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SLS Spatial Probit Model

The model description presented here is heavily based on Smith and LeSage [1].
Following the notation described in the main manuscript, the spatial probit model can
be written in full matrix notation as:

y∗ = Xβ + ∆θ + ε

θ = ρWθ + µ

∆ =

 11

. . .

1m


where y∗ is an n× 1 latent variable vector, X is n× k matrix of explanatory variables,
β is k × 1, ε is n× 1, and θ, µ are m× 1. The matrix ∆ assigns the same effect
parameter to each observation within a region; 1j , j = 1, . . . ,m denotes an (nj × 1)
vector of ones where nj is the number of observations within region j. The model

assumes that µ ∼ N(0, σ2
µIm) and ε|θ ∼ N(0, V ), where V =

 ν1In1

. . .

νmInm


The matrix V allocates heterogeneity across regions through a set of variance scalars

νj , j = 1, . . . ,m multiplied by the identity matrix Inj
.

Define an indicator function δ(A) = 1 for positive outcomes and δ(A) = 0 otherwise.
Then, probability of deforestation can be written as:

Pr(yij = 1|y∗ij) = δ(y∗ij > 0)

Pr(yij = 0|y∗ij) = δ(y∗ij ≤ 0)

If we denote Y the n× 1 vector of binary outcomes, we can write

Pr(Y = y|y∗) =
∏m
j=1

∏nj

k=1

{
δ(yjk = 1)δ(y∗jk > 0) + δ(yjk = 0)δ(y∗jk ≤ 0)

}
.

The function semip g from LeSage’s spatial econometric Matlab library [2] estimates
this model through a hierarchical Bayesian estimation procedure using a Markov Chain
Monte Carlo (MCMC) sampling approach. The following prior distributions are used:
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β ∼ N(c, T )
r

νj
∼ IDχ2(r)

1

σ2
∼ Γ(α, τ)

ρ ∼ U [λ−1min, λ
−1
max]

β is assigned a normal conjugate prior with default values set to c = 0, and T = 1e12,
making it essentially diffuse. The variances σ2 are given inverse gamma priors with
parameters α = τ = 0, also making them diffuse. The prior for each νj is the inverse
chi-square distribution, with hyperparameter r = 4. Finally, a uniform prior is employed
for ρ, with λmin = 0, λmax = 1. The corresponding densities are:

π(β) ∝ exp[−1

2
(β − c)′T−1(β − c)]

π(σ2) ∝ (σ2)−(α+1) exp
(
− τ

σ2

)
π(ρ) ∝ 1

The implied prior density for the vector θ conditional on ρ, σ2
µ, V is:

π(θ|ρ, σ2
µ) ∝ (σ2

µ)−
m
2 |B| exp

(
− 1

2σ2
µ

θ′B′Bθ

)
B = (I)m − ρW

The prior density ε given (θ, V ) is

π(ε|V ) ∼ |V |−1/2 exp

(
−1

2
ε′V −1ε

)
and the conditional prior of y∗ given (β, σ2, θ) is

π(y∗|β, θ, V ) ∝ |V |−1/2 exp

{
−1

2
(y∗ −Xβ −∆θ)′V −1(y∗ −Xβ −∆θ)

}
=

m∏
j=1

nj∏
k=1

{
ν
−1/2
j exp

[
− 1

2νj
(y∗jk − x′jkβ − θj)2

]}

The posterior densities for β, θ, ρ, σ2, νj , y
∗
ij can be found in the original manuscript

by Smith and LeSage and estimation is achieved via MCMC, a method that samples
sequentially from the complete set of posterior conditional densities for each one of the
parameters, given initial guesses. This method produces a set of estimates that converge
in the limit to the true joint posterior distribution of the parameters [3] .
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