
Revealing the true incidence of pandemic

A(H1N1)pdm09 influenza in Finland during the

first two seasons

Mikhail Shubin, Artem Lebedev, Outi Lyytikäinen, Kari Auranen

Supplement 3: Computational methods

The computational problem is to sample from the posterior distribution
p(θ,H|D). Here θ denotes the unknown model parameters:

θ = {p, q, s(sev/inf), s(IC/sev), d(hosp), ε, σ}

H denotes the hidden model states (the age group specific weekly numbers
of infectious and susceptible individuals):

H = {Ia,t, Sa,t}a∈1...16; t∈0...112
and D denotes the observations (i.e. the age group specific weekly numbers
of detected cases):

D = {D(mild)
a,t , D

(hosp)
a,t , D

(IC)
a,t }a∈1...16; t∈0...112.

Above a is the age group index and t is the week index. We solve the
computational problem using the following algorithms:

• Markov chain Monte Carlo (MCMC). It was used as a main inference
tool.

• Iterative component-wise optimization. Auxiliary methods. Used to
find the maximum of the posterior. The maximum is then used as the
initial point for MCMC. Optimization was also used for the sensitivity
analysis.

• Exact approximate MCMC (Andrieu and Roberts, 2009) targeting

the tempered marginal posterior distributions p(θ|D)
1
5 and p(θ|D)

1
25 .

Auxiliary methods. The tempered posteriors were studied to en-
sure that the peak area of the target posterior is unimodal and well-
behaving.

1

• Importance sampler targeting the likelihood p(D|θ). Auxiliary meth-
ods, used within Exact approximate MCMC.

The following text gives an overview of the computational methods. All
probabilities and importance weights were log-transformed. The model pa-
rameters p, s(sev/inf), s(IC/sev), d(hosp) were explored in a logit form. Parame-

ter q was explored in a log form. The model parameters wt and d
(mild)
t were

deterministicly transformed parameters ε and σ, and therefore not taken
into analysis explicitly.

We use the following notation: N (µ, σ2) is a normal distribution with
mean µ and variance σ2; N(µ,Σ) is a multivariate normal distribution with
mean µ and covariance matrix Σ; U(0, 1) is a number sampled uniformly
from the interval (0, 1), ‘←’ is an assignment operator.

MCMC

We used MCMC as a main inference tool targeting the full posterior of the
model unknowns p(θ,H|D). The chain was initiated with the maximum
estimated with optimization (see below). The parameters ε, σ and the
hidden states H were updated in two different ways during the odd and
even iterations to improve mixing.

The model parameters p, q, s(sev/inf), s(IC/sev) were updated using the
following Metropolis-Hastings steps:

1. The proposed value for p is sampled in logit form

logit(p∗) ∼ N(logit(p),Σp),

here Σp is the proposal covariance matrix for the parameter
logit(p).

2. The proposal is accepted (p← p∗) if

U(0, 1) <
p(D,H|p∗, . . .)π(logit(p∗))

p(D,H|p, . . .) π(logit(p))
;

here π() is a prior for logit(p).

3. The parameters q, s(sev/inf) and s(IC/sev) were updated in the same
way using steps 1-2. For the parameter q the log transformation
is used instead of logit.

The detection probability for a hospitalized case d(hosp) was updated
using the following Metropolis-Hastings steps:

2

1. The proposed values are sampled in logit form

logit(d(hosp)∗) ∼ N (logit(d(hosp)), σ2
d(hosp)

)

here σ2
d(hosp)

is the proposal variance.

2. The proposal is accepted (d(hosp) ← d(hosp)∗) if

U(0, 1) <
p
(
D,H|d(hosp)∗ . . .

)
p
(
D,H|d(hosp) . . .

) × π
(
logit(d(hosp)∗)

)
π
(
logit(d(hosp))

)
here π() is a prior for logit(d(hosp)).

On the odd iterations, parameters ε, σ were updated using the following
Metropolis-Hastings steps:

1. Randomly sample two integers i and j, such that 0 < i < j < T ,
here T = 113 weeks is length of the studied period.

2. Sample a proposal for the middle part of the vector εi...j from the
conditioned prior (i.e. a conditioned multivariate normal distribu-
tion):

ε∗i...j ∼ π(εi...j |ε0...i−1,j+1...T)

3. The proposal is accepted (εi...j ← ε∗i...j) if

U(0, 1) <
p(D,H|ε0...i−1, ε∗i...j , εj+1...T−1, . . .)

p(D,H|ε0...T−1, . . .)
.

4. The head and tail parts of the vector ε in the same way using the
step 3:

ε∗0...i−1 ∼ π(ε0...i−1|εi...T−1);
ε∗j+1...T−1 ∼ π(εj+1...T−1|ε0...j).

