Web-based Supplementary Materials for

A comparative study of adaptive dose-finding designs for phase I oncology trials of combination therapies

by A. HIRAKAWA, N.A. WAGES, H. SATO, AND S. MATSUI

Tables of main results

narios		Average		34	47	40	46	42		41	30	33	32	25		9	11	6	10	×	
l sce		16			0	22	20	26	20		54	32	35	34	32		0	ю	4	ы	3
in al		15		37	34	33	41	42		49	47	43	34	24	suc	∞	∞	9	6	2	
ethods in		14	ls (%	18	39	33	44	44	(0)	41	37	37	32	31	inatio	4	∞	∞	10	2	
meth		13	ation	30	51	38	39	30) su	25	26	28	19	15	dmo	9	11	∞	∞	ъ	
le 5		12	mbin	2	38	29	36	22	natic	47	25	32	36	29	TD (H	∞	ю	∞	ъ	
of th		11	se co	72	92	83	86	20	combi	n/a	n/a	n/a	n/a	n/a	tue M	10	24	23	21	15	
istics		10	r true MTD do 5 39 49	49	41	38	48	46	lose (40	34	39	29	19	to tr	10	10	∞	12	9	
acter	Scenarios	6		53	39	49	47	s for over	26	10	26	20	12	cated	9	12	10	11	∞		
chara		∞		23	24	23	29		s for	55	39	41	46	32	alloc	-	ю	9	5 C	ъ	
ting		4	ies fo	33	46	28	37	31	rate	42	20	25	29	22	ients	ഹ	11	9	1-	3	
perat		9	n rat	44	43	37	40	49	ation	32	41	39	36	22	of pat	6	6	∞	10	∞	
he o		ы	datic	59	80	58	77	64	nend	27	10	17	13	12	ber c	12	17	12	16	9	
r of t		4	nmen	0	29	36	31	38	comr	70	36	37	44	36	unu		9	6	4	9	
mary		с С	econ	tecon	econ 26	25	24	32	28	Re	54	54	48	55	48	erage	0	ю	ю	2	9
Sum:		2	r a	20	81	66	73	66		23	18	24	24	23	Ave	14	17	14	16	14	
				44	62	50	56	45		23	24	27	24	14		∞	14	11	14	11	
Table		Method		YYC	CDP	BW	WCO	HHM		YYC	CDP	BW	WCO	HHM		YYC	CDP	BW	WCO	HHM	

			8	5	0	x	0				2	1	¢	20			45	59	48	57	52										
			0	က	က	2	7				1	1	0,				Ö	0.	0.	0.	0.										
			22	30	30	24	13			6	12	12	∞	2			0.34	0.53	0.47	0.53	0.4										
arios			24	31	30	26	17		DCs	6	15	14	6	လ			0.58	0.55	0.48	0.58	0.5										
l scen			26	35	32	28	20		ie MT.	10	14	13	6	ъ			0.42	0.56	0.45	0.57	0.56										
s in al			22	31	31	26	18		the tru	4	10	10	9	Η			0.5	0.67	0.5	0.61	0.48										
nethod		X()	26	35	33	32	29		above	6	12	12	11	9			0.36	0.60	0.54	0.64	0.56										
the 5 met		cities ('	20	27	27	26	21		nation	n/a	n/a	n/a	n/a	n/a			0.37	0.56	0.4	0.47	0.37										
		d toxic	24	31	31	29	24		l to at a dose combi	6	12	12	6	9		×	0.54	0.53	0.39	0.59	0.52										
teristi	Scenarios	age of observe	18	25	27	25	17	l to at a dose		l to at a dose	a dose	a dose	a dose	a dose	a dose	a dose	a dose	a dose	a dose	n	4	x	Ŋ	2		cy Ind∈ 0.43	0.43	0.60	0.42	0.55	0.54
charac			25	34	31	28	19				10	15	12	12	9		ccurac	0.3	0.53	0.51	0.51	0.58									
ating		ercenta	24	31	29	23	15		locatec	6	6	6	9	က		A	0.46	0.66	0.46	0.6	0.56										
e oper		erall p	24	34	31	27	18		ents al	ъ	15	12	6	က			0.45	0.56	0.49	0.53	0.62										
y of th		0 V	24	32	31	26	15		of pati	9	7	∞	4	0			0.58	0.78	0.55	0.74	0.62										
mmar			22	28	29	27	19	imber	umber 11	age number .	12	11	11	7			0.31	0.48	0.49	0.5	0.54										
2: Su			25	36	32 33 33	rage m	tage nı	age nu	age nu		age nu	age nu	age nu	11	18	15	16	14			0.47	0.49	0.47	0.58	0.49						
Table			27	39	34	35	33		Ave	9	11	10	6	11			0.72	0.82	0.71	0.76	0.69										
			22	31	30	28	22			က	10	6	7	က			0.4	0.56	0.37	0.46	0.31										
			YYC	CDP	BW	WCO	MHH			YYC	CDP	BW	WCO	HHM			YYC	CDP	BW	WCO	HHM										

