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The model is defined by the following set of equations:
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For notation, see the main text. Figure 1 presents the model as a directed
acyclic graph.
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Figure 1: DAG of the model. Circles represent model unknowns, rect-
angles known or fixed values. The plates highlight the values specified for
each week and/or age group. Dotted circles are used to show the relations
between strata. Smaller rectangles with “prior” sign point out those model
parameters with specified prior distributions. Stochastic relations are indi-
cated with solid lines, deterministic with dashed lines. Complex relations
are shown as black rectangles and and written out in the model equations.
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Weekly time steps. We used a discrete-time dynamical model with the
time step taken to be one week. A model with a longer time step would
miss some features of the weekly aggregated data. A model with a shorter
time step could be more accurate but also computationally more expensive
due to a large number of hidden model states. In Supplement S6 Appendix
we show that the discrete-time SIR model with the same next generation
function agrees well with the continuous-time SIR with the same R0.

Stratification. We stratified the data into 16 age groups. To improve the
identifiability of the model parameters, we grouped parameters p, q, s(sev/inf)

and s(IC/sev) further into 6 bigger strata: 0-4, 5-14, 15-19, 20-29, 30-64, 65+
years of age.

We assumed the detection probabilities d
(mild)
t and d(hosp) to be indepen-

dent of age. This choice was based on the previous study, where we had not
found evidence for strong variation across age groups (range 3.1 – 4.6%).
By contrast, the previous analysis discovered significant variation across re-
gions (range 1.3 – 6.9%), but the current model excluded any between-region
variance altogether for computational reasons.

Prior formulation. In the previous study, we used conjugate beta-distributed
priors (Shubin et al., 2014). For this model we used log-normal and logit-
normal priors for the same parameters to represent the same information
(see Table 1 in the main text). These prior are less heavy tailed, i.e. more
informative.

Derivation of the infection pressure. Assume that a population of
size N receives a single contact from an infectious host. The probability for
a susceptible individual in this population to receive this contact is 1/N .
The probability of escaping infection at this contact is 1 − p/N . If the
population receives M independent contacts from infectious hosts, then the
probability for one susceptible individual to escape infection is (1− p/N)M .
In addition, there is a probability q to acquire infection from outside the
population. The probability for a single individual to become infected is
thus 1− (1− q)(1− p/N)M .

For age group a at week t, the total number of contacts from all infectious
hosts in the population is calculated as M =

∑16
b=1Cb→aIb,t−1. This number

is then scaled by the transmission random effect wt, leading to the expression
of ra,t in the model equations.

Derivation of basic reproduction number The basic reproduction
number R0 (the number of secondary infection caused by a single infected
individuals in a totally susceptible population) can be evaluated as a largest
eigenvalue of a next generation matrix NGM (Diekmann and Heesterbeek,
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2000). The element of the next generation matrix NGMab is defined as a
mean number infections caused in the age group a by an infected individual
from the age group b. In our model this number is equal to

Sa,t

(
1−

(
1− pa
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)wtCb→a
)
.

As we assume that the population is completely susceptible (Sa,t = Na)
and the transmission random effect is at its mean value (wt = 1), the mean
number of new infections is

NGMba = Na

(
1−

(
1− pa
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)Cb→a
)
.

While pa/Na → 0, this expression can be approximated with

NGMba ≈ Na

(
1−

(
1− pa

Na
Cb→a

))
= paCb→a.

The number of secondary infections caused by an infectious individ-
ual from age group b in the whole population is then approximated with∑16

a=1NGMab =
∑16

a=1 paCb→a.
At each week, there is chance of being infected from outside the popula-

tion. The mean number of such infections in a totally susceptible population
is Naqa.
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