLIHQGMHMVAGHDANDAVISNSVAQARSEQGLIQYPTSWQSVGHMMVIFRLMRTNFLIKFLLIHQGMHMVAGHDANDTVISNSVAQARBEQGLIQYPTSWQSVGHMMVIFRLMRTNFLIKFLLIHQGMHMVAGHDANDAVIANSVAQARTEQGLIQYPTAWQSVGHMMVIFRLMRTNFLIKFLLIHQGMHMVAGHDANDAVIANSVAQAR

		250	260	270	280	290	300
R	FSGLLIV	VKTVLDHILQ	KTDQGVRL	HPLARTAKVRI	NEVNAFKAAL	SSLAKHGEYA	PFARLL
Е	FSGLLIV	VKTVLDHILQ	KTERGVRL	HPLARTAKVK	NEVNSFKAAL	SSLAKHGEYA	PFARLL
s	FSGLLIV	VKTVLDHILQ	KTDLGVRL	HPLARTAKVK	NEVSSFKAAL	GSLAKHGEYA	PFARLL
в	FSGLLIV	VKTVLDHILQ	KTEHGVRL	HPLARTAKVK	NEVSSFKAAL	ASLAQHGEYA	PFARLL
т	FSGLLIV	VKTVLDHILQ	KTEHGVRL	HPLARTAKVK	NEVNSFKAAL	SSLAQHGEYA	PFARLL

310320330340350360BNLSGVNNLEHGLYPQLSAIALGVATAHGSTLAGVNVGEQYQQLREAATEAEKQLQQYAESSNLSGVNNLEHGLFPQLSAIALGVATAHGSTLAGVNVGEQYQQLREAATEAEKQLQQYAETBNLSGVNNLEHGLFPQLSAIALGVATAHGSTLAGVNVGEQYQQLREAATEAEKQLQKYAESTNLSGVNNLEHGLFPQLSAIALGVATAHGSTLAGVNVGEQYQQLREAATEAEKQLQKYAES

		370		380	390	400	410	420
R	RELDS	SLGLDDQ	QERRILMN	FHQKKNEI	SFQQTNAM	VTLRKERLAK	LTEAITLASRP	NLGSR
Е	RELDH	ILGLDD	QEKKILMN	IFHQKKNEI	SFQQTNAM	VTLRKERLAK	LTEAITAASLP	KTSGH
s	RELDN	ILGLDE	QEKKILMS	FHQKKNEI	SFQQTNAM	VTLRKERLAK	LTEAITTASKI	KVGDR
в	RELDH	ILGLDD	QEKKILKD	FHQKKNEI	SFQQTTAM	VTLRKERLAK	LTEAITSTSIL	KTGRR
т	RELDH	ILGLDD	QEKKILKC	FHQKKNEI	SFQQTTAM	VTLRKERLAK	LTEAITSTSLL	KTGKQ

430 440 450 460 470 480 R QDDGNEIPFPGPISNNPDQDHLEDDPRDSRDTIIPNGAIDPEDGDFENYNGYHDDEVGTA E YDDDDDIPFPGPINDDDNPGHQDDDPTDSQDTTIPDVVVDPDDGGYGEYQSYSENGMSAP S YPDDNDIPFPGPIYDETHPNPSDDNPDDSRDTTIPGGVVDPYDDESNNYPDYEDSAEGTT B YDDDNDIPFPGPINDNENSGONDDDPTDSQDTTIPDVIIDPNDGGYNNYSDYANDAASAP T YDDDNDIPFPGPINDNENSEOODDDPTDSODTTIPDIIVDPDDGRYNNYGDYPSETANAP

610620630640650660R ASSSQQDPDYTAVAPPAPVYRSAEAHEPPHKSSNEPAETSQL-NEDPDIGQSKSMQKLEEE QDRDGTSNRTPTVAPPAPVYRDHSEKKELPQDEQQDQDHI-QEARNQDSDNTQPEHSFEES DVESVSGENNPTVAPPAPVYKDTGVDTNQQNGP-SNAVDGQGSESEALPINPEKRSALEEB STDTTAAETKPATAPPAPVYRSISVDDSVPLEN-IPAQSNQTNNEDNVRNNAQSEQSIAET NTETTITTTKNTTAPPAPVYRSNSEKEPLPQEK-SQKQPNQVSGSENTDNKPHSEQSVEE

							6	670)							6	80)							(59(0							70)0						1	710)						72	20
R	Т	Y	ΗI	ΗI	ιI	R	ΤÇ	20	GΡ	'F	Ε.	А	II	N N	ΥY	ζH	١N	1 M	ΙK	D	Ε	Ρ	V	Ι	F	S :	ΓI	DE	G	Κ	E	Ϋ́	ΓY	ΥP	D	S 1	ΓE	E	ΑY	ζP	P	ΜI	Γ	Έ	K I	ΞR	ιL	DI	ΚE	Ν
Е	Μ	Y	RI	ΗI	I	R	S	20	GΡ	'F	D.	A	V	L	ΥY	ζH	١N	1 M	ΙK	D	Е	Ρ	V	V	F	S :	ΓS	5 E	G	K	E	Ϋ́	ΓY	ΥP	D	S 1	ΞE	Е	ΕY	ΥP	P	WI	ЪТ	E	ΚJ	ΞA	M	ΝI	ΣE	Ν
s	Т	Y	ΥI	ΗI	ιI	K	ΤÇ	20	GΡ	'F	E.	A	II	N N	ΥY	ζH	ΗI	M	S	D	Е	Ρ	Ι	A	F	S :	ΓE	ΞS	G	K	E	ΥI	EE	ΓP	D	S 1	ĿΕ	E	ΑY	ζP	P	WI	S	Е	ΚJ	ΞA	L	ΕI	ΚE	Ν
в	Μ	Y	QI	ΗI	Ι	K	ΤÇ	20	GΡ	P F	D	A	II	L	ΥY	ζH	١N	1 M	ΙK	Έ	Ε	Ρ	Ι	Ι	F	S :	ΓS	5 E) G	Κ	E	Ϋ́	ΓY	ΥP	D	S 1	ĿΕ	D	ΕY	ζP	P	WI	S	Е	ΚJ	ΞA	M	ΝI	ΞD	Ν
т	М	Y	RI	ΗI	I	Q	ΤÇ	QQ	GΡ	'F	D.	А	II	ΓJ	ΥY	Υ	ΖM	1 M	ΙT	E	Е	Ρ	Ι	V	F	S :	ГS	5 E	G	K	E	Y١	7 Y	ΖP	D	S 1	ĹΕ	G	Εŀ	ΗP	P	WI	S	Е	ΚJ	ΞA	L	ΝI	ΞD	Ν

730 740 R RYIYINNQQFFWPVMSPRDKFLAILQHHQ E RFVTLDGQQFYWPVMNHRNKFMAILQHHQ S RYLVIDGQQFLWPVMSLQDKFLAVLQHD-B RFITMDGQQFYWPVMNHRNKFMAILQHHR T RFITMDDQQFYWPVMNHRNKFMAILQHHK

H-L						
1	10	20	30	40	50	60
R -MATQHTQ	YPDARLSSPI	VLDQCDLVTR	ACGLYSSYSL	NPQLRQCKLP	KHIYRLKFDI	CIV
E -MATQHTQ	YPDARLSSPI	VLDQCDLVTR	ACGLYSSYSL	NPQLRNCKLP	KHIYRLKYDV	/TV
S MMATQHTQ	YPDARLSSPI	VLDQCDLVTR	ACGLYSEYSL	NPKLRTCRLP	KHIYRLKYDI	ΓIV
B-MATQHTQ	YPDARLSSPI	VLDQCDLVTR	ACGLYSSYSL	NPQLKNCRLP	KHIYRLKFDA	λ T V
T - MATQHTQ	YPDARLSSPI	VLDQCDLVTR	ACGLYSAYSL	NPQLKNCRLP	KHIYRLKYDI	ΓΤΖ

110 70 100 120 80 90 R SKFLSDTPVATLPIDYLVPILLRSLTGHGDRPLTPTCNQFLDEIINYTLHDAAFLDYYLK E TKFLSDVPVATLPIDFIVPILLKALSGNGFCPVEPRCQQFLDEIIKYTMQDALFLKYYLK S LRFISDVPVATIPIDYIAPMLINVLADSKNVPLEPPCLSFLDEIVNYTVQDAAFLNYYMN B TKFLSDVPIVTLPIDYLTPLLLRTLSGEGLCPVEPKCSQFLDEIVSYVLQDARFLRHYFR T TEFLSDVPVATLPADFLVPTFLRTLSGNGSCPIDPKCSQFLEEIVNYTLQDIRFLNYYLN

130140150160170180R ATGAQDHLTNIATREKLKNEILNNDYVHQLFFWHDLSILARRGRLNRGNNRSTWFVHDEFE NVGAQEDCVDDHFQEKILSSIQGNEFLHQMFFWYDLAILTRRGRLNRGNSRSTWFVHDDLS QIKTQEGVITDQLKQNIRRVIHKNRYLSALFFWHDLAILTRRGRMNRGNVRSTWFVTNEVB HVGVHDDNVGKNFEPKIKALIYDNEFLQQLFYWYDLAILTRRGRLNRGNNRSTWFANDDLT RAGVHNDHVDRDFGQKIRNLICDNEVLHQMFHWYDLAILARRGRLNRGNNRSTWFASDNL

190 200 210 220 230 240 R IDILGYGDYIFWKIPLSLLPVTIDGVPHAATDWYQPTLFKESILGHSQILSVSTAEILIM E IDILGYGDYVFWKIPISLLPLNTQGIPHAAMDWYQTSVFKEAVQGHTHIVSVSTADVLIM S VDILGYGDYIFWKIPIALLPMNTANVPHASTDWYQPNIFKEAIQGHTHIISVSTAEVLIM **B**IDILGYGDYIFWKIPLSLLSLNTEGIPHAAKDWYHASIFKEAVQGHTHIVSVSTADVLIM T VDILGYGDYIFWKIPLSLLPVDTQGLPHAAKDWYHESVFKEAIQGHTHIVSISTADVLIM

							25	50							2	60)							27	0						2	280)						29	0						30	0
R	С	ΚI	DI	Ι	Т	CF	F	Ν.	ΓS	SΙ	ιI	А	S	IZ	ΑI	ζI	ιE	D	V	D١	VS	S D) Y	Ρ	DI	P S	5 D	Ι	Γŀ	ΚI	Υ	NA	G	D	ΥV	Ί	S :	ΓL	G	SE	G	Y	ΚI	II	ΚY		E
Е	С	ΚI	DI	JI	Т	CF	F	N .	r 1	ΓI	ιI	S	K	IZ	AI	ΞV	Έ	D	P	V	CS	S D)Y	Ρ	N	ΕK	Ί	V	SI	4L	Y	QS	G	D	ΥI	L	S :	ΓL	G	SI	G	Y	ΚI	II	ΚF	'L	E
s	С	ΚI	DI	V	Т	SR	F	N .	ΓI	L	ιI	A	Е	LZ	ΑI	RI	ιE	D	P	V	SI	A D)Y	Ρ	L١	VE	N	Ι	QS	δL	Υ	NA	G	D	ΥI	L	S :	ΓL	G	SE	G	Y	ΚI	II	ΚY	L	E
в	С	ΚI	DI	Ι	Т	CR	F	N .	Γſ	ΓL	I	A	A	LZ	A I	11	ιE	D	S	I	CS	S D)Y	Ρ	Q	ΡE	Т	Ι	Sl	ΙL	Υ	KA	G	D	ΥI	I	S :	ΓL	G	SE	G	Y	ΚV	II	K F	'L	E
т	С	ΚI	DI	I	т	CF	F	N .	ΓI	Ľ	ιI	А	A	V	A I	ΙI	ιE	D	S	V	H S	S D) Y	Ρ	L	ΡE	Т	V	SI	ΣL	Y	KA	G	D	ΥI	I	S I	ΓL	G	SE	G	Y	ΚV	II	K F	'L	E

310 320 330 340 350 360 R PLCLAKIQLCSKFTERKGRFLTQMHLSVINDLRELISNRRLKDYQQEKIRDFHKILLQLQ E PLCLAKIQLCSKYTERKGRFLTQMHLAVNHTLEEITEIRALKPSQAHKIREFHRTLIRLE S PLCLAKIQLCSQYTERKGRFLTQMHLAVIQTLRELLLNRGLKKSQLSKIREFHQLLLRLR B PLCLAKIQLCSNYTERKGRFLTQMHLAVNHTLEELIEGRGLKSQQDWKMREFHRILVNLK T PLCLAKIQLCSNYTERKGRFLTQMHLAVNHTLEELTGSRELRPQQIRKVREFHQMLINLK

370380390400410420R LSPQQFCELFSVQKHWGHPILHSEKAIQKVKRHATILKALRPNVIFETYCVFKYNIAKHYE MTPQQLCELFSIQKHWGHPVLHSETAIQKVKKHATVLKALRPIVIFETYCVFKYSIAKHYS STPQQLCELFSIQKHWGHPVLHSEKAIQKVKNHATVLKALRPIIIFETYCVFKYSVAKHFB STPQQLCELFSVQKHWGHPVLHSEKAIQKVKKHATIIKALRPIIIFETYCVFKYSIAKHYT ATPQQLCELFSVQKHWGHPVLHSEKAIQKVKKHATVIKALRPIIIFETYCVFKYSIAKHY

