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SLS Spatial Probit Model

The model description presented here is heavily based on Smith and LeSage [1].
Following the notation described in the main manuscript, the spatial probit model can
be written in full matrix notation as:

Yy =XB+A0+¢€
0=pWo+pu
1
A —
1,

where y* is an n x 1 latent variable vector, X is n X k matrix of explanatory variables,
Biskx1,eisn x 1, and 0, u are m x 1. The matrix A assigns the same effect

parameter to each observation within a region; 1;,j =1,...,m denotes an (n; x 1)
vector of ones where n; is the number of observations within region j. The model
Vl In1

assumes that p ~ N(0,071,,) and €| ~ N(0,V), where V =
UmIn,,
The matrix V allocates heterogeneity across regions through a set of variance scalars
vj,j =1,...,m multiplied by the identity matrix I,,.
Define an indicator function §(A) = 1 for positive outcomes and §(A) = 0 otherwise.
Then, probability of deforestation can be written as:

Pr(yi; = 1ly;;) = d(y;; > 0)
Pr(yi; = 0ly;;) = 0(y;; <0)

If we denote Y the n x 1 vector of binary outcomes, we can write
Pr(Y =yly*) =TI/~ [Til, {5(yjk = 1)0(y}y, > 0) + d(yjx = 0)0(yj,, < 0)}~
The function semip_g from LeSage’s spatial econometric Matlab library [2] estimates

this model through a hierarchical Bayesian estimation procedure using a Markov Chain
Monte Carlo (MCMC) sampling approach. The following prior distributions are used:
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B~ N(c,T)
L~ IDY3(r)

1
; ~ F(OZ, T)

p~UNE AL

min’ ‘max

B is assigned a normal conjugate prior with default values set to ¢ = 0, and T = 1e'?,
making it essentially diffuse. The variances o2 are given inverse gamma, priors with
parameters a = 7 = 0, also making them diffuse. The prior for each v; is the inverse
chi-square distribution, with hyperparameter » = 4. Finally, a uniform prior is employed
for p, with A = 0, Ajaz = 1. The corresponding densities are:

w(8) ox expl~5 (8~ )'T™ (8~ o)
m(0?) o (62) 7@ exp (—%)

m(p) ox 1

The implied prior density for the vector 6 conditional on p, UZ, V is:

m 1
2 2\—m
m(0lp,0,) o< (0,) 2 |Blexp <2039’B’B0)
B =(I)m—pW

The prior density e given (6,V) is
~1/2 L,
7(e|V) ~ |V] exp | —5¢ Ve
and the conditional prior of y* given (3, 02,0) is

m(y*183,0,V) x \V\_l/QeXp {—;(y* —XB-AO)V (y — XpB - AQ)}
B m  Nj 71/2 1 . , )
=T 1L % " e | =55 — 2B — 6))
j=1k=1 J

The posterior densities for 3,6, p, 02, v;, y;; can be found in the original manuscript
by Smith and LeSage and estimation is achieved via MCMC, a method that samples
sequentially from the complete set of posterior conditional densities for each one of the
parameters, given initial guesses. This method produces a set of estimates that converge
in the limit to the true joint posterior distribution of the parameters [3] .
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