Additional scenarios with 'imperfect' MTDC

We also compared the operating characteristics among the 5 methods under 6 scenarios with 3×3 , 4×4 , and 3×4 dose combination matrices with "imperfect" MTDC's, as shown in Table 3. By 'imperfect' we mean that there is no combination with DLT rate exactly equal to the target rate ϕ . In these cases, selecting combinations, as the MTDC, with DLT rates that are within a certain range would be considered acceptable. Table 3 highlights any combination with a DLT rate within 0.05 of the target and we deem them "acceptable" if chosen as the MTDC. Under each scenario, 1000 trials were simulated. The target toxicity probability is set to $\phi = 0.30$ in Scenarios 1 and 2, $\phi = 0.33$ in Scenarios 3–6. The sample size is n = 22 in Scenarios 1 and 2, n = 32 in Scenarios 3 and 4, and n = 36 in Scenarios 5 and 6.

For the YYC method, we assumed gamma(2, 2) as the prior distribution for α and β , and gamma(0.1, 0.1) as the prior distribution for γ . The values of the marginal a priori DLT rates, p_j , are set to (0.10, 0.20, 0.30) for J = 3, and (0.10, 0.20, 0.30, 0.40) for J = 4, respectively. The same settings are made for q_k . The fixed probability cut-offs for dose escalation and deescalation are $c_e = 0.80$ and $c_d = 0.45$, respectively, which are also default values used by the software. For the BW method, the variance parameter σ^2 is set to 3 in order to stabilize the implementation of the R package **rjags**. The prior probability of each dose combination is shown in Table 4. For the WCO method, we chose a subset of possible dose-toxicity orders based on ordering the combinations by rows, columns, and diagonals of the drug combination matrix, as suggested by Wages and Conaway [1]. We utilized eight possible orderings in all scenarios. A uniform prior, $\tau(m)$, was placed on the orderings. The skeleton values, $p_{ik}(m)$, were generated according to the algorithm of Lee and Cheung [2] using the **getprior** function in R package dfcrm [3]. Specifically, for 3×3 combinations, we used getprior(0.05,0.30,4,9); for $4 \times$ 4 combinations, we used getprior(0.05,0.30,7,16); and for 3×4 combinations, we used getprior(0.05,0.30,6,12). The location of these skeleton values was adjusted to correspond to each of the six orderings using the **getwm** function in R package **pocrm**. All simulation results were carried out using the functions of **pocrm** with a cohort size of 1 in both stages. For each simulated trial, no stopping rule was specified so as to exhaust the pre-specified maximum sample sizes above. We performed the HHM method using the SAS/IML in SAS 9.3 (SAS Institute Inc., NC). The fixed intercept β_0 is set to be -3 throughout. c_1 and c_2 are commonly set to 0.05. We set $x_1 = 1, 2, 3$ and $x_2 = 1, 2, 3$ for 3×3 dose combinations, $x_1 = 1, 2, 3, 4$ and $x_2 = 1, 2, 3, 4$ for 4×4 dose combinations, and $x_1 = 1, 2, 3$ and $x_2 = 1, 2, 3, 4$ for 3×4 dose combinations, respectively.