		430	440	450	460	470	480
R.	FDSQGT	WYSVISDR	NLTPGLNSFI	KRNHFPSLPMI	KDLLWEFYH	LNHPPLFSTKV	ISDLS
Е	FDSQGSV	WYSVTSDR	NLTPGLNSYI	KRNQFPPLPMI	KELLWEFYH	LDHPPLFSTKI	ISDLS
s	FDSQGTV	WYSVISDR	CLTPGLNSYI	RRNQFPPLPMI	KDLLWEFYH	LDHPPLFSTKI	ISDLS
в	FDSQGSV	WYSVISDK	HLTPGLHSYI	KRNQFPPLPMI	KDLLWEFYH	LDHPPLFSTKI	ISDLS
Т	FDSQGT	WYSVTSDR	CLTPGLSSYI	KRNQFPPLPMI	KELLWEFYH	LDHPPLFSTKV	ISDLS

490500510520530540RIFIKDRATAVEQTCWDAVFEPNVLGYNPPNKFSTKRVPEQFLEQEDFSIESVLNYAQELHEIFIKDRATAVERTCWDAVFEPNVLGYNPPHKFSTKRVPEQFLEQENFSIENVLSYAQKLESIFIKDRATAVEQTCWDAVFEPNVLGYSPPYRFNTKRVPEQFLEQEDFSIESVLQYAQELRBIFIKDRATAVEKTCWDAVFEPNVLGYSPPNKFSTKRVPEQFLEQENFSIDSVLTYAQRLDTIFIKDRATAVEKTCWDAVFEPNVLGYNPPNKFATKRVPEQFLEQENFSIESVLHYAQRLE

550560570580590600RYLLPQNRNFSFSLKEKELNIGRTFGKLPYLTRNVQTLCEALLADGLAKAFPSNMMVVTEREYLLPQYRNFSFSLKEKELNVGRTFGKLPYPTRNVQTLCEALLADGLAKAFPSNMMVVTERSYLLPQNRNFSFSLKEKELNVGRAFGKLPYPTRNVQTLCEALLADGLAKAFPSNMMVVTERBYLLPQYRNFSFSLKEKELNVGRAFGKLPYPTRNVQTLCEALLADGLAKAFPSNMMVVTERTYLLPEYRNFSFSLKEKELNIGRAFGKLPYPTRNVQTLCEALLADGLAKAFPSNMMVVTER

610620630640650660REQKESLLHQASWHHTSDDFGENATVRGSSFVTDLEKYNLAFRYEFTAPFIEYCNHCYGVREEQKESLLHQASWHHTSDDFGEHATVRGSSFVTDLEKYNLAFRYEFTAPFIEYCNRCYGVKSEQKESLLHQASWHHTSDDFGENATVRGSSFVTDLEKYNLAFRYEFTAPFIEYCNRCYGVKBEQKESLLHQASWHHTSDDFGENATVRGSSFVTDLEKYNLAFRYEFTAPFIEYCNRCYGVKTEQKESLLHQASWHHTSDDFGENATVRGSSFVTDLEKYNLAFRYEFTAPFIEYCNRCYGVR

		670	680	690	700	710	720
R	NVFNWMH	YLIPQCYMHV	SDYYNPPHNVN	NLSNREYPPE	GPSSYRGHLG	GIEGLQQKLW	ΤSΙ
Е	NVFNWMH	YTIPQCYMHV	SDYYNPPHNL	L E N R N N P P E	GPSSYRGHMG	GIEGLQQKLW	ΤSΙ
s	NVFDWMH	FLIPQCYMHV	SDYYNPPHNVI	L E N R E Y P P E	GPSAYRGHLG	GIEGLQQKLW	ΤSΙ
в	NLFNWMH	YTIPQCYIHV	SDYYNPPHGVS	SLENREDPPE	GPSSYRGHLG	GIEGLQQKLW	ΤSΙ
т	NLFNWMH	YTIPQCYIHV	SDYYNPPHGVS	SLENRENPPE	GPSSYRGHLG	GIEGLQQKLW	ΤSΙ

		730	740	750	760	770	780
R	SCAQISL	VEIKTGFKLRS	SAVMGDNQCII	TVLSVFPLETI	DPEEQEQSAE	DNAARVAAS	LAKV
Е	SCAQISL	VEIKTGFKLRS	SAVMGDNQCII	TVLSVFPLET	DAGEQEQSAE	DNAARVAAS	LAKV
s	SCAQISL	VEIKTGFKLRS	SAVMGDNQCII	TVLSVFPLES	SPNEQERCAE	DNAARVAAS	LAKV
в	SCAQISL	VEIKTGFKLRS	SAVMGDNQCII	TVLSVFPLET	DSNEQEHSSE	DNAARVAAS	LAKV
Т	SCAQISL	VEIKTGFKLRS	SAVMGDNQCIT	VLSVFPLET	ESSEQELSSE	DNAARVAAS	LAKV

		790	800	810	820	830	840
R	TSACGI	FLKPDETI	FVHSGFIYFGK	KQYLNGVQLPQ	SLKTAARMA	PLSDAIFDDLQ	GTLAS
Е	TSACGI	FLKPDETI	FVHSGFIYFGK	KQYLNGVQLPQ	SLKTATRMA	PLSDAIFDDLQ	GTLAS
s	TSACGI	FLKPDETI	FVHSGFIYFGK	KQYLNGIQLPQ	SLKTAARMA	PLSDAIFDDLQ	GTLAS
в	TSACGI	FLKPDETI	FVHSGFIYFGK	KQYLNGVQLPQ	SLKTATRIA	PLSDAIFDDLQ	GTLAS
Т	TSACGI	FLKPDETI	FVHSGFIYFGK	KQYLNGVQLPQ	SLKTATRIA	PLSDAIFDDLQ	GTLAS

850860870880890900RIGTAFERAISETRHILPCRIVAAFHTYFAVRILQYHHLGFNKGIDLGQLSLSKPLDYGTIEIGTAFERSISETRHIFPCRITAAFHTFFSVRILQYHHLGFNKGFDLGQLTLGKPLDFGTISIGTAFERSISETRHILPCRVAAAFHTYFSVRILQHHHLGFHKGSDLGQLAINKPLDFGTIBIGTAFERSISETRHVYPCRVVAAFHTFFSVRILQYHHLGFNKGTDLGQLSLSKPLDFGTITIGTAFERSISETRHVVPCRVAAAFHTFFSVRILQYHHLGFNKGTDLGQLSLSKPLDFGTI

910 920 930 940 950 960 R TLTLAVPQVLGGLSFLNPEKCFYRNFGDPVTSGLFQLRVYLEMVNMKDLFCPLISKNPGN E SLALAVPQVLGGLSFLNPEKCFYRNLGDPVTSGLFQLKTYLRMIEMDDLFLPLIAKNPGN S ALSLAVPQVLGGLSFLNPEKCFYRNLGDPVTSGLFQLKHYLSMVGMSDIFHALVAKSPGN B TLALAVPQVLGGLSFLNPEKCFYRNLGDPVTSGLFQLRTYLQMINMDDLFLPLIAKNPGN T TLALAVPQVLGGLSFLNPEKCFYRNLGDPVTSGLFQLKTYLQMIHMDDLFLPLIAKNPGN

970 980 990 1000 1010 1020 R CSAIDFVLNPSGLNVPGSQDLTSFLRQIVRRSITLTARNKLINTLFHASADLEDEMVCKW E CTAIDFVLNPSGLNVPGSQDLTSFLRQIVRRTITLSAKNKLINTLFHASADFEDEMVCKW S CSAIDFVLNPSGLNVPGSQDLTSFLRQIVRRSITLSARNKLINTLFHASADLEDELVCKW H CSAIDFVLNPSGLNVPGSQDLTSFLRQIVRRTITLSAKNKLINTLFHSSADLEDEMVCKW

103010401050106010701080RLLSSNPVMSRFAADIFSRTPSGKRLQILGYLEGTRTLLASKIINNNSETPVLDKLRKITLELLSSTPVMSRFAADIFSRTPSGKRLQILGYLEGTRTLLASKIINNNTETPVLDRLRKITLSLLSSTPVMSRFAADIFSRTPSGKRLQILGYLEGTRTLLASKMISNNAETPILERLRKITLBLLSSTPVMSRFAADIFSRTPSGKRLQILGYLEGTRTLLASKVINNNAETPILDRLRKITLTLLSSTPVMSRFAADIFSRTPSGKRLQILGYLEGTRTLLASKVINNNAETPILDRLRKITL

		1090	1100	1110	1120	1130	1140
R	QRWN	ILWFSYLDHC	CDQLLADALQKI	SCTVDLAQI	LREYTWSHILE	EGRSLIGATLPO	CMVEQF
Е	QRWS	SLWFSYLDHC	CDNILAEALTQI	TCTVDLAQI	LREYSWAHILE	EGRPLIGATLPO	CMIEQF
s	QRWN	ILWFSYLDHC	CDPALMEAIQPI	KCTVDIAQI	LREYSWAHILI	OGRQLIGATLPO	CIPEQF
в	QRWS	SLWFSYLDHC	CDQVLADALIKV	SCTVDLAQI	LREYTWAHILE	EGRQLIGATLPO	CMLEQF
Т	QRWS	SLWFSYLDHC	CDQVLADALTQI	TCTVDLAQI	LREYTWAHILE	EGRQLIGATLPO	CILEQL

1150 1160 1170 1180 1190 1200 R KVKWLGQYEPCPECLNKKG--SNAYVSVAVKDQVVSAWPNTSRISWTIGSGVPYIGSRTE E KVVWLKPYEOCPOCSNAKOPGGKPFVSVAVKKHIVSAWPNASRISWTIGDGIPYIGSRTE SQTTWLKPYEQCVECSSTNN--SSPYVSVALKRNVVSAWPDASRLGWTIGDGIPYIGSRTE BNVFWLKSYEQCPKCARSRNPKGEPFVSIAIKKQVVSAWPNQSRLNWTIGDGVPYIGSRTE T NVIWLKPYEHCPKCAKSANPKGEPFVSIAIKKHVVSAWPDOSRLSWTIGDGIPYIGSRTE

121012201230124012501260R DKIGQPAIKPRCPSSALKEAIELASRLTWVTQGGSNSEQLIRPFLEARVNLSVSEVLQMTE DKIGQPAIKPKCPSAALREAIELASRLTWVTQGSSNSDLLIKPFLEARVNLSVQEILQMTS DKIGQPAIKPRCPSAALREAIELTSRLTWVTQGGANSDQLIRPFLEARVNLSVQEILQMTB DKIGQPAIKPKCPSAALREAIELTSRLTWVTQGGANSDLLVKPFVEARVNLSVQEILQMTT DKIGQPAIKPKCPSAALREAIELTSRLTWVTQGGANSDLLVKPFIEARVNLSVQEILQMT

					1	27	70					1	28	0						12	90						13	00					1	31	0					132	20
R	ΡS	Н	Y S	SG	N 1	. V	ΗR	Y 1	NĽ	Q	ΥS	S P	H	SE	M	A.	NF	۲M	IS	N 'I	ΓA	Τł	RΤ	I	VS	SТ	ΝΊ	L	GE	F	SG	G	ΞQ	A	AR	DS	5 N .	II	F	2 N	V
Е	ΡS	H	Y	SG	ΝI	V	ΗR	Y 1	ND	Q	ΥS	SP	H	SE	ſМ	A	ΝF	۲M	IS	N S	δA	ΤI	RI	I	VS	SТ	ΝΊ	'L	GΕ	F	SG	G	ΞQ	SI	AR	DS	SN:	ΙI	F	ΩN	V
s	ΡS	Η	Y	SG	ΝI	V	ΗR	YI	ND	Q	ΥS	S P	Н	SE	M	A	NF	RM	1S	Nľ	ΓA	ΤI	RI	M	VS	SΤ	ΝΊ	'L	GE	F	SG	G	ΞQ	A	AR	DS	S N I	ΙI	F	ΩN	V
в	ΡS	Η	Y	5 G	ΝI	V	ΗR	Yl	ND	Q	ΥS	5 P	Н	SE	M	A	NF	RΜ	1S	NS	δA	ΤŦ	RI	V	VS	SΤ	ΝΊ	'L	GΕ	F	SG	G	ΞQ	SI	AR	DS	S N I	ΙI	F	ΩN	V
т	ΡS	H	YS	S G	ΝI	V	ΗR	Yl	ND	Q	ΥS	δP	Н	SE	M	A	ΝF	RM	۱S	NS	δA	ΤI	RI	V	VS	SΤ	ΝΊ	'L	GΕ	F	SG	G	ΞQ	S I	AR	DS	S N I	ΙI	F	ΩN	V

1330 1340 1350 1360 1370 1380 RINLAVALYDIRFRNTNTSDIRHNRAHLHLTECCTKEVPAQYLTYTSALNLDLSRYRDNEL E INYAVALFDIKFRNTEATDIQYNRAHLHLTKCCTREVPAQYLTYTSTLDLDLTRYRENEL S INFAVALYDIRFRNTCTSSIQYHRAHIHLTNCCTREVPAQYLTYTTTLNLDLSKYRNNEL BINFAVALFDLRFRNTETSSIQHNRAHLHLSQCCTREVPAQYLTYTSTLSLDLTRYRENEL TINFAVALFDLRFRNVATSSIQHHRAHLHLSKCCTREVPAQYLVYTSTLPLDLTRYRDNEL

1390 1400 1410 1420 1430 1440 RIYDSNPLKGGLNCNLTIDSPLVKGPRLNMIEDDLLRFPHLSGWELAKTVVQSIISDNSNS EIYDNNPLKGGLNCNISFDNPFFQGKQLNIIEDDLIRLPHLSGWELAKTIMQSIISDSNNS SIYDSEPLRGGLNCNLSIDSPLMKGPRLNIIEDDLIRLPHLSGWELAKTVLQSIISDSSNS BIYDNNPLKGGLNCNLSFDNPLFKGQRLNIIEEDLIRFPHLSGWELAKTIIQSIISDSNNS TIYDDNPLRGGLNCNLSFDNPLFKGQRLNIIEEDLIRLPYLSGWELAKTVIQSIISDSNNS