5. The parameter σ is updated in the same way using steps 1-3.

On the even iterations, parameters ε, σ were updated using the following

3

approximation to the Metropolis-Hastings steps.

1. The proposed value is sampled

ε∗ ∼ N(ε,Σε),

here Σε is a proposal covariance matrix for the parameter ε.

2. The first component of the proposal is accepted (ε0 ← ε∗0) if

U(0, 1) <
p(D,H|ε∗0, ε1...T , . . .)π(ε∗0, ε1...T)

p(D,H|ε0...T , . . .)π(ε0...T)
,

here π() is the prior.

3. The second component of the proposal is accepted (ε1 ← ε∗1) if

U(0, 1) <
p(D,H|ε0, ε∗1, ε2...T , . . .)π(ε0, ε

∗
1, ε2...T)

p(D,H|ε0...T , . . .)π(ε0...T)
.

4. The process is sequentially repeated for all components of ε.

5. The parameter σ us updated in the same way using steps 1-4.

On the odd iterations, hidden states were updated using a particle Gibbs
sampler (Andrieu et al., 2010) step with n = 200 particles. The importance
function used in the Gibbs step is described in the Importance Sampler
section.

1. Initialize the set of n particles{
{I(i)a,0 = 0, S

(i)
a,0 = Na}a∈1...16

}
i∈1...n

Initialize importance weights:{
W

(i)
a,0 = 1

}
i∈1...n

2. Propagate the particles

H
(i)
t ∼ g(H

(i)
t−1, D, θ) for i ∈ 2 . . . n

4

here H
(i)
t =

{
I
(i)
a,t , S

(i)
a,t

}
a∈1...16

and g is the importance function.

The first particle plays the role of a reference. It is not sampled
randomly, but is set to be equal to the hidden state H from the
current state of the chain:

H
(1)
t = Ht

3. Propagate the importance weights

W
(i)
t = W

(i)
t−1

p(D,H
(i)
t |H

(i)
t−1, θ)

g(H
(i)
t |H

(i)
t−1, D, θ)

for i ∈ 1 . . . n

4. During iterations t ∈ 20, 25, 30 . . . 110, after the particle and
weights are propagated, conduct resampling. Resample the set of
particles using their normalized weights. Keep the first (reference)
particle intact.

indi = Categorical

(
W

(1)
t∑

jW
(j)
t

,
W

(2)
t∑

jW
(j)
t

. . .
W

(n)
t∑

jW
(j)
t

)
H

(i)
0...t ← H

(indi)
0...t for i ∈ 2 . . . n

W
(i)
t ← 0 for i ∈ 1 . . . n

Resampling is done using a resampling scheme (Douc et al., 2005)

5. After all weeks are sampled, select one of the particles using the
normalized weights to be the proposal. Proposal is always ac-
cepted.

proposal = Categorical

(
W

(1)
T∑

jW
(j)
T

,
W

(2)
T∑

jW
(j)
T

. . .
W

(n)
T∑

jW
(j)
T

)
H0...T ← H

(proposal)
0...T

On the even iterations, hidden states were updated using the algorithm:

1. Sample a proposal for the hidden states of the first age strata,

5

keeping the rest of the hidden states intact:

I∗1 , S
∗
1 ∼ g(I2...16, S2...16, D, θ);

Here Ia = {Ia,t}t∈0...T , Sa = {Sa,t}t∈0...T and g is the importance
function.

2. The proposal is accepted (I1 ← I∗1 , S1 ← S∗1) if

U(0, 1) <
p(D, I∗1 , S

∗
1 , I2...16, S2...16|θ)

p(D, I1...16, S1...16|θ)
g(I1, S1|I2...1,, S2...16, D, θ)
g(I∗1 , S

∗
1 |I2...16, S2...16, D, θ)

.

3. Each other stratum is updated in the same way using steps 1-2 .

We used 15 independently run chains, each with 55000 iteration, dis-
carding the initial 15000 iterations as warm-up and recording every 20th

iteration. Each iteration included updating p, q, s(sev/inf), s(IC/sev), d(hosp),
ε, σ and the hidden states. Proposal variances Σ and σ2 were adopted dur-
ing the warm-up phase to obtain an approximate acceptance rate of 1/3
(Brooks et al., 2011).

Optimization

Before starting the MCMC simulation to explore the posterior, the maxi-
mum of the posterior first was searched by an ad hoc optimization algorithm.
The MCMC chains were then initiated with the found maximum point. In
the sensitivity analyses, the results were compared in terms of the posterior
maximum points found by the algorithm. The optimization is initiated at
a random point. For each parameter x ∈ θ or hidden value x ∈ H the pro-
posal distance stepx is set to the arbitrary non-zero value. Parameters and
hidden values are updated in a slightly different way because all parameters
are continuous while all hidden values are discrete.

