WIP and WICH/WIRE co-ordinately control invadopodium formation and maturation in human breast cancer cell invasion

Esther García, Chiara Ragazzini, Xinzi Yu, Elena Cuesta-García, Jorge Bernardino de la Serna, Tobias Zech, David Sarrió, Laura M. Machesky and Inés M. Antón

SUPPLEMENTARY INFORMATION

SUPPLEMENTAL TABLES

Table S1. Characteristics of BCC cell lines

Cell line	Gene cluster	ER/PR/HER2 expression	Tumor type	Culture medium
BT474	luminal	+/+/+	IDC	RPMI, FBS, In, NaHCO ₃
HS578T	basal B	- / - / -	IDC	DMEM, FBS, In
MCF7	luminal	+ / + / -	IDC	DMEM, FBS
MDA-MB-157	basal B	-/-/-	MC	DMEM, FBS
MDA-MB-231	basal B	- / - / -	AC	DMEM, FBS
T47D	luminal	+ / + / -	IDC	RPMI, FBS, SP, NaHCO ₃
SKBR3	luminal	-/-/+	AC	McCoys 5A, FBS

Tumor type: IDC, invasive ductal carcinoma; F, fibrocystic disease; MC, metaplastic carcinoma; AC, adenocarcinoma. Culture conditions: RPMI, Roswell Park Memorial Institute 1640 medium; DMEM, Dulbecco's modified Eagle's medium (both from Sigma); F-12, Ham's F12 nutrient mixture (Gibco); FBS, fetal bovine serum 10%; HS, horse serum 5% (both from Sigma); HC, hydrocortisone 0.5 mg/ml (Calbiochem); EGF, epidermal growth factor 20 ng/ml (Peprotech); In, insulin (10 μg/ml, Gibco); NaHCO₃ 0.075% (Sigma); SP, sodium pyruvate (1 mM, Sigma)


SUPPLEMENTAL FIGURE LEGENDS

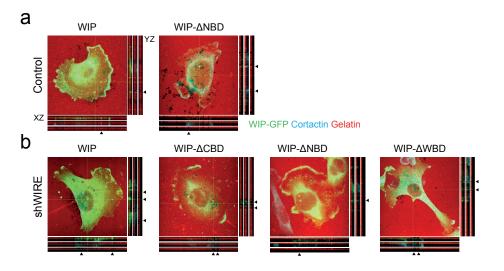

Figure S1. Expression of WIP family proteins in BCC and WIP- and WIRE-deficient cells. (a) Relationship between WIP mRNA levels and BCC invasive behavior (1). (b) WIP mRNA levels in basal-B, basal-A and luminal BCC (2). (c) MDA-MB-231 cells were transduced with lentiviral particles containing different shRNA-coding plasmids that target WIP or WIRE. Representative WB in which cell lysates (30 μ g/lane) were examined using anti-WIP, -WIRE and -GAPDH antibodies. (d) Quantification of WIP and WIRE expression after depletion. Data shown as mean \pm SD of at least three independent experiments. ** p <0.01, *** p <0.001 by 1-way ANOVA and Tukey's post-hoc test.

Figure S2. Disruption of Nck binding to WIP leads to opposite phenotypes in control and WIRE-deficient cells. Orthogonal views of cells shown in Figure 5. (a) MDA-MB-231 cells overexpressing WIP or WIPΔNBD (eGFP, green) were plated on rhodamine-gelatin (red, 5 h), fixed and stained for cortactin (cyan). (b) shWIRE cells overexpressing WIP, WIP-ΔCBD, WIP-ΔNBD or WIP-ΔWBD (eGFP, green). Arrows indicate invadopodia.

REFERENCES

- 1. Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. *Cancer Cell* **10**, 515-527 (2006).
- 2. Charafe-Jauffret, E. et al. Gene expression profiling of breast cell lines identifies potential new basal markers. *Oncogene* **25**, 2273-2284 (2006).