1500 1450 1460 1470 1480 1490 RSTDPISSGETRSFTTHFLTYPQIGLLYSFGAVLCFYLGNTILWTKKLDYEQFLYYLHNQL ESTDPISSGETRSFTTHFLTYPKIGLLYSFGAFVSYYLGNTILRTKKLTLDNFLYYLTTQI SSTDPISSGETRSFTTHFLTYPKIGLLYSFGALISFYLGNTILCTKKIGLTEFLYYLQNQI **B**STDPISSGETRSFTTHFLTYPKVGLLYSFGAIVSYYLGNTIIRTKKLDLSHFMYYLTTQI TSTDPISSGETRSFTTHFLTYPKIGLLYSFGALISYYLGNTIIRTKKLTLNNFIYYLATOI

					15	10						15	520)						15	30						1	54()					1.	550)					15	60
_	LIN	тт		2 7	ТБ	17	17 1			E L		7	C 1	7 M	C				т		- N		с ·		T					D	СТ	C		7	пτ	12	тт		<u>,</u>	T 7		T T
H E	ни	т.т	гл 1 рн 1	R A	LF	сv эт	г г т. Б	K P K P	т т	יי די	с п с н	A	ים 12	7 M	c c	RI	ь м. г. м	15	т Т	ם דם	н с и с	ਾ ਸ	ວ. ເ	L I T V	т Т	GG	7 I 2 A	20	ם ב חב	R	G L G L	с 2		A.	RL	. ਹੈ। ਸਿ	ь г т. т	ς τ γ π	А. с	T G	21	сь вт.
s	HN	LS	5 Н F	RS	LF	λΤ	FF	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	T	FF	λΗ	S	SI	7 M	S	RI	с. М	10	T	DI	- 11 - N	F	s:	ΓY	T	GC	Τ	A	5 D	R	GL	s	DA	A	RI	F	LF	λI	A :	IS	TI	FL
в	ΗN	LI	PHF	RS	LF	λI	Lŀ	ΚP	T	Fŀ	КΗ	v	S١	7 I	S	RI	LM	1 S	I	DB	Р Н	F	S :	ΙY	I	GG	Τ	A	G D	R	GL	s	DA	T	RL	F	L F	١v	A :	I S	SI	FL
т	ΗN	ΓI	PHF	RS	Γ	۱I	ΓF	ΚP	т	Γŀ	КΗ	A	S١	<i>1</i> I	S	RI	LΙ	S	Ι	DS	SН	F	S :	ΙY	Ι	GO	ЪT	A	G D	R	GL	S	DA	A	RL	F	Γ	۲۶	A	IТ	v	FL

1570 1580 1590 1600 1610 1620 RQFLKSWIIDRQKTIPLWIVYPLEGQQPESINEFLHKILGLLKQGPKSIPKEVSIQNDGHL ETFVKEWIINRGTIVPLWIVYPLEGQNPTPVNNFLHQIVELLVHDSSRHQAFK--TTINDH SSFVEEWVIFRKANIPLWVIYPLEGQRPDPPGEFLNRVKSLIVGTEDDKNKGSIL--SRSG BQFVKKWIVEYRTAIPLWVVYPLEGQNPDPINSFLHQIIALLQNESP--QNNIQFQEGRNN TQFVRKWIVERKTAIPLWVIYPLEGQSPSPINSFLHHVIALLQHESS--HDHVCAAEAHSR

163016401650166016701680R DLAENNYVYNSKSTASNFFHASLAYWRSRKSRKTQDHNDFSRGDGTL---TEPVRKFSSE VHPHDNLVYTCKSTASNFFHASLAYWRSRHRNSNRKDLTRNSSTGSSTNNSDGHIKRSQES EKCSSNLVYNCKSTASNFFHASLAYWRGRHRPKKTIGATNATTAPHI---ILPLGNSDRB QQLSDNLVYMCKSTASNFFHASLAYWRSRHKGRPKNRSTEEQTVKPRPYNNFHSVKCASNT VETFDNLVYMCKSTASNFFHASLAYWRSRSKNQDKREMTKILSLTQTEKKN--SFGYTAH

1690 1700 1710 1720 1730 174	1690
------------------------------	------

R -----NHQSDEKYYNVTCGKSPKPQERKDF--SQYRLSNNGQTMSNHRKKGKFHKWNPCK E QT------TRDPHDGTERSLVLQMSHEIKRTTIPQ-----ENTHQGPSFQ S PPGLDLNRNNDTFIPTRIKQIVQGDSRNDRT-TTTRFPPKSRS-----TPTSATEPPTK B PPSIP--KSKSGT----QGSSA-FFEKLEYD-KEIELPTASTP---AEKPKTYTKALSSR T PESTAVLGSLQTS----LAPPP-SADEATYD-RKNKVLKASRP---GKYSQNTTKAPPNQ

1750 1760 1770 1780 1790 1800 R MLMESQRGTVL-----TEGDYFQNNTPPTDDVSSPHRLILPFFKLGNHNHAHD E SFLSDSACGTANPKLNFDRSRHNVKSQDHNSASKREGHQIISHRLVLPFFTLSQGTRQLT S MYEGSTTHQGK-----LTDTHLDEDHNAKEFPSNPHRLVVPFFKLTKDGEYSI B IYHGKTPSNAAKDDSTT----SKGCDS----KEENAVQASHRIVLPFFTLSQNGYRTP T T----SCRDVSPNITG----TDGCPSANEGSNSNNNLVSHRIVLPFFTLSHNYNERP

181018201830184018501860R QDAQELMNQNIKQYLHQLRSMLDTTIYCRFTGIVSSMHYKLDEVLLEYNSFDSAITLAEGE SSNESQTQDEISKYLRQLRSVIDTVYCRFTGIVSSMHYKLDEVLWEIENFKSAVTLAEGS EPSPEESRSNIKGLLQHLRTMVDTTIYCRFTGIVSSMHYKLDEVLWEYNKFESAVTLAEGB SVKKSEYVTEITKLIRQLKAIPDTTVYCRFTGVSSMHYKLDEVLWEFDSFKTAVTLAEGT SIRKSEGTTEIVRLTRQLRAIPDTTIYCRFTGIVSSMHYKLDEVLWEFDNFKSAITLAEG

1870 1880 1890 1900 1910 1920 REGSGALLLLQKYSTRLLFLNTLATEHSIESEVVSGFSTPRMLLPIMQKVHEGQVTVILNN E EGAGALLLIQKYQVKTLFFNTLATESSIESEIVSGMTTPRMLLPVMSKFHNDQIEIILNN SEGSGALLLIQKYGVKKLFLNTLATEHSIESEVISGYTTPRMLLSIMPKTHRGELEVILNN BEGSGALLLLQKYKVRTIFFNTLATEHSIEAEIVSGTTTPRMLLPVMAKLHDDQINVILNN **T**EGSGALLLLOKYKVETLFFNTLATEHSIEAEIISGITTPRMLLPIMSRFHGGOIKVTLNN

					19	93(0					1	94	0						19	950)					1	196	50					1	97	0					1	98	0
_										_							_			_	_																	l		1			
н	SA	S	ΩI	ΤĽ) I	ΤS	3 S	M١	ΝL	S	- 1	٧Q	K	ΥN	ΙL	P	Cζ	2 V	Έ	Ι.	ΙM	1 M	D.	ΑĿ	зт	ΤI	ΕN	ΙL	Νł	RS	QI	ΓY	R A	٩V	Υ.	NI	'I	Г	DН	IJ	DP	Q	Y
Е	SA	S	ΩI	ΤĽ	Ι	ΤŅ	I P	ΤI	ΝF	K	- I	QC	R.	ΑF	۱J	Pl	RÇ	2 V	Έ	V	ΓI	M	D.	ΑE	Τ	ΤI	ΕN	ΙI	ΝI	RS	K I	LΥ	ΕÆ	٧٧	H	ΚI	٦I	LI	ΗH	V	DP	S	V
s	SA	S	ΩI	ΤĽ	Ι	ΤH	IR	DI	ΝF	S	- 1	٧Q	K	N F	۱I	ΡI	NI	ΟA	D	I	ΓΊ	M	D.	ΑE	Т	ΤI	ΕN	ΙL	DI	RS	RI	LΥ	ΕÆ	۸N	Y	ΤI	I	CI	ΝH	II	ΝP	'K	Т
в	SA	S	QV	ΤĽ	Ι	ΤN	I P	A١	ΝF	T	- I	QC	Κ	SF	۱I	P !	Гζ	2 V	Έ	ΙI	ΓM	M	D.	ΑE	Т	ΤI	ΕN	ΙI	ΝF	RS	K I	LΥ	ΕÆ	ΑI	Q	QI	٦I	V	SΗ	I	DΤ	R	V
Т	SA	S	ΩI	ΤĽ	I	ΤN	ΙP	SI	ΝL	Α	- I	QC	Κ	SF	۱I	ΡI	κç	2 V	Έ	I	ΙI	M	D.	ΑE	Т	ΤI	ΕŇ	ΙI	ΝF	RS	ΚI	LΥ	ΕÆ	٧٧	Q	QI	ιI	V	SН	IJ	DΡ	N.	A

1990 2000 2010 2020 2030 2040 RLKVVVLKVFLSDIEGILWINDYLAPLFGAGYLIKPITSSARSSEWYLCLSNLISTNRRSA E LKAVVLKVFLSDTEGMLWLNDNLAPFFATGYLIKPITSSARSSEWYLCLTNFLSTTRKMP S LKVVILKVFLSDLDGMCWINNYLAPMFGSGYLIKPITSSAKSSEWYLCLSNLLSTLRTTO BLKIVIIKVFLSDIDGLLWLNDHLAPLFGSGYLIKPITSSPKSSEWYLCLSNFLSASRRRP T LKVVVLKVFLSDIDGILWLNDNLTPLFGLGYLIKPITSSPKSSEWYLCLSNLLSTSRRLP

2050 2060 2070 2080 2090 2100 R HQTHKACLGVIRDALQAQVQRGVYWLSHIAQYATKNLHCEYIGLGFPSLEKVLYHRYNLV E HONHLSCKQVILTALQLQIQRSPYWLSHLTQYADCDLHLSYIRLGFPSLEKVLYHRYNLV S HQTQANCLHVVQCALQQQVQRGSYWLSHLTKYTTSRLHNSYIAFGFPSLEKVLYHRYNLV BHQGHATCMQVIQTALRLQVQRSSYWLSHLVQYADINLHLSYVNLGFPSLEKVLYHRYNLV THQSHTTCMHVIQTALQLQIQRSSYWLSHLVQYANHNLHLDYINLGFPSLERVLYHRYNLV

211021202130214021502160RDTGLGPLSSVIRHLTNLQAEIRDLVLDYNLMRESRTQTYHFIKTAKGRITKLVNDFLKFSEDSKRGPLVSVTQHLAHLRAEIRELTNDYNQQRQSRTQTYHFIRTAKGRITKLVNDYLKFFSDSRNGPLVSITRHLALLQTEIRELVTDYNQLRQSRTQTYHFIKTSKGRITKLVNDYLRFEBDSRKGPLVSILYHLTHLQAEIRELVCDYNQQRQSRTQTYHFIKTTKGRITKLVNDYLKFFTDSQKGPLTSIVQHLAHLQTEIRELVNDYNQQRQSRTQTYHFIKTIKGRITKLVNDYLKFF

2190	2200	2210	2220			
CNRFYHTHN	CECQEKFFVQ	TLYLQRLRDA	EIKLIE			
CNRFYHIRD	CNCEERFLVQ	TLYLHRMQDS	EVKLIE			
CHRFNHTRN	CTCSERFLVQ	TLYLHRMSDAI	EIKLMD			
CNRFYHIRD	CSCEDRFLIÇ	TLYLTRMQDSI	EVKLME			
CTRFYHTRN	CSCENRFLVQ	TLYLSRMQDSI	EIKLID			
	2190 CNRFYHTHN CNRFYHIRD CHRFNHTRN CNRFYHIRD CTRFYHTRN	2190 2200 CNRFYHTHNCECQEKFFVQ CNRFYHIRDCNCEERFLVQ CHRFNHTRNCTCSERFLVQ CNRFYHIRDCSCEDRFLIQ CTRFYHTRNCSCENRFLVQ	2190 2200 2210 CNRFYHTHNCECQEKFFVQTLYLQRLRDA CNRFYHIRDCNCEERFLVQTLYLHRMQDS CHRFNHTRNCTCSERFLVQTLYLHRMSDA CNRFYHIRDCSCEDRFLIQTLYLTRMQDS CTRFYHTRNCSCENRFLVQTLYLSRMQDS			

2230 RRLTGLMRFYPEGLIYSNHT ERLTGLLSLFPDGLYRFD--SRLTSLVNMFPEGFRSSSV-BRLTGFLGLYPNGINT----TRLTGLLSLCPNGFFR----

Supplementary Figure 3. Solvent Accessible surface area for Ebolavirus SDPs. Histograms showing the Solvent Accessible surface area in square ångstroms of SDPs. Values are calculated for the Ebola virus structure and residues.