Overall, the results in Table 5 seem to be consistent with the results in the main paper. The WCO (37.1%) and CDP (38.3%) methods again yielded the highest average recommendation rates for MTDC's around the target rate by at least 6% over the nearest competitior (YYC; 31.5%). These gains appear to be more substantial than in the cases in which there is a "perfect" MTDC, however this is based on a small set of six scenarios.

Table 3: Six scenarios for two-agent combination trials with an "imperfect" MTDC. Combinations with true DLT probabilities within 5% of the target rate (ϕ) are considered acceptable and are indicated in bold type.

						А				Target	Sample
		1	2	3	4	1	2	3	4	Rate (ϕ)	Size
		Scenario 1					Scen	ario 2		0.30	22
	3	0.20	0.50	0.66		0.18	0.50	0.60			
	2	0.06	0.33	0.50		0.12	0.18	0.50			
	1	0.02	0.20	0.33		0.06	0.12	0.33			
			Scena	ario 3			Scen	ario 4			
	4	0.35	0.40	0.42	0.45	0.43	0.65	0.79	0.95	0.33	32
В	3	0.28	0.31	0.35	0.36	0.35	0.51	0.75	0.91		
	2	0.15	0.19	0.23	0.30	0.20	0.39	0.63	0.88		
	1	0.05	0.09	0.20	0.25	0.05	0.25	0.50	0.80		
			Scena	ario 5		Scenario 6					
	3	0.30	0.40	0.50	0.60	0.40	0.68	0.80	0.99	0.33	36
	2	0.05	0.15	0.25	0.35	0.20	0.35	0.50	0.70		
	1	0.01	0.10	0.15	0.20	0.01	0.10	0.20	0.30		

						А				
		1	2	3	4		1	2	3	4
			3×3					4×4		
	4					0.33	0.42	0.50	0.60	
	3	0.30	0.40	0.50		0.22	0.33	0.42	0.50	
	2	0.20	0.30	0.40		0.11	0.22	0.33	0.42	
	1	0.10	0.20	0.30		0.02	0.11	0.22	0.33	
В										
			3×4							
	3	0.33	0.40	0.47	0.54					
	2	0.22	0.29	0.36	0.43					
	1	0.10	0.17	0.25	0.33					

Table 4: Prior toxicity probabilities we used in the simulation studies in the BW method in additional simulations with an 'imperfect' MTDC.

Table 5: Summary of the operating characteristics of the 5 methods in 6 scenarios containing an "imperfect" MTDC. The table reports the percentage of simulated trials that each emthod selected, as the MTDC, an acceptable combination, defined as one with true DLT rate within 0.05 of the target rate ϕ .

Scenarios													
Method	1	2	3	4	5	6	Avg.						
	Recommendation rates (%) for												
combos within 5% of ϕ													
YYC	37.2	23.0	43.0	18.1	29.6	41.1	31.5						
CDP	47.7	29.9	49.5	24.7	29.4	47.6	38.3						
BW	22.5	10.5	17.1	2.9	12.6	11.5	13.8						
WCO	46.4	23.4	48.3	22.3	36.5	50.2	37.1						
HHM	30.5	7.3	26.9	11.4	27.9	37.5	22.4						

References

- [1] Wages NA, Conaway MR. Specifications of a continual reassessment method design for phase I trials of combined drugs. *Pharmaceutical Statistics* 2013; **12**:217–224.
- [2] Lee SM, Cheung YK. Model calibration in the continual reassessment method. *Clinical Trials* 2009; 6:227–238.
- [3] Wages NA, Varhegyi N. pocrm: an R-package for phase I trials of combinations of agents. Computer Methods and Programs in Biomedicine 2013; **112**: 211–218.