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Supplement 6: Continuous and
discrete-time SIR models

In this supplement, we show that the discrete-time model used in this
study behaves similarly to the standard continuous-time SIR model with
the same R0. In particular, both models lead to the same final size (the
total number of individuals infected during the epidemic) (Diekmann and
Heesterbeek, 2000) and similar distributions of infection over time.

The SIR model in a homogeneously mixing population (Diekmann and
Heesterbeek, 2000) is defined by the system of differential equations:

S′ = −SIα,
I ′ = SIα− Iβ,
R′ = Iβ.

Here S, I and R are the numbers of susceptible, infectious and removed
individuals, α is the infection rate (the rate of infectious contacts one infected
individual exerts per individual in the population) and β is the recovery
rate. The total population size N(t) = S(t) + I(t) +R(t) remains constant
over time. The basic reproduction number R0 is defined as the number
of secondary infections caused by one infective individual in a completely
susceptible population. For the SIR model, R0 = Nα/β.

As the SIR system does not have an analytical solution, we approximate
it numerically as follows:

S(t+ ∆t) = S(t)− S(t)I(t)α∆t,

I(t+ ∆t) = I(t) + (S(t)α− β)I(t)∆t,

R(t+ ∆t) = R(t) + I(t)β∆t.
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Here ∆t is the time step of the approximation. The approximation is accu-
rate when ∆t→ 0.

We define the corresponding deterministic discrete-time SIR model as
following:

I(t+ 1) = S(t)×
(

1−
(

1− p

N

)CI(t)
)

;

S(t+ 1) = S(t)− I(t+ 1);

R(t+ 1) = R(t) + I(t).

Here p is the probability for an individual to become infected per contact
and C is the number of contacts per time step. The basic reproduction
number of this model can be approximated with R0 = pC.

The stochastic version of discrete-time SIR model samples the number
of infections using the binomial distribution:

I(t+ 1) ∼ Binom

(
S(t); 1−

(
1− p

N

)CI(t)
)
,

S(t+ 1) = S(t)− I(t+ 1),

R(t+ 1) = R(t) + I(t).

Simulations were repeated for several values of N , R0, α, β, p and C
such that R0 = Nα/β = pC. Figure 1 shows the results for N =100
000, R0 = 2, α = 1.5/N , β = 0.75, p = 1, C = 2. We observe that the
results of continuous- and deterministic discrete-time models are similar in
the time dimension and almost identical in the (S, I) space. This means
that both models lead to the same final size of the epidemic (the number
of removed individuals when t → ∞). Stochasticity adds additional noise
to the time dimension and the probability that the epidemic would die out
before starting the outbreak. However, if the number of infections reaches
some threshold, the model follows closely its deterministic version.

Changing α and β while keeping R0 intact scales the trajectory of the
SIR model on the time axis, but does not change its behaviour in the (S, I)
space. Changing p and C while keeping R0 intact does not change the
behaviour or the discrete-time SIR.

Similar tests with similar results were performed for the SIR model with
two subpopulations. In the research we applied the same model with 16
sub-populations (age groups). In addition, the actual model involved time-
dependent modulation of the reproduction number by random effect wt, the
inflow of infections q and the vaccination.
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Figure 1: Trajectories of the continuous-time SIR model (black line), de-
terministic discrete-time SIR (red line) and the stochastic discrete-time SIR
(samples are shown with the blue lines).
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