Supplementary Figure 4. GP SDPs. A) Heatmap of intra- and inter-species GP sequence identity (EBOV, Ebola virus; BDBV, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taï Forest virus; RESTV, Reston virus). B) Monomeric representation of GP with GP1 (grey) and GP2 (blue). D) EBOV GP trimer (PDB code: 3CSY) with SDPs colored red. The three GP1 chains are colored grey. The three GP2 chains are colored blue, green and yellow. C) Electrostatics surfaces for the EBOV structure (3CSY) and a model of a RESTV GP trimer based on 3CSY.

Supplementary Figure 5. GP SDPs are located outside the putative NPC1 binding site. GP SDPS are shown in red. The putative NPC1 binding site is shown in cyan.

Supplementary Figure 6. SDP prediction with subsampling of Ebolavirus sequences. The two groups of sequences 'human pathogenic' and Reston ('non human pathogenic') were sampled and SDP predictions made (see materials and methods). The boxplots show the distributions of the number of SDPs predicted in the simulations where A) only human pathogenic sequences were sampled, B) only Reston sequences were sampled and C) both sets were sampled. Sampling was performed for samples consisting of between 10%-90% of sequences (x axis). Red lines indicate the number of SDPs predicted in the full dataset without sampling. Note the scale of the Y-axis varies between each plot.

A. Human pathogenic sequence sampled.

B. Reston Sequences Sampled

C. Both groups sampled

Supplementary Figure 7. Change in SDP prediction with subsampling of Ebolavirus sequences. The two groups of sequences 'human pathogenic' and and Reston ('non human pathogenic') were sampled and SDP predictions made (see materials and methods). The boxplots show the number of SDPs predicted in each sampling that are also in the full dataset (red) and new SDPs that are predicted only in subsamples (blue). The black horizontal line indicates the number of SDPs predicted using the full dataset. Subsampling performed for A) only human pathogenic sequences were sampled, B) only Reston sequences were sampled and c) both sets were sampled.

A. Human pathogenic sequence sampled.

% sampled

VP35

Var1

2

15

0 40 50 60 70 80 90 % sampled

0

÷

10 20 30

C. Both groups sampled

Supplementary Figure 8. Analysis of completely conserved SDP with subsampling of Ebolavirus sequences. The two groups of sequences 'human pathogenic' and and Reston ('non human pathogenic') were sampled and SDP predictions made (see materials and methods). The boxplots show the number of SDPs predicted in each sampling that are are completely conserved (red) and not completely conserved (blue). The red horizontal line indicates the number of completely conserved SDPs present in the full dataset and the blue line represents the equivalent for SDPs that are not completely conserved. Subsampling performed for A) only human pathogenic sequences were sampled, B) only Reston sequences were sampled and c) both sets were sampled.

20 30 40 50 60 70 80 90

% sampled

0.0 -

2

10

B. Reston Sequences Sampled

Supplementary Tables

	completely conserved positions	Number of Positions with variation	% of positions with variation
All species	2597	4555	64%
Ebola virus	4287	2865	40%
Sudan virus	4363	2789	38%
Bundibugyo virus	4426	2726	38%
Tai forest virus	4480	2672	37%
Reston virus	4466	2686	38%

Supplementary Table 1. Variation within the Ebolavirus genomes. The number of positions in the Ebolavirus protein multiple sequence alignments that are completely conserved and those that have variation are shown.

Alignme						BLOSU		mCSM ($\Delta \Delta$	
nt		EBO	BDB			Μ	SASA	G,	
position	RESTV	V	V	SUDV	TAFV	62 score	(\AA^2)	Kcal/mol)	S3det Rank
								-0.444	
								(destabilisin	
17	M17	L17	L17	L17	L17	2	70	g)	1
								-0.916	
								(destabilisin	
22	I22	V22	V22	V22	V22	3	0	g)	1
								-0.193	
							. –	(destabilisin	
31	131	V31	V31	V31	V31	3	17	g)	1
								-1.394	
	~							(destabilisin	
131	\$131	T131	T131	T131	T131	1	36	<u>g)</u>	1
								-1.121	
100		N13		21122			0	(destabilisin	
132	1132	2	N132	N132	N132	l	9	g)	1
								-1.7	
10.0	1100	M13	1/12/	1/10/	1/12/			(destabilisin	
136	L136	6	M136	M136	M136	2	2	<u>g)</u>	1
100	D 1 2 0	Q13	0100	0.1.00	0.1.20		100	0.05	
139	R139	9	Q139	Q139	Q139	1	132	(stabilising)	1
								-0.935	
22.5	1.000	maar	maar	T 22(T 22(_	_	(destabilisin	
226	A226	1226	1226	1226	1226	0	2	g)	1
248	L248	S248	S248	S248	S248	-2	-		1

Supplementary Table 2. VP24 SDPs. The position in the multiple sequence alignment, the amino acid position, and amino acid present in each of the species is shown. The BLOSUM62 score represents how frequently such amino acid changes are observed in nature. SASA is the solvent accessible surface area, which is only available for SDPs that could be mapped to protein structure. SASA was calculated using the protein structure with PDB code 4M0Q. RESTV, Reston virus; EBOV, Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taï Forest virus. The s3det column shows the ranking of the SDPs by s3det.

								mCSM	
								$(\Delta \Delta)$	
								G,	
Alignmen						BLOSUM	SASA	Kcal/	S3det
t position	RESTV	EBOV	BDBV	SUDV	TAFV	62 score	$(Å^2)$	mol)	rank
53	N53	T52	T52	T52	T52	0	-		1
54	L54	V53	V53	V53	V53	1	-		1
64	I64	T63	T63	T63	T63	-1	-		1
94	D94	E93	E93	E93	E93	2	-		1
97	N97	T96	T96	T96	T96	0	-		1
99	H99	R98	R98	R98	R98	0	-		1
108	R108	K107	K107	K107	K107	2	-		1
112	I112	S111	S111	S111	S111	-2	-		1
117	S117	K116	K116	K116	K116	0	-		1
121	S121	A120	A120	A120	A120	1	-		1
								0.455	
								(stabili	
151	I151	T150	T150	T150	T150	-1	7	sing)	1
								-0.493	
								(destab	
158	R158	Q157	Q157	Q157	Q157	1	70	ilising)	1
								-0.859	
								(destab	
160	L160	I159	I159	I159	I159	2	6	ilising)	1
								-1.291	
								(destab	
197	H197	R196	R196	R196	R196	0	83	ilising)	1
								-0.373	
200	D200	F205	E205	E205	F205	~	1.40	(destab	1
206	D206	E205	E205	E205	E205	-2	148	ilising)	1
								-0.969	
202	12(2	D 2(2	D 2(2	D 2(2	D 2(2	1	100	(destab	1
263	A203	K262	K262	K202	K262	-1	106	ilising)	1
269	Q269	S268	S268	S268	S268	0	- 1		1

Supplementary Table 3. VP30 SDPs. The position in the multiple sequence alignment, the amino acid position, and amino acid present in each of the species is shown. The BLOSUM62 score represents how frequently such amino acid changes are observed in nature. SASA is the solvent accessible surface area, which is only available for SDPs that could be mapped to protein structure. SASA was calculated using the protein structure with PDB code 2I8B. RESTV, Reston virus; EBOV, Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taï Forest virus. The s3det column shows the ranking of the SDPs by s3det.

Alignment position	REST V	EBOV	BDB V	SUDV	TAFV	BLOSUM 62 SCORE	SAS A (Å ²)	$\begin{array}{c} mCS \\ M (\Delta \\ \Delta G, \\ K cal/ \\ mol) \end{array}$	S3det rank
27	T15	S26	S26	S26	S26	1	-		1
49	D37	E48	E48	E48	E48	2	-		1
77	E65	D76	D76	D76	D76	2	-		2
86	K74	E85	E85	E85	D86	1	-		3
93	M81	S92	S92	S92	S92	-1	-		1
98	T86	V97	V97	V97	198	0	-		3
102	N90	T101	T101	T101	A102	0	-		3
107	A95	S106	S106	S106	S106	1	-		1
122	I110	V121	V121	V121	M122	3	-		3
155	S143	A154	A154	A154	A154	1	-		1
160	V148	T159	T159	T159	T159	0	-		1
161	D149	E160	E160	E160	E160	2	-		1
168	K156	G167	G167	G167	G167	-2	-		1
175	A163	S174	S174	S174	S174	1	-		1
182	L170	I181	I181	I181	I181	2	-		2
270	D258	E269	E269	E269	E269	2	144	0.039 (desta bilisin g)	1
291	V279	A290	A290	A290	A290	0	23	0.756 (desta bilisin g)	1
315	A303	V314	V314	V314	V314	0	49	-1.47 (desta bilisin g)	1
330	K318	Q329	Q329	Q329	Q329	1	32	0.513 (desta bilisin g)	1

Supplementary Table 4. VP35 SDPs. The position in the multiple sequence alignment, the amino acid position, and amino acid present in each of the species is shown. The BLOSUM62 score represents how frequently such amino acid changes are observed in nature. SASA is the solvent accessible surface area, which is only available for SDPs that could be mapped to protein structure. SASA was calculated using the protein structure with PDB code 4IBB. RESTV, Reston virus; EBOV, Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taï Forest virus. The s3det rank column shows the ranking of the SDPs by s3det.

								mCSM	
Alignme						BLOSU		$(\Delta \Delta G,$	
nt	REST					M 62	SASA	Kcal/m	S3det
position	V	EBOV	BDBV	SUDV	TAFV	SCORE	$(Å^2)$	ol)	rank
								-0.31	
								(destab	
46	V46	T46	T46	T46	T46	0	83	ilising)	1
								-0.626	
								(destab	
85	T85	P85	P85	P85	P85	-1	142	ilising)	1
122	V122	I122	I122	I122	I122	3	-		1
								-0.482	
								(destab	
201	N201	G201	G201	G201	G201	0	53	ilising)	1
								-1.219	
								(destab	
209	L209	F209	F209	F209	F209	0	15	ilising)	1
								0.059	
								(stabili	
245	P245	Q245	Q245	Q245	Q245	-1	160	sing)	1
269	Q269	H269	H269	H269	H269	0	-		1
								-1.411	
								(destab	
293	V293	1293	I293	I293	I293	3	14	ilising)	1
325	D325	E325	E325	E325	E325	2	-		1

Supplementary Table 5. VP40 SDPs. The position in the multiple sequence alignment, the amino acid position, and amino acid present in each of the species is shown. The BLOSUM62 score represents how frequently such amino acid changes are observed in nature. SASA is the solvent accessible surface area, which is only available for SDPs that could be mapped to protein structure. SASA was calculated using the protein structure with PDB code 1ES6. RESTV, Reston virus; EBOV, Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taï Forest virus. The s3det column shows the ranking of the SDPs by s3det.

								mCS	
						PLOSU		$M(\Delta A G$	
Alignmen	REST				TAF	M 62	SASA	$\Delta 0,$ Kcal/	S3det
t position	V	EBOV	BDBV	SUDV	V	SCORE	$(Å^2)$	mol)	rank
4	G4	R4	R4	R4	R4	-2		- /	1
16	D16	E16	E16	E16	G16	2			2
30	T30	S30	S30	S30	S30	1			1
								-0.161	
								(desta	
							100	bilisin	
39	K39	R39	R39	R39	R39	2	188	g)	1
								-2.1/3	
		P42/						hilisin	
42	S42	042	P42	P42	042	-1	103	g)	3
	~	X ·-						-0.8	-
								(desta	
								bilisin	
56	V56	156	156	156	156	3	0	g)	1
								-0.135	
								(desta	
64	164	V64	V64	V64	V64	3	7	ollisin g)	1
04	104	101	• 0 1	101	101		,	-0.63	1
								(desta	
								bilisin	
105	K105	R105	R105	R105	R105	2	112	g)	1
								-0.649	
								(desta	
137	I 137	M137	M137	M137	M137	2	37	σ	1
157	1157	101157	101137	101157	11137		51	-0.692	1
								(desta	
								bilisin	
212	Y212	F212	F212	F212	F212	3	0	g)	1
								-0.548	
								(desta	
274	R 274	K 274	K 274	K 274	K 274	2	92	σ	1
2/4	K2/4	112/7	K2/7	112/7	K2/7	2)2	-0.822	1
								(desta	
								bilisin	
279	A279	S279	S279	S279	S279	1	60	g)	1
								-0.836	
								(desta	
374	R374	K374	K374	K374	K374		103	Dilisin	1
<u> </u>	N416	K416	K416	K416	K416	0	103	5/	1
410	0421	Y421	Y421	Y421	Y421		ļ		1
426	E426	D426	D426	D426	D426	2			1
435	N435	D435	D435	D435	D435	1			1
443	E443	D443	D443	D443	D443	2			1
453	I453	T453	T453	T453	T453	-1			1

492	E492	D492	D492	D492	D492	2			1
497	A497	P497	P497	P497	P497	-1			2
535	(-)	P526	P526	P526	P526				1
572	S563	T563	T563	T563	T563	1			1
574	V565	1565	1565	1565	1565	3			1
611	T602	P602	P602	P602	N602	-1			4
651	Q641	N641	N641	N641	K641	0			2
								-1.037	
								(desta	
								bilisin	
715	R705	A705	A705	A705	A705	-1	24	g)	1
								0.141	
								(stabil	
726	N716	D716	D716	D716	D716	1	123	ising)	1
								-0.461	
								(desta	
								bilisin	
727	N717	G717	G717	G717	G717	0	75	g)	2

Supplementary Table 6. NP SDPs. The position in the multiple sequence alignment, the amino acid position, and amino acid present in each of the species is shown. The BLOSUM62 score represents how frequently such amino acid changes are observed in nature. SASA is the solvent accessible surface area, which is only available for SDPs that could be mapped to protein structure. SASA was calculated using the protein structure with PDB code 4QB0 for the C terminal and 4YPI for the N terminal regions. RESTV, Reston virus; EBOV, Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taï Forest virus. The s3det rank column shows the ranking of the SDPs by s3det. The s3det column shows the ranking of the SDPs by s3det.