The hidden values x ∈ H are updated in the following way:

1. Let x0 denote the current value of the hidden value x. If x = 0,
set stepx = 1

2. A new value for x is proposed:

x∗ = max(0, x0 + stepx)

6

3. The part of the posterior density that depends on x is evaluated
for the two values of x:

P0 ∼ p(x0, . . . |D)

P ∗ ∼ p(x∗, . . . |D)

4. if P 0 > P ∗, keep the value x = x0 and set

stepx ← round(−0.5 stepx + 0.6)

5. if P ∗ > P0, set the value x← x∗ and set

stepx ← round(+1.6 stepx)

The parameters x ∈ θ are updated in the following way:

1. Let x0 denotes the current value of the hidden value x. Two new
values for x are proposed:

x∗ = x0 + stepx

x∗∗ = x0 + 2 stepx

2. The part of the posterior depending on x is evaluated for the dif-
ferent values of x:

P0 ∼ p(x0, . . . |D)

P ∗ ∼ p(x∗, . . . |D)

P ∗∗ ∼ p(x∗∗, . . . |D)

3. if P 0 > P ∗, P ∗∗ keep the value x = x0 and set

stepx ← −0.5 stepx

4. if P ∗ > P0, P
∗∗ set the value x← x∗;

(a) if P0 = P ∗∗, set stepx ← +0.1 stepx;

(b) else, set stepx ←
P ∗∗ − P0

2 max(P ∗ − P ∗∗, P ∗ − P0)
stepx

7

5. if P ∗∗ > P0, P
∗ set the value x← x∗∗; set

stepx ←
P ∗∗ − P0

max(0.1 (P ∗∗ − P0), P ∗ − P0)
stepx

6. if |stepx| < 0.001, set stepx ← 0.001 sign(stepx)

We run the optimization algorithm for 5000 iterations.

Exact approximate MCMC

We used Exact approximate MCMC (Andrieu and Roberts, 2009) to target
the tempered marginal posterior p(θ|D)1/25. The chain was initiated with
the maximum estimated with the optimization (see above). The algorithm
proceeded by sequentially updating the components of θ. The sampler was
used twice with the temperature set to temp = 1/25 and temp = 1/5.

The model parameters p, q, s(sev/inf), s(IC/sev) were updated using the
following Metropolis-Hastings steps:

1. The proposed value of p is sampled at the logit scale:

logit(p∗) ∼ N(logit(p),Σp),

here Σp is the proposal covariance matrix for logit(p).

2. The likelihood for the proposal is estimated with importance sam-
pling

L∗ ← p̃(D|p∗, . . .).

3. The proposal is accepted (p← p∗; L← L∗) if

U(0, 1) <

(
L∗π(logit(p∗))

L π(logit(p))

)temp
,

here π() is a prior for a logit form of p.

4. The parameters q, s(sev/inf) and s(IC/sev) are updated in the same
way using steps 1-3. For the parameter q the log transformation
is used instead of logit.

The detection probability for the hospitalized cases d(hosp) was updated
using the following Metropolis-Hastings steps:

8

1. The proposed values are sampled in logit form

logit(d(hosp)∗) ∼ N (logit(d(hosp)), σ2
d(hosp)

),

here σ2
d(hosp)

is the proposal variance.

2. The likelihood for the proposal is estimated with importance sam-
pling

L∗ ← p̃(D|d(hosp)∗, . . .).

3. The proposal is accepted (d(hosp) ← d(hosp)∗; L← L∗) if

U(0, 1) <

(
L∗π

(
logit(d(hosp)∗)

)
L π

(
logit(d(hosp))

))temp ,
here π() is a prior for a logit form of d

(mild)
t .

The parameters ε, σ (determining random effects w and d) were updated
using the algorithm:

1. Randomly sample two integers i and j, such that 0 < i < j < T ,
here T = 113 here T = 113 weeks is length of the studied period.

2. Sample new proposal for the middle part of the vector εi...j from
the conditioned prior (i.e. conditioned multivariate normal distri-
bution):

ε∗i...j ∼ π(ε0...i−1,j+1...T)

3. The likelihood for the proposal is estimated with importance sam-
pling

L∗ ← p̃(D|ε0...i−1, ε∗i...j , εj+1...T , . . .).

4. The proposal is accepted (εi...j ← ε∗i...j ; L← L∗) if

U(0, 1) <

(
L∗

L

)temp
.

5. Steps 3-4 are repeated for the head and tail parts of the vector ε:

ε∗0...i−1 ∼ π(εi...T);

ε∗j+1...T ∼ π(ε0...j).