								mCS	
						BLOSU	SAS	ΛG	
Alignment					TAF	M 62	A	∆ 0, Kcal/	S3det
position	RESTV	EBOV	BDBV	SUDV	V	Score	(\AA^2)	mol)	rank
2	G2	M1	M1	M1	M1	-3			1
3	S3	G2	V2	E2/G2	G2	0			8
32	I32	F31	F31	F31	F31	0			1
								-	
								0.828	
								(desta	
20	120	V27	W27	V27	V27	2	0	bilisin	1
30	138	V 37	V 3 /	V 37	V 57	5	0	<u>g)</u>	1
								1 276	
								(desta	
								bilisin	
46	A46	V45	V45	V45	V45	0	30	g)	1
								-	
								0.295	
								(desta	
76	176	V75	V75	V75	V75	3	44	onisin a)	1
197	A197	\$196	\$196	\$196	\$196	1		5)	1
208	D208	E207	T207	E207	T207	2			9
211	T211	S210	S210	S210	S210	1			1
		5210	5210	5210	5210	1		-0.95	
								(desta	
								bilisin	
261	L261	I260	I260	I260	I260	2	25	g)	1
								-	
								0.432	
								(desta	
270	\$270	Т269	T269	T269	T269	1	99	omsin g)	1
270	5270	S308/	1207	1209	1207	1	,,,	- 6)	-
308	H308	L307	S308	S308	S308	-1			2
326	G326	R325	V325	R325	V325	-2			9
355	L355	H354	R354	H354	Q354	-3			9
404	P401	Q403	N401	Q397	S401	-1			9
419	E412	S418	A409	S412	T409	0			9
461	P449	T448	S442	T448	T448	-1			7
	Y517/								
497	H517	H516	H516	H516	H516	2			6
519	K499	R498	R498	R498	R498	2			1
521	K501	R500	R500	R500	R500	2			1
								-	
								1.142 (desta	
								bilisin	
535	D515	N514	N514	N514	N514	1	59	g)	1
								0.037	
								(stabil	
542	V522	Q521	Q521	Q521	L521	2	19	ising)	6

								1.258 (desta bilisin		
568	V548	L547	I547	L547	I547	1	74	g)		9
605	L585	I584	I584	I584	I584	2				1
628	S608	D607	D607	D607	D607	0			1	
643	E623	K622	K622	K622	K622	1			1	
659	H639	Q638	Q638	Q638	Q638	0			1	
663	L643	D642	D642	D642	S642	-4			6	
665	L645	W644	W644	W644	W644	-2			1	
680	I660	T569	T569	T569	T569	-1			1	

Supplementary Table 7. GP SDPs. The position in the multiple sequence alignment, the amino acid position, and amino acid present in each of the species is shown. The BLOSUM62 score represents how frequently such amino acid changes are observed in nature. SASA is the solvent accessible surface area, which is only available for SDPs that could be mapped to protein structure. SASA was calculated using the protein structure with PDB code 3CSY. RESTV, Reston virus; EBOV, Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taï Forest virus. The s3det rank column shows the ranking of the SDPs by s3det.

Alignment position	RESTV	EBOV	BDBV	SUDV	TAFV	BLOSUM 62 SCORE	$\begin{array}{c} SASA \\ (\text{Å}^2) \end{array}$	S3det rank
47	G2	M1	M1	M1	M1	-3		1
77	I32	F31	F31	F31	F31	0		1
83	I38	V37	V37	V37	V37	3	21	1
91	A46	V45	V45	V45	V45	0	84	1
121	176	V75	V75	V75	V75	3	61	1
242	A197	S196	S196	S196	S196	1		1
256	T211	S210	S210	S210	S210	1		1
306	L261	I260	I260	I260	I260	2	20	1
315	S270	T269	T269	T269	T269	1	48	1

Supplementary Table 8. sGP SDPs. The position in the multiple sequence alignment, the amino acid position, and amino acid present in each of the species is shown. The BLOSUM62 score represents how frequently such amino acid changes are observed in nature. SASA is the solvent accessible surface area, which is only available for SDPs that could be mapped to protein structure. SASA was calculated using the Phyre2 structural model that used template structure 3s88I. RESTV, Reston virus; EBOV, Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taï Forest virus. The s3det rank column shows the ranking of the SDPs by s3det.

Alignment RESTV EBOV V SUDV V SUDV V SASA G, G, G, CA SJdet position 7 T66 V66 V66 V66 CORE (Å) SJdet 110 H109 Q109 Q109 Q109 0 0 1 1 1137 L136 I136 I137 I132 V212 A221 A221 I27 I									mCSM	
Alignment position RESTV EBOV EBOV V SUDV SUDV V SACA SCORE GA (Å ²) SACA Kcal/m ol) SAdet rank 67 766 V66 V66 V66 0 1 1 110 1109 Q109 Q109 Q109 0 0 1 1 137 1136 1136 1136 1136 136 2 0 1 117 V146 L146 L146 L146 L146 1									$(\Delta \Delta$	
Alignment position RESTV EBOV V SORE (Å) old rank 67 T66 V66 V66 V66 V66 0 0 1 110 H109 Q109 Q109 Q109 0 0 1 1 113 H136 H136 H136 H136 H136 1				DDD		T + F	BLOSU	a . a .	G,	GO 1
position RESTV FBOV V SLOPV V SLORE (A) (A) <th(a)< th=""> (A) (A) <th(< td=""><td>Alignment</td><td>DECTL</td><td>FROM</td><td>BDB</td><td>GUDU</td><td>TAF</td><td>M62</td><td>SASA</td><td>Kcal/m</td><td>S3det</td></th(<></th(a)<>	Alignment	DECTL	FROM	BDB	GUDU	TAF	M62	SASA	Kcal/m	S3det
6/ 166 V66 V66 V66 0 1 110 H109 Q109 Q109 Q109 0 1 137 L136 H136 H136 H136 H136 L136 1 1 147 V146 L146 L146 L146 L146 1 1 222 S221 A221 A221 A221 A221 A21 A221 A22 A22 A22 A23 A23 A23 A32	position	RESTV	EBOV	V	SUDV	V	SCORE	(A ²)	ol)	rank
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	67	166	V66	V66	V66	V66	0			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110	H109	Q109	Q109	Q109	Q109	0			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	137	L136	I136	I136	I136	I136	2			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	147	V146	L146	L146	L146	L146	1			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	222	S221	A221	A221	A221	A221	1			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	224	L223	Q223	Q223	Q223	Q223	-2			1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	228	Q227	H227	H227	H227	H227	0			1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									-1.049	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									(destab	
284 V283 L283 L283 L283 L283 1 1 313 F312 Y312 Y313 1 <td< td=""><td>277</td><td>I276</td><td>L276</td><td>L276</td><td>L276</td><td>L276</td><td>2</td><td>42</td><td>ilising)</td><td>1</td></td<>	277	I276	L276	L276	L276	L276	2	42	ilising)	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	284	V283	L283	L283	L283	L283	1			1
327 S326 A326 A326 A326 A326 1 1 331 D330 T330 T330 T330 T330 Classo Lasso Lasso <tdl< td=""><td>313</td><td>F312</td><td>Y312</td><td>Y312</td><td>Y312</td><td>Y312</td><td>3</td><td></td><td></td><td>1</td></tdl<>	313	F312	Y312	Y312	Y312	Y312	3			1
331 D330 T330 T330 T330 T330 -1 1 351 D350 E350 E350 E350 E350 2 1 362 S361 T361 T361 T361 T361 T361 1 1 366 F355 L365 L365 L365 L365 L365 1 1 380 1379 V379 V379 V379 V379 3 11 1 448 H447 Q447 Q447 Q447 Q447 0 11 450 P450 P450 P450 P450 -1 11 466 N465 D465 D465 D465 1 11 466 N465 D465 D465 D465 1 11 868 S847 S847 S847 S847 S847 1 11 869 A868 S868 S868 S868 S868 1 11 11 925 L925 L925 L925 L925 <td< td=""><td>327</td><td>S326</td><td>A326</td><td>A326</td><td>A326</td><td>A326</td><td>1</td><td></td><td></td><td>1</td></td<>	327	S326	A326	A326	A326	A326	1			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	331	D330	T330	T330	T330	T330	-1			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	351	D350	E350	E350	E350	E350	2			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	362	S361	T361	T361	T361	T361	1			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	366	F365	L365	L365	L365	L365	0			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	380	1379	V379	V379	V379	V379	3			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	448	H447	0447	0447	0447	0447	0			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	451	\$450	P450	P450	P450	P450	-1			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	466	N465	D465	D465	D465	D465	1			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	690	\$689	E689	E689	E689	E689	0			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	848	A 847	S847	S847	S847	S847	1			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	860	A868	5868	5868	5868	5868	1			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	807	X806	E806	E806	5000 E906	E806	1			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	026	1 090 E025	F 090	F 690	F 090	F 690	3			1
353 5954 A954 A A D I	926	F923	L923	L923	L923	L923	0			1
996 1995 S995 S995 S995 S995 1 1 1 1025 N1024 T1024 4 T1024 4 0 1 1025 N1024 T1024 4 T1024 4 0 1 1074 K1073 R1073 3 R1073 3 2 1 1074 K1073 R1073 3 R1073 3 2 1 1120 S1119 A1119 9 A1119 9 1 1 1164 A1161 F1163 3 F1163 3 -2 1 1190 S1187 D1189 9 D1189 9 0 1 1215 S1212 A1214 4 A121 1 1	955	<u>5954</u>	A954	A954	A954	A954	1			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	996	1995	8995	S995	8995	S995	1			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1025	N1024	T1024	1102	T1024	1102	0			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1025	N1024	11024	4 D107	11024	4 D107	0			1
1074 K1073 5 K1073 5 2 1 1 1120 S1119 A1119 9 A1119 9 1 1 1 1120 S1119 A1119 9 A1119 9 1 1 1 1120 S1119 A1119 9 A1119 9 1 1 1 1164 A1161 F1163 3 F1163 3 -2 1 1 1190 S1187 D1189 9 D1188 D118 1 1 1190 S1187 D1189 9 D1189 9 0 1 1 1215 S1212 A1214 4 A1214 4 1 1 1 1218 K1215 R1217 7 R1217 7 2 1 1 1238 E1235 D1237 7 D1237 7 2 1 1 1256 V1253 I1255 I1255 I1255 3 1 1 1355<	1074	V1072	D1072	R107	D1072	R107	2			1
A111 A1111 A1111 A1111	10/4	K1075	K1075	3 A 1 1 1	K10/5	3 A 1 1 1	2			1
1120 31119 7 1119 7 11 <t< td=""><td>1120</td><td>\$1119</td><td>Δ1110</td><td>Q AIII</td><td>Δ1119</td><td>Q AIII</td><td>1</td><td></td><td></td><td>1</td></t<>	1120	\$1119	Δ1110	Q AIII	Δ1119	Q AIII	1			1
1164 A1161 F1163 3 F1163 3 -2 1 1190 S1187 D1183 9 D1189 9 0 1 1190 S1187 D1189 9 D1189 9 0 1 1215 S1212 A1214 4 A1214 4 1 1 1215 S1212 A1214 4 A1214 4 1 1 1218 K1215 R1217 7 R1217 7 2 1 1218 K1215 R1217 7 R1217 7 2 1 1238 E1235 D1237 7 D1237 7 2 1 1256 V1253 I1255 I1255 I1255 3 1 1 1355 K1532 R1534 R153 R1534 R153 2 1	1120	51117	AIII)	F116		F116	1			1
1101 11103 3 11103 3 11103 3 11103 3 111033 111033 111033	1164	A1161	F1163	3	F1163	3	-2			1
1190 S1187 D1189 9 D1189 9 0 1 1215 S1212 A1214 4 A1214 4 1 1 1215 S1212 A1214 4 A1214 4 1 1 1215 S1212 A1217 7 R1217 7 R121 1 1218 K1215 R1217 7 R1217 7 2 1 1238 E1235 D1237 7 D1237 7 2 1 1256 V1253 I1255 I1255 I1255 3 1 1 1355 K1532 R1534 R153 R1534 R153 2 1	1101	711101	11105	D118	11105	D118				1
1215 S1212 A121 A121 A121 A121 1 1 1215 S1212 A1214 4 A1214 4 1 1 1 1215 S1212 A1214 4 A1214 4 1 1 1 1218 K1215 R1217 7 R1217 7 2 1 1238 E1235 D1237 7 D1237 7 2 1 1256 V1253 I1255 I1255 I1255 I325 3 1 1355 K1532 R1534 R153 R1534 R153 2 1	1190	S1187	D1189	9	D1189	9	0			1
1215 S1212 A1214 4 A1214 4 1 1 1218 K1215 R1217 7 R1217 7 2 1 1238 E1235 D1237 7 D1237 7 2 1 1256 V1253 I1255 I1255 I1255 I1255 3 1 1355 K1532 R1534 R153 R1534 R153 2 1				A121		A121				
1218 K1215 R1217 7 R1217 7 R1217 7 2 1 1238 E1235 D1237 7 D1237 7 2 1 1256 V1253 I1255 I1255 I1255 I1255 3 1 1355 K1532 R1534 R153 R1534 R153 2 1	1215	S1212	A1214	4	A1214	4	1			1
1218 K1215 R1217 7 R1217 7 2 1 1238 E1235 D1237 7 D1237 7 2 1 1256 V1253 I1255 I1255 I1255 I1255 3 1 1355 K1532 R1534 R153 R1534 R153 2 1				R121		R121				
1238E1235D12377D12377211256V1253I1255I1255I1255I1255311355K1532R1534R153R1534R15321	1218	K1215	R1217	7	R1217	7	2			1
1238 E1235 D1237 7 D1237 7 2 1 1256 V1253 I1255 I1255 I1255 I1255 3 1 1355 K1532 R1534 R153 R1534 R153 2 1				D123		D123				
1256 V1253 I1255 I1255 I1255 I 1255 3 1 1355 K1532 R1534 R153 R1534 R153 2 1	1238	E1235	D1237	7	D1237	7	2			1
1355 K1532 R1534 R153 R1534 R153 2 1	1256	V1253	I1255	I1255	I1255	I1255	3			1
	1355	K1532	R1534	R153	R1534	R153	2			1

			4		4				
			T136		T136				
1367	A1354	T1366	6	T1366	6	0			1
1007		11000	S139	11000	S139	Ű			-
1396	T1393	\$1395	5	\$1395	5	1			1
1409	M1406	11408	11408	11408	11408	1			1
1405	11412	11400	11400	11400	11400	1			1
1415	L1412	11414	11414 S142	11414	11414 C142	2			1
1427	N1424	\$1426	5145	\$1426	5145	1			1
1437	IN1434	51450	0	51450	0	1			1
14(2	01450	V1461	K140	V1461	K140	1			1
1462	Q1459	K1401	1	K1401	1	1			1
1 47 4	01471	01472	514/	01472	5147	1			1
14/4	C14/1	814/3	3	\$14/3	3	-1			1
			L148		L148				
1489	Y1486	L1488	8	L1488	8	-1			1
1500	L1497	I1499	I1499	I1499	I1499	2			1
			S150		S150				
1507	A1504	S1506	6	S1506	6	1			1
1510	V1507	I1509	I1509	I1509	I1509	3			1
			A153		A153				
1539	S1536	A1535	5	A1535	5	1			1
			L162		L162				
1627	Y1624	L1624	4	L1624	4	-1			1
			C162		C162				
1631	S1628	C1628	8	C1628	8	-1			1
1001	51020	01020	V176	01020	V176	-			-
1786	11760	V1762	2	V1762	2	3			1
1,00	11,00	11/02	- V185	11/02	2 V185				-
1874	T1848	V1850	0	V1850	0	0			1
1074	11040	V 1050	T187	V1050	T187	0			1
1807	\$1871	T1873	3	T1873	3	1			1
1097	516/1	11075	D 101	110/5	D 101	1			1
10/1	N1014	D1016	K191 6	D1016	K191	1			1
1941	IN1914	K1910	0 E104	K1910	0 E104	1			1
10//	D1020	E1041	E194	F1041	E194	0			1
1966	R1939	E1941	1	E1941	1	0			1
2022	12000	1 2000	L200	1 2000	L200				1
2033	12006	L2008	8	L2008	8	2			I
	100.40	1.0011	L204	1.0011	L204	_			
2069	12042	L2044	4	L2044	4	2			1
			S207		S207				
2102	T2075	S2077	7	S2077	7	1			1
	D2096	E2098	E209	E2098	E209				
2123	D2070	L2070	8	L2070	8	2			1
			Q210		Q210				
2130	L2130	Q2105	5	Q2105	5	-2			1
			Q210		Q210				
2133	E2106	Q2108	8	Q2108	8	2			1
			Y213		Y213				
2156	F2129	Y2131	1	Y2131	1	3			1
			L215		L215				
2182	V2155	L2157	7	L2157	7	1			1
			R216		R216				
2193	N2171	R2168	8	R2168	8	0			1
2200	K2173	R2175	R217	R2175	R217	2			1
2200	1141/J	$K_{21/J}$	N21/	$\Lambda 21/J$	N21/				1

			5		5			
			L217		L217			
2202	F2175	L2177	7	L2177	7	0		1
		M218	M218		M218			
2211	L2184	6	6	M2186	6	2		1

Supplementary Table 9. L SDPs. The position in the multiple sequence alignment, the amino acid position, and amino acid present in each of the species is shown. The BLOSUM62 score represents how frequently such amino acid changes are observed in nature. SASA is the solvent accessible surface area, which is only available for SDPs that could be mapped to protein structure. SASA was calculated using the Phyre2 structural model which used template 4n48A ("cap-specific mrna ("cap-specific mrna (nucleoside-2'-o-)-methyltransferase 1 protein in2 complex with capped rna fragment"). RESTV, Reston virus; EBOV, Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taï Forest virus. The s3det rank column shows the ranking of the SDPs by s3det. The s3det column shows the ranking of the SDPs by s3det.

	EBOV	RESTV	Mutation		
Protein	Res	Res	position	Mutation	Effect
					No effect on release of soluble
GP	Q638	Н	638	$\mathbf{Q} \rightarrow \mathbf{V}$	GP1,2delta.
					No effect on cleavage between GP1 and
GP	R498	Κ	498-501	$RTRR \rightarrow ATAA$	GP2.
					No effect on release of soluble
GP	D642	L	642	$D \rightarrow V$	GP1,2delta.
VP24	M136	L	134/136	F-A/M-A	Near complete loss of KPNA5 binding *
VP24	Q139	R	137-139	$RTQ \rightarrow AAA$	Near complete loss of KPNA5 binding *

Supplementary Table 10. SDPs that coincide with known mutagenesis data. Functional data extracted from UniProt unless stated. Res, residue; EBOV, Ebola virus; RESTV, Reston virus *Data from Bornholdt et al.,³⁵

PROTEIN	SPECIES	OLIGOMERIC STATE	PDB/TEMPLATE	REGION IN SEQUENCE
GP	EBOV	Trimer of Heterodimers	3CSY (structure)	31-310 502-599
sGP	EBOV	Dimer	3s88I (model)	32-287
sGP	RESTV	Dimer	3s88I (model)	33-288
L	EBOV	Monomer	4n48A (model)	223-328
NP (C-terminal)	EBOV	Monomer	4QB0 (structure)	645-739
NP (N-terminal)	EBOV	Monomer	4YPI (structure)	39-384
VP24	EBOV	Heterodimer	4M0Q (structure)	10-231
VP24	EBOV	Heterodimer	4U2X (structure)	16-231
VP24	RESTV	Dimer	4D9O (structure)	10-231
VP30	EBOV	Dimer	2I8B (structure)	140-266
VP30	RESTV	Dimer	3V70 (structure)	142-272
VP35	EBOV	Heterodimer	4IBB (structure)	218-340
VP35	EBOV	Dimer of heterodimers	3L25 (structure)	209-340
VP35	RESTV	Dimer of heterodimers	3KS8 (structure)	208-329
VP40	EBOV	Monomer	1ES6 (structure)	44-321
VP40	EBOV	Dimer	4LDB (structure)	44-319
VP40	EBOV	Hexamer	4LDD (structure)	45-188
VP40	EBOV	Octamer	4LDM (structure)	69-188
VP40	RESTV	Monomer	1es6A (model)	44-321

Supplementary Table 11. Protein structures available for Ebolavirus Proteins. EBOV, Ebola virus; RESTV, Reston virus

Reston			
virus	Pathogenic		Functional
residue	consensus	Comments	effect
		Note- Ebola virus GP structure has R31 rather than F31. Surface	
		residue close to interface with GP2 in the trimer.	
132	F31	Unclear what functional effect may be if any.	unclear
		Surface residue, appears to be a conservative change of amino acid	
138	V37	that could be well tolerated	unlikely
		Also a surface residue. Conservative change of hydrophobic amino	
A46	V45	acid that could be well accommodated.	unlikely
176	N/75	Surface residue, conservative change of amino acid. Change	
1/0	V/5	should be well accommodated	unlikely
		One of three SDPs located in the glycan cap region of GP1. The	
		glycan cap binds the host cell receptor(s) but is highly glycosylated	
		so it is not clear if the amino acids directly contact the host cell.	
		Surface residue in a cavity. It is part packed quite tightly with	
		residue F234, V236, T240 but should be possible to accommodate	
		change to Leu in Reston virus. Could there be a role with the three	
L261	I260	SDPs combined in this region.	possible*
		Located at the top of the structure, is a surface residue (with side	
		chain pointing to the solvent) representing a conservative amino	
		acid change. Again could it have a role in conjunction with the 2	
S270	T269	other SDPs in this region?	possible*
		Also located in the glycan cap and also a surface residue. Present	
	S308/	in loop so unlikely to alter structure but could have a functional	
H308	L307	role, and alters charge on the protein surface.	possible*
		Surface residue, results in loss of negative charge in Reston virus	
		GP. Located at the end of a beta sheet. Seems unlikely to have a	
D515	N514	structural effect. Possible combined effect with adjacent L547V?	unlikely
		Close to trimer interface (GP2-GP2) but directly within the	
		interface. Not clear what effect this change would have on protein	
V522	Q521	structure	unclear
		Surface residue at end of a beta sheet. Appears to be minor change	
V548	L547	in amino acid. Possible combined effect with adjacent N514D?	unlikely
		Largely buried amino acid. At the interface with GP1 (in the same	
		GP monomer). EBOV I584 interacts with F572, not clear if this	
L585	I584	interaction would change in with Leu in Reston virus.	unlikely

Supplementary Table 12. Structural analysis of GP SDPs. Details of the structural analysis are included with an assessment of whether the amino acid change is likely to have an effect on the protein. Four categories are used for the effect column unlikely (the change seems unlikely to alter the structure/function), unclear (the change could be functional but there is limited evidence), possible (more confident that there is an effect than the unclear group) and probably (highly confident that the change will have a structural/functional effect).

Reston			
virus	Pathogenic		Functional
residue	consensus	Comments	effect
		R39 forms a H bond with D71. Change to K is likely to maintain	
K39	R39	this H bond.	unlikely
		Unusual to see Pro in a sheet. The amino acid is on the protein	
	P42/	surface and it there is nothing to suggest that a change to Ser would	
S42	Q42	alter the protein	unclear
		I56 is largely buried and packed against other sidechains. While	
		change to Val would reduce the size of the side chain, it seems	
		likely that it would be accommodated within the structure. Also	
V56	156	V64I is adjacent to this SDP.	unlikely
		In a surface loop facing the helix containing I56V. Possible co-	
		evolution with I56 – reduce size in one, matched with increased size	
I64	V64	in the other.	unlikely
		The side chain guanidino group of R105 provides a hydrogen bond	
		with the side chain of Q38 as well as with the local backbone NH of	
		G103 to provide a stabilized region of the protein. Although the	
		mutation R105K appears conservative and maintains the side chain	
		positive charge, the ability to form multiple hydrogen bonds is	
		reduced due to resonance stabilization in the guanidino group being	
		lost in the transfer to the lysine side chain amino group. This has the	
K105	R105	potential to weaken interactions in this region.	possible
		M137 is located at the end of helix and packs against an adjacent	
		helix. The conservative change to L137 in Reston virus seems	
L137	M137	unlikely to have a significant effect on structure/function	unlikely
		A minor change in side chains. P212 is located in an alpha helix and	
		the sidechain is largely buried. The change to Y212 in Reston virus	
Y212	F212	is unlikely to have a significant effect on protein structure/function	unlikely
		K274 is located in the VP35 binding site. K274 forms a hydrogen	
		bond with VP35 D46 and a change to Arg should be able to	
R274	K274	maintain this interaction.	unlikely
		S279 is located in an alpha helix on the protein surface. The change	
		to A279 in Reston virus would introduce a hydrophobic amino acid	
A279	S279	on the protein surface that could have an effect on protein structure.	unclear
		K374 is located in an alpha helix on the protein surface. It is not	
		unlikely that the change to R374 in Reston virus will alter protein	
R374	K374	structure. It is a conservative change of side chain.	unlikely
		A695 is located on the protein surface so the charge introduce by	
		the change to R695 in Reston virus should be tolerated. Proximity	
		of Reston virus R705 to E694 may result in a salt bridge that would	
		reduce flexibility in Reston virus NP. There could different	
		hydrodynamic volumes between the Reston virus and pathogenic	
		NP proteins as well as in the pathogenic ebolaviruses exposing	
		residues that remain buried in the Reston virus NP. The salt bridge	
DT 0 -		could make RESTV more thermostable (and possibly more resistant	-
R705	A705	to proteolysis and denaturants).	Possible
		Present in a surface loop this change will change the charge	
		properties. Should be considered with adjacent amino acid, which is	
		also an SDP. Overall we see the removal of a negatively charged	
N716	D716	amino acid with two polar side chains.	unclear
		Adjacent to D716N pSDP. The loss of Gly would change the turn	
N717	G717	from type1 to a type 2 turn. Also See comment above.	unclear

Supplementary Table 13. Structural analysis of NP SDPs. Details of the structural analysis are included

with an assessment of whether the amino acid change is likely to have an effect on the protein. Four categories are used for the effect column unlikely (the change seems unlikely to alter the structure/function), unclear (the change could be functional but there is limited evidence), possible (more confident that there is an effect than the unclear group) and probably (highly confident that the change will have a structural/functional effect).