9

6. The parameter σ is updated in the same way using steps 1-5.

We drew 6000 samples, discarding the initial 2000 as warm-up. Each
iteration includes updating p, q, s(sev/inf), s(IC/sev), d(hosp), ε and σ. At the
end of each non warm-up iteration the parameter vector was saved as one
sample from the posterior p(θ|D)temp. The proposal variances Σ and σ2

were adopted during the warm-up phase to get close the optimal acceptance
rate 1/3 (Brooks et al., 2011).

Importance Sampler

We used an importance sampler to estimate the likelihood p(D|θ):

p(D|θ) ≈ p̃(θ|D) =
1

n

n∑
i=1

p(D,Hi|θ)
g(Hi|D, θ)

; Hi ∼ g(Hi|D, θ).

Here the importance function g() samples the hidden states exactly as de-
fined by the model equations (see Supplement 2 Appendix) with an ex-
ception of the true numbers of infections {Ia,t}a∈1...16; t∈0...112, which are
sampled conditional on the data from the corresponding week:

ua,t = ra,t

(
(1− sa)(1− d(mild)

t) + s(1− ga)(1− d(hosp))
)

;

Ua,t ∼ Binom

(
Sa,t−1 −

(
D

(mild)
a,t +D

(hosp)
a,t +D

(IC)
a,t

)
,

ua,t
ua,t + (1− ra,t)

)
,

Ia,t ← Ua,t +D
(mild)
a,t +D

(hosp)
a,t +D

(IC)
a,t .

Here Ua,t is the number of unobserved infections in age group a at week t,
ra,t is the probability of becoming infected, evaluated according to the model
equations; ua,t is the probability of becoming infected, but not detected.

Hardware and Software

The most computationally expensive procedure was the estimation of p (D|θ)
with importance sampler. It was written in C and supports parallel compu-
tations on heterogeneous NUMA-systems comprising traditional multicore
CPUs and Intel Xeon PHI accelerators. The idea to improve performance of
the importance sampler was to distribute fixed number of Monte Carlo sam-
ples among computational threads assuming that CPUs composing NUMA
were identical and accelerators were identical too. We run one worker for
all host CPU cores and one worker for each Xeon PHI accelerator. Work-
ers running on CPU cores and Xeon PHI cores have different efficiency,

10

so work distribution proportion for system with Q accelerators should be
WCPU : WACC

1 : ... : WACC
Q ≈ α : 1 : ... : 1, where WCPU + QWACC

∗ = N
assuming N is the total number of Monte Carlo casts.

We made estimations for b = 105 Monte Carlo casts and compute the

proportion empirically: α =
TACC
b

TCPU
b

, where TCPUb – time to complete b Monte

Carlo casts using CPU worker, TACCb – time to complete b Monte Carlo

casts using Xeon PHI worker, WACC
∗ =

⌊
N

α+Q

⌋
– number of Monte Carlo

casts for each Xeon PHI worker, WCPU = N−Q
⌊

N
α+Q

⌋
– number of Monte

Carlo casts for CPU worker.
Every worker uses OpenMP to expose parallelism of the loop doing

Monte Carlo casts. We used offload acceleration model to support Intel
Xeon PHI capabilities. The code performing Monte Carlo cast is the same
for both microarchitectures (x86 and MIC). Since we run bunch of sepa-
rate computational threads, we need bunch of PRNG sequences considered
to be uncorrelated to get necessary source of randomness (dedicated se-
quence for each thread). We use Intel MKL Mersenne Twister generator
V SL BRNG MT2203 with 6024 pregenerated sequences designed specifi-
cally for massively parallel computations (this implies limit on parallelism –
sampler can not utilize more than 6024 computational cores).

The rest of the code was written in Python 2.7 with external libraries
NumPy and SciPy for mathemathical function and Pillow for visualization.
All algorithms were executed on the RSATU server. The main MCMC
algorithm took 1 month. The auxiliary MCMC took about 3 days each.
The optimization required 2 days. RSATU server is NUMA-machine with
two eight-core Intel Xeon E5-2690 CPUs (total 32 threads with Hyper-
Threading) and one Intel Xeon PHI 3100 accelerator with 57 cores (total
228 threads – each core supports four hardware threads). The machine had
64Gb DDR3 RAM and the accelerator had 6Gb of on-board GDDR5 RAM.
We run 32+228=250 threads to make computations and utilize 250 PRNG
sequences accordingly. The proportion of work distribution was ≈ 1.6 : 1.

References

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle markov chain
monte carlo methods. Journal of the Royal Statistical Society: Series
B, pages 269–342.

Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for
efficient monte carlo computations. The Annals of Statistics, 37(2):pp.
697–725.

Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. (2011). Handbook of
Markov Chain Monte Carlo. Chapman and Hall/CRC.

11

Douc, R., Cappé, O., and Moulines, E. (2005). Comparison of resampling
schemes for particle filtering. CoRR, abs/cs/0507025.

12