Reston	Pathogenic	Comments	Functional
virus	consensus		effect
Residue			
		Present in dimer interface (only for one of the subunits as the	probable
		dimer is asymmetric). Forms hydrogen bonds with R301, R311	
		and W313 (RESTV numbering). Distances between atoms are	
		slightly different between the 2 species. W324 3.1A (2.8 in Ebola	
		virus), R301 3.2A (2.9 in Ebola virus) R322 2.8 and 3.0 (both 2.8A	
		in Ebola virus). Also close to A303 across interface, they could	
		compensate or presence of both changes could have greater effect	
D258	E269	on interface in this area. (6.1A in RESTV, 7.5 in Ebola virus)	
		Present in a surface loop packs against adjacent helix, conservative	Unclear
		change of hydrophobic amino acid. Could be some local	
		conformational changes and is located adjacent to the linker	
		between the two subdomains, which is in RESTV has a short alpha	
V279	A290	helix that is not present in EBOV.	
		Present in a surface loop near the VP35 dimer interface. Close in	unclear
A303	V314	space to D258 in the other subunit.	
		Located at the end of a beta sheet. Adjacent to His285 in next	unclear
		strand. His285 is completely conserved in all <i>Ebolavirus</i> species.	
		So Reston virus VP35 has increased positive charge in this	
K318	Q329	position	

Supplementary Table 14. Structural analysis of VP35 SDPs. Details of the structural analysis are included with an assessment of whether the amino acid change is likely to have an effect on the protein. Four categories are used for the effect column unlikely (the change seems unlikely to alter the structure/function), unclear (the change could be functional but there is limited evidence), possible (more confident that there is an effect than the unclear group) and probably (highly confident that the change will have a structural/functional effect).

RESTV	Pathogenic		functional
residue	consensus	Comments	effect
		The side chain is largely buried and it appears that Reston virus I151	
		would be tolerated although a hydrogen bond with the backbone of the	
I151	T150	previous turn of the helix will be lost.	unlikely
		Located in a surface loop, will increase surface charge. It is possible that	
		Reston virus forms a salt bridge with D159, which would increase	
		stability and reduce flexibility in this area of the protein. This SDP is in a	
		region of SDPs and very close to another SDP (I159L). So possible	
R158	Q157	effects may be compensated by other changes.	unlikely
		Located in a surface close to another SDP (see above). Appears to be a	
		conservative change that given the other species specific changes in this	
L160	I159	area it seems unlikely that it will have a functional effect on the protein.	unlikely
		Surface residue so change in size/shape should well accommodated,	
H197	R196	positive charge maintained in side chain.	unlikely
		Exposed surface residue, conservative change of amino acid. Unlikely to	
D206	E205	alter protein structure.	unlikely
		This residue is present in the dimer interface. In Ebola virus VP30 R262	
		hydrogen bonds with the backbone of A141 and G140. Reston virus	
		A263 will be unable to hydrogen bond. This is likely to reduce the	
		affinity of the dimer (given that it is symmetrical and so the Ebola virus	
		R262 in each subunit forms hydrogen bonds with the other subunit. The	
		Reston virus dimer has been observed to be rotated relative to the Ebola	
A263	R262	virus. The loss of the hydrogen bonds may explain this.	probable

Supplementary Table 15. Structural analysis of VP30 SDPs. Details of the structural analysis are included with an assessment of whether the amino acid change is likely to have an effect on the protein. Four categories are used for the effect column unlikely (the change seems unlikely to alter the structure/function), unclear (the change could be functional but there is limited evidence), possible (more confident that there is an effect than the unclear group) and probably (highly confident that the change will have a structural/functional effect).

Reston			Possible
virus	Pathogenic		Functional
residue	consensus	Comments	effect
		Present in a surface loop (although only third amino acid in	
		structure). Reston virus V46 introduces a hydrophobic amino acid	
V46	T46	on surface, could affect stability but no evidence for this.	unclear
		Ebola virus P85 is in a S-G-P-K beta-turn, proline confers	
		backbone rigidity and change to Thr in Reston virus would	
		introduce backbone flexibility and provide a side chain with H-	
		bond donor. Located in the Ebola virus octamer interface, will	
		result in changes to this interface and likely alter the octamer	
		structure. In an octamer structure (if it were to remain similar to	
		the Ebola virus octamer), T85 could hydrogen bond with the	
T85	P85	backbone of L117 or the sidechain of R137.	probably
		This change appears to be conservative substitution of two	
		hydrophobic amino acids. Ebola virus I122 is packed with other	
		hydrophobic residues and it appears that the region would be able	
		to accommodate the change to Reston virus V122 with a slightly	
V122	I122	smaller side chain.	unlikely
		Located in a surface loop. Based on the Ebola virus structure, the	
		Reston virus N201 side chain would be likely to point into the	
N201	G201	protein structure. But not clear what effect this would have on the	
		protein structure, if any given that the structure has gaps in this	
		region so cannot be confident.	unclear
		Packed in a largely hydrophobic region the SDP results in a	
		reduction in side chain size in Reston virus. The smaller Leucine	
		may adopt different side chain conformations to aid stability.	
		Ebola virus F209 does not interact with other aromatic side chains	
		so the structure is unlikely to be adversely affected by the swap to	
		Leucine. Surrounding hydrophobic residues are aliphatic (I261,	
		I285, V298, A318, P317) so the change to Leucine could be well	
L209	F209	accommodated.	unlikely
		Located at the end of an alpha helix, the Reston virus P245 would	
		break the helix and shorten it to either L244 or more likely M241,	
		which is a better C-capping residue. This could have a	
		destabilizing effect on the two helices in this region and the base	
		of the hydrophobic core because secondary structure will most	
P245	Q245	likely change to accommodate the inflexible Proline.	probably
		A surface residue, loss of charge to polar side chain. This is a	
		highly charged region with E265, R270, K274, K275. So the	
Q269	H269	positive charge would be reduced in Reston virus VP40.	unclear
		Packs with other hydrophobic residues. Appears to be a	
V293	1293	conservative change	Unlikely

Supplementary Table 16. Structural analysis of VP40 SDPs. Details of the structural analysis are included with an assessment of whether the amino acid change is likely to have an effect on the protein. Four categories are used for the effect column unlikely (the change seems unlikely to alter the structure/function), unclear (the change could be functional but there is limited evidence), possible (more confident that there is an effect than the unclear group) and probably (highly confident that the change will have a structural/functional effect). Analysis is based on the VP40 dimer structure unless otherwise stated.

Reston			Possible
virus	Pathogenic		functional
residue	consensus	Comments	effect
		Located in a helix. Appears to be a conservative change in	
		amino acid. No suggestion from structure that it would alter	
M17	L17	structure/function.	unlikely
		Located in a helix and is fairly tightly packed against the	
		adjacent helix but would expect the pocket to accommodate the	
122	V22	change.	unlikely
		Located in a sheet facing a loop. Side chain is relatively	
		exposed so structure should be able to accommodate. Adjacent	
I31	V31	in space to another SDP (132)	unlikely
		Ebola virus T131 forms hydrogen bonds with the side chains of	
		T129, W125 and with the backbone of H133. Model of Reston	
		virus VP24 suggests S131 would continue to interact with the	
		same residues. This residue is on the edge of the KPNA5	
S131	T131	binding site. Appears to be a conservative change of amino acid.	probable
		Exposed polar residue exchanges for another polar residue.	
		Unlikely to affect structure. Adjacent in space to an SDP	
T132	N132	(V31S) and in sequence to 131.	unlikely
		Part of the interface site with KPNA5. Mutagenesis of M136 in	
		combination with other residues resulted in loss of KPNA5	
L136	M136	binding ³⁴ . Although it appears to be a conservative substitution.	probable
		Interface residue. In Ebola virus Q139 forms an H bond with the	
		backbone of R137. This is likely to be lost in Reston virus VP24	
		with the longer R139 side chain. Change will also introduce	
R139	Q139	positive charge at interface site.	probable
		Located in a helix facing a sheet. Ebola virus T226 forms a	
		hydrogen bond with the backbone of D48. Reston virus A226	
		will not be able to form this hydrogen bond. This is likely to	
A226	T226	reduce the stability of the protein and increase flexibility.	Probable

Supplementary Table 17. Structural analysis of VP24 SDPs. Details of the structural analysis are included with an assessment of whether the amino acid change is likely to have an effect on the protein. Four categories are used for the effect column unlikely (the change seems unlikely to alter the structure/function), unclear (the change could be functional but there is limited evidence), possible (more confident that there is an effect than the unclear group) and probably (highly confident that the change will have a structural/functional effect).

Region	Residue	Conservation
1	L136	SDP
1	R139	SDP
1	S140	Not an SDP but conserved S in Reston viruses and mainly R in Ebola
		viruses, not conserved enough to be SDP
2	L107	Vary in species specific manner
2	H109	Vary in species specific manner
2	T116	Vary in species specific manner
2	G120	Not an SDP – G in Reston viruses and Ebola viruses (mainly), differs in
		others
3	S184	
3	T185	Not an SDP. T in Reston viruses, mainly N in other species
3	H186	Vary in species specific manner
3	T187	Not an SDP, primarily T in most species (A in Sudan viruses)
3	F197	Vary in species specific manner
4	V201	Vary in species specific manner
5	S50	Not an SDP

Supplementary Table 18. Residues in VP24 previously identified to differ between Reston viruses and Ebola viruses and/or Sudan viruses. Zhang et al., identified five regions that differed between Reston viruses and Ebola viruses and/or Sudan viruses⁷. The five regions are listed along with conservation information i.e. whether the position is an SDP, varies in a species specific manner (i.e. not an SDP, but a different residue is conserved in each of the different species) or otherwise conserved. Region one is part of the KPNA5 (karyopherin α 5) binding site and region two is thought to be part of the STAT1 binding site⁷.

Mutation	Location/Comments	Relationship to SDPs
From Volchhl	kov et al., 43 – experiment 1	·
M71I	Surface residue. Not clear what functional effect would be.	Not close
L147P	Part of an alpha helix, the proline would be expected to break the helix	Close to SDPs
	and could lead to conformational changes that would alter function.	L17M, V22I
T187I	Adjacent to interface site. T187 forms Hydrogen bonds with the	Not close
	backbone of H186 and E203. Mutation to I would remove these	
	hydrogen bonds and reduce stability/increase flexibility in this area.	
	(Also close to L26F mutation from a separate study)	
From Volchhl	kov et al., 43 – experiment 2	
H186Y	Present in interface with KPNA5. Forms a hydrogen bond with the	Not close
	backbone of T434 in KPNA5. Mutation to Tyr would still enable	
	Hydrogen bonding with KPNA as the functional group is maintained.	
From Ebihara	et al., ⁴⁴	
T50I	The side chain of Ebola virus T50 can hydrogen bond with the	Close to SDP
	backbones of Q36 and K52. Removal of these interactions with mutation	T226A
	Ile will reduce stability/increase flexibility.	
From Dowall	et al., ⁴⁵	
L26F	Largely buried side chain. Increase in size to phenylalanine could require	Close to V22I
	some conformational change. Interesting that is located close to T187I	
	(see above).	
F29V*	Largely buried side chain. Reduction in size would create space and	Close in space to
	therefore likely to result in some conformational change?	SDPs T131S,
		N132T, V31I.
A43P*	Close in space to L26F (see above). Present in a turn.	
K218R*	Appears to be a conservative change. K218 is present in the KPNA5	
	interface. Is close to M436 and D489. Possible electrostatic interaction.	
	Possible the mutation to R enables this interaction to continue in the	
	different species.	

Supplementary Table 19. VP24 Mutations occurring in adaption of Ebola virus to rodent species. The location of the mutation and how it may alter structure and function is listed with details of proximity to SDPs. *indicates that after passage one the predominant amino acid at that position was the wild type ⁴⁴. In the Dowall et al.⁴⁵, study L26F is the only mutation where the mutation is predominantly maintained in in all passages. Separate experimental evidence suggests that the L26F mutation along results in pathogenicity in guinea pigs³⁷.

Genome Identifier	Ebola virus species	Host
gb:KJ660346	Organism:Zaire ebolavirus H.sapiens-wt/GIN/2014/Makona-Kissidougou-C15	Human
gb:KJ660347	Organism:Zaire ebolavirus H.sapiens-wt/GIN/2014/Makona-Gueckedou-C07	Human
gb:KJ660348	Organism:Zaire ebolavirus H.sapiens-wt/GIN/2014/Makona-Gueckedou-C05	Human
gb:KP342330	Organism:Zaire ebolavirus H.sapiens-wt/GIN/2014/Conacry-192	Human
gb:KP096422	Organism:Zaire ebolavirus H.sapiens-tc/GIN/14/WPG-C15	Human
gb:KP096421	Organism:Zaire ebolavirus H.sapiens-tc/GIN/14/WPG-C07	Human
gb:KP096420	Organism:Zaire ebolavirus H.sapiens-tc/GIN/14/WPG-C05	Human
gb:KC242800	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/2002/Ilembe	Human
gb:KC242794	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/1996/2Nza	Human
gb:KC242797	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/1996/10ba	Human
gb:KC242795	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/1996/1Mbie	Human
gb:KC242798	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/1996/1lkot	Human
gb:KC242793	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/1996/1Eko	Human
gb:KC242792	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/1994/Gabon	Human
gb:KC242784	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/9 Luebo	Human
gb:KC242790	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/5 Luebo	Human
gb:KC242788	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/43 Luebo	Human
gb:KC242789	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/4 Luebo	Human
gb:KC242787	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/23 Luebo	Human
gb:KC242786	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/1 Luebo	Human
gb:KC242785	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/0 Luebo	Human
gb:KC242799	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/1995/13709 Kikwit	Human
gb:KC242796	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/1995/13625 Kikwit	Human
gb:KC242791	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/1977/Bonduni	Human
gb:KC242801	Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/1976/deRoover	Human
gb:KM233118	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-NM042.3	Human
gb:KM233117	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-NM042.2	Human
gb:KM233116	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-NM042.1	Human
gb:KM233115	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3857	Human
gb:KM233114	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3856.3	Human
gb:KM233113	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3856.1	Human
gb:KM233112	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3851	Human
gb:KM233111	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3850	Human
gb:KM233110	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3848	Human
gb:KM233109	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3846	Human
gb:KM233108	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3845	Human
gb:KM233107	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3841	Human
gb:KM233106	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3840	Human
gb:KM233105	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3838	Human
gb:KM233104	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3834	Human
gb:KM233103	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3831	Human
gb:KM233102	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3829	Human
gb:KM233101	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3827	Human
gb:KM233100	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3826	Human
gb:KM233099	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3825.2	Human
ab:KM233098	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3825.1	Human
gb:KM233097	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3823	Human
gb:KM233096	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3822	Human
gb:KM233095	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3821	Human
gb:KM233094	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3820	Human
gb:KM233093	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3819	Human
gb:KM233092	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3818	Human
gb:KM233091	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3817	Human
--------------------------	---	----------------
gb:KM233090	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3816	Human
ab:KM233089	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3814	Human
ab:KM233088	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3810.2	Human
gb:KM233087	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3810.1	Human
gb:KM233086	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3809	Human
gh [·] KM233085	Organism Zaire ebolavirus Ebola virus/H sapiens-wt/SI E/2014/Makona-G3808	Human
gb:KM233084	Organism:Zaire ebolavirus Ebola virus/H sapiens-wt/SI E/2014/Makona-G3807	Human
gb:KM233083	Organism:Zaire ebolavirus Ebola virus/H sapiens-wt/SI E/2014/Makona-G3805 2	Human
gb:KM233082	Organism:Zaire ebolavirus Ebola virus/H sapiens-wt/SI E/2014/Makona-G3805 1	Human
gb:KM233081	Organism:Zaire ebolavirus Ebola virus/H sapiens-wt/SI E/2014/Makona-G3800	Human
gb:KM233080	Organism:Zaire ebolavirus Ebola virus/H sanjens-wt/SI E/2014/Makona-G3799	Human
gb:KM233079	Organism:Zaire ebolavirus Ebola virus/H sanjens-wt/SI E/2014/Makona-G3798	Human
gb:KM233078	Organism:Zaire ebolavirus Ebola virus/H sanjens-wt/SI E/2014/Makona-G3796	Human
gb:KM233077	Organism. Zaire ebolavirus Ebola virus/H sanjens-wt/SLE/2014/Makona-G3795	Human
gb:KM233076	Organism.Zaire ebolavirus Ebola virus/H sanjens-wt/SLE/2014/Makona-G3789 1	Human
gb:KM233075	Organism. Zaire ebolavirus Ebola virus/H sanjens-wt/SLE/2014/Makona-G3788	Human
gb:KM233074	Organism. Zaire ebolavirus Ebola virus/H sanjons wt/SLE/2014/Makona G3787	Human
gb.KM233074	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3787	Humon
gb.KM233073	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3760	Humon
gb:KM233072	Organism. Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3702	Human
gb.KM233071	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3771	Humon
gb.KM222060	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3770.2	Humon
gb.KM233009	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3770.1	Humon
gb.KM233000	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3769.4	Humon
gb.KM233007	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3769.3	Humon
gb.KM233000	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3769.2	Humon
gb.KM222064	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3765.2	Humon
gb.KW233063	Organism: Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3763.	Human
gb.KM233062	Organism. Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3764	Human
gb:KM233061	Organism. Zaire ebolavirus Ebola virus/H sanjens-wt/SLE/2014/Makona-G3752	Human
gb:KM233060	Organism. Zaire ebolavirus Ebola virus/H sanjens-wt/SLE/2014/Makona-G3750.3	Human
gb:KM233059	Organism. Zaire ebolavirus Ebola virus/H sanjens-wt/SLE/2014/Makona-G3750.3	Human
gb:KM233058	Organism: Zaire ebolavirus Ebola virus/H sanjons wt/SLE/2014/Makona G3750.2	Human
gb.KM233050	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3735.1	Humon
gb.KM233056	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3735.2	Human
gb.KM233055	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3735.1	Humon
gb.KM233055	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3734.1	Humon
gb.KM233054	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3724	Humon
gb.KM233053	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3724	Humon
gb.KM233052	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3713.4	Humon
gb.KM233051	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3713.3	Humon
gb.KM233030	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3715.2	Human
gD.KM233049	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3707	
gD:KIVIU34503	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3687.1	Human
gD:KIVIU34562	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3686.1	Human
90.KIV1034501	Organism. Zaire ebolavirus Ebola virus/H. capions wt/SLE/2014/Makona-03003.1	Humon
gb.KIV1034500	Organism.Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3002.1	Human
90.NIV1034339	Organism. Zaire ebolavirus Ebola virus/H. capions wt/SLE/2014/Makona-03060. 1	Humon
90.NIVIU34338	Organism. Zaire ebolavirus Ebola virus/H. sapiens-WUSLE/2014/Makona-630/9.1	
90.KIVIU34557	Organism. Zaire ebolawrus Ebola wrus/H.sapiens-wt/SLE/2014/Makona-636/7.2	numan Human
90.KIV1034550	Organism. Zaire ebolavirus Ebola virus/H. capions wt/SLE/2014/Makona-03077.1	Humon
90.NIVIU34333	Organism.Zane ebolawirus Ebola wirus/H.sapiens-Wt/SLE/2014/Makona-G30/0.2	Humon
yu.NIVIU34054	Uganism.zane epolavirus Ebola virus/n.sapiens-WI/SLE/2014/Makona-G3076.1	numan

gb:KM034553	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3670.1	Human	
gb:KM233048	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM124.4	Human	
gb:KM233047	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM124.3		
gb:KM233046	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM124.2		
gb:KM233045	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM124.1	Human	
gb:KM233044	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM121	Human	
gb:KM233043	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM120	Human	
gb:KM233042	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM119	Human	
gb:KM233041	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM115	Human	
gb:KM233040	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM113	Human	
gb:KM233039	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM112	Human	
gb:KM233038	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM111	Human	
gb:KM233037	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM110	Human	
gb:KM233036	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM106	Human	
gb:KM233035	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM104	Human	
gb:KM034552	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM098	Human	
gb:KM034551	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM096	Human	
gb:KM034549	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM095B	Human	
gb:KM034550	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM095		
gb:KP178538	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/LBR/2014/Makona-201403007		
gb:KP120616	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/GBR/2014/Makona-UK1		
gb:KP271020	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/COD/2014/Lomela-Lokolia19		
gb:KP271018	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/COD/2014/Lomela-Lokolia16		
gb:KP728283	Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/CHE/2014/Makona-GE1	Human	
gb:KP701371	Organism:Zaire ebolavirus Ebola virus/H.sapiens-tc/SLE/2014/Makona-Italy-INMI1	Human	
gb:KP184503	Organism:Zaire ebolavirus Ebola virus/H.sapiens-tc/GBR/2014/Makona-UK1.1	Human	
gb:KM655246	Organism:Zaire ebolavirus Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Ecran	Human	
gb:KP260802	Organism:Zaire ebolavirus Ebola virus H.sapiens/MLI/14/Manoka-Mali-DPR4	Human	
gb:KP260801	Organism:Zaire ebolavirus Ebola virus H.sapiens/MLI/14/Manoka-Mali-DPR3	Human	
gb:KP260800	Organism:Zaire ebolavirus Ebola virus H.sapiens/MLI/14/Manoka-Mali-DPR2	Human	
gb:KP260799	Organism:Zaire ebolavirus Ebola virus H.sapiens/MLI/14/Manoka-Mali-DPR1	Human	
gb:NC_002549	Organism:Zaire ebolavirus Ebola virus H.sapiens-tc/COD/1976/Yambuku-Mayinga	Unknown	
gb:AY354458	Organism:Zaire ebolavirus Zaire 1995	Unknown	
gb:JA489037	Organism:Zaire ebolavirus UNKNOWN-JA489037	Unknown	
gb:HC874683	Organism:Zaire ebolavirus UNKNOWN-HC874683		
gb:HC874681	Organism:Zaire ebolavirus UNKNOWN-HC874681		
gb:HC874677	Organism:Zaire ebolavirus UNKNOWN-HC874677		
gb:HC874665	Organism:Zaire ebolavirus UNKNOWN-HC874665		
gb:HC874661	Organism:Zaire ebolavirus UNKNOWN-HC874661		
gb:HC069241	Organism:Zaire ebolavirus UNKNOWN-HC069241		
gb:HC069239	Organism:Zaire ebolavirus UNKNOWN-HC069239		
gb:HC069235	Organism:Zaire ebolavirus UNKNOWN-HC069235		
gb:HC069221	Organism:Zaire ebolavirus UNKNOWN-HC069221		
gb:HC069217	Organism:Zaire ebolavirus UNKNOWN-HC069217		
gb:KF827427	Organism:Zaire ebolavirus rec/COD/1976/Mayinga-rgEBOV	Human	
gb:AF272001	Organism:Zaire ebolavirus Mayinga	Guinea Pia	
ab:AF499101	Organism:Zaire ebolavirus Mavinga	Guinea Pig	
ab:AY142960	Organism:Zaire ebolavirus Mavinga	Guinea Pig	
ab:EU224440	Organism:Zaire ebolavirus Mavinga	Guinea Pig	
ab:AF086833	Organism:Zaire ebolavirus Mavinga	Guinea Pig	
ab:JQ352763	Organism:Zaire ebolavirus Kikwit	Unknown	
ab:JA489027	489027 Organism:Tai Forest ebolavirus UNKNOWN-JA489027		
gb:FJ217162	Organism:Tai Forest ebolavirus UNKNOWN-FJ217162	Human	

gb:NC_014372	Organism:Tai Forest ebolavirus Tai Forest virus/H.sapiens-tc/CIV/1994/Pauleoula-CI	Human
gb:EU338380	Organism:Sudan ebolavirus Yambio	Human
gb:HC874655	Organism:Sudan ebolavirus UNKNOWN-HC874655	
gb:HC069211	Organism:Sudan ebolavirus UNKNOWN-HC069211	
gb:KC242783	Organism:Sudan ebolavirus SUDV/H.sapiens-tc/SSD/1979/Maleo	Human
gb:NC_006432	Organism:Sudan ebolavirus Sudan virus/H.sapiens-tc/UGA/2000/Gulu-808892	Unknown
gb:JN638998	Organism:Sudan ebolavirus Sudan	Human
gb:AY729654	Organism:Sudan ebolavirus Gulu	Unknown
gb:KC545392	Organism:Sudan ebolavirus EboSud-682 2012	Human
gb:KC589025	Organism:Sudan ebolavirus EboSud-639	Human
gb:KC545391	Organism:Sudan ebolavirus EboSud-609 2012	Human
gb:KC545390	Organism:Sudan ebolavirus EboSud-603 2012	Human
gb:KC545389	Organism:Sudan ebolavirus EboSud-602 2012	Human
gb:FJ968794	Organism:Sudan ebolavirus Boniface	Unknown
gb:HC874675	Organism:Reston ebolavirus UNKNOWN-HC874675	2
gb:HC874663	Organism:Reston ebolavirus UNKNOWN-HC874663	
gb:HC874659	Organism:Reston ebolavirus UNKNOWN-HC874659	
gb:HC874657	Organism:Reston ebolavirus UNKNOWN-HC874657	3
gb:HC069233	Organism:Reston ebolavirus UNKNOWN-HC069233	
gb:HC069219	Organism:Reston ebolavirus UNKNOWN-HC069219	
gb:HC069215	Organism:Reston ebolavirus UNKNOWN-HC069215	
gb:HC069213	Organism:Reston ebolavirus UNKNOWN-HC069213	
gb:JX477165	Organism:Reston ebolavirus Reston09-A	Swine
gb:FJ621585	Organism:Reston ebolavirus Reston08-E	Swine
gb:FJ621584	Organism:Reston ebolavirus Reston08-C	
gb:FJ621583	Organism:Reston ebolavirus Reston08-A	Swine
gb:NC_004161	Organism:Reston ebolavirus Reston virus/M.fascicularis-tc/USA/1989/Philippines89- Pennsylvania	Unknown
gb:AB050936	Organism:Reston ebolavirus Reston	
gb:AF522874	Organism:Reston ebolavirus Pennsylvania	
gb:AY769362	Organism:Reston ebolavirus Pennsylvania	
gb:JX477166	Organism:Reston ebolavirus Alice, TX USA MkCQ8167	Monkey
gb:NC_014373	Organism:Bundibugyo virus Bundibugyo virus/H.sapiens-tc/UGA/2007/Butalya-811250	Human
gb:JA489018	Organism:Bundibugyo ebolavirus UNKNOWN-JA489018	Unknown
gb:FJ217161	Organism:Bundibugyo ebolavirus UNKNOWN-FJ217161	Human
gb:KC545396	Organism:Bundibugyo ebolavirus EboBund-14 2012	Human
gb:KC545395	Organism:Bundibugyo ebolavirus EboBund-122 2012	Human
gb:KC545394	Organism:Bundibugyo ebolavirus EboBund-120 2012	Human
gb:KC545393	Organism:Bundibugyo ebolavirus EboBund-112 2012	Human

Supplementary Table 20. Information on the 196 complete *Ebolavirus* genomes. Genomes were downloaded from Virus Pathogen Resource, VIPR (http://www.viprbrc.org/brc/home.spg?decorator=vipr).

Protein	Effective number of sequences	Effective number of human pathogenic	Effective number of Reston virus
		sequence	sequences
GP	95.15	86	4
L	99.2	78	7
NP	148.96	133	7
VP24	88.2	79	7
VP30	96.04	84	7
VP35	99.96	87	7
VP40	90.16	80	7

Supplementary Table 21. Effective number of independent sequences in the dataset. The effective number of independent sequences present in the multiple sequence alignments for each of the Ebolavirus proteins is shown. Values were calculated using hmmer (see material and methods).