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Additional File 1
Below, we provide appendices describing the mathematical details of our analysis.

Nondimensionalization

Our equations are nondimensionalized in a manner similar to that used by Walker

et al.:

t = dOT, cs = Cs/C̄s, c = µRpCdOC,

a = µRpCd
2
OA, r = µRpCdOR, o = µRpCpApOd

3
OO, (A1)

Here, cs, c, a, r, o are the dimensionless versions of the original concentrations

Cs, C,A,R,O, respectively. Cs is normalized by C̄s, which denotes the typical max-

imum amount of releasable CRH in the physiological range. Upon using these vari-

ables, the dimensionless forms of Eqs. 9-13 are expressed in Eqs. 14-18. The param-

eters qi, pi are dimensionless combinations conveniently defined to be analogous to

those used by Walker et al.:

tc = dOTC , td = dOTd, q0 = pC/(µRpR),

q2 = dC/dO, p2 = µ2
Rp

2
RpApO/(d

4
OKA), p3 = dA/dO, (A2)

p4 = p4CpApOd
8
OK

2
R/µR, p5 = 1/µR, p6 = dR/dO.

Using these scalings, we arrive at the dimensionless Eqs. 14-19.

Parameter estimates

Many of the numerous physiological parameters in our model can be estimated

or constructed from previous studies on the HPA axis. For example, as shown in

Fig. A1, the parameters forming the function c∞(o) are derived from fitting to data

on adrenalectomized male rats. From the fitting, we estimate the baseline level
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Figure A1: Fitting c∞(o) to rat data. Nondimensionalized data taken from Watts
and fitted using the form for c∞(o) given in Eq. 19. Cortisol levels were arbitrarily
rescaled according to 125ng/ml → 3.

c̄∞ ' 0.2, and the decay rate b ' 0.56. Furthermore, the dimensionless parameters
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p2, . . . , p5 and td will be fixed to those used in Walker et al.: p2 = 15, p3 = 7.2, p4 =

0.05, p5 = 0.11, p6 = 2.9 and td = 1.44 (Td = 15 min). Although it is not possible

to determine all of the remaining parameters from data, we will use reasonable

estimates. The half-life of cortisol was estimated to be about 7.2min while the half-

life of CRH has been estimated to be about 4min. Therefore, q2 = dCd
−1
O ≈ 1.8. Of

the remaining parameters (n, µc, q0, q1, k), the dependence on n will turn out to be

quantitative so we henceforth set n = 5. These estimated parameters are listed in

Table A1.

Even though one expects the values of these effective parameters to be highly

variable, we fix them in order to concretely investigate the mathematical structure

and qualitative predictions of our model. The parameters µc, q0, q1, and k remain

undetermined; however, it is instructive to treat k as a control parameter and explore

the nullcline structure in µc, q0, q1 parameter space.

Parameter space and nullcline structure

To determine how the q-nullcline crosses the c-nullcline, we substitute cs by its

equilibrium period-averaged value 〈c∞(c)〉. If we assume a basal input level I = 1,

the values of k that will position the basal q-nullcline to just pass through the left

and right bifurcation points (qL, cL) and (qR, cR) can be found by solving qL,R =

q0(1− e−k〈c∞(cL,R)〉):

kL =
1

〈c∞(cL)〉
ln

(
1

1− qL/q0

)
, kR =

1

〈c∞(cR)〉
ln

(
1

1− qR/q0

)
. (A3)

All possible ways in which the nullclines can cross each other as k is varied are

illustrated in Fig. A2.
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Figure A2: The possible number of equilibria of the reduced (q, c) system. (A)
A Type 0 scenario in which kR < kL permits only one nullcline intersection, either one
the lower stable branch, the unstable branch, or the upper stable branch. (B) In this
Type I parameter regime, the c-nullcline is shaped and positioned such that kL < kR.
Therefore, it is possible for the model to exhibit two oscillating stable states provided
kL < k < kR. For k < kL (k > kR), the q-nullcline shifts to the left(right) and the
intersection with the upper(lower) branch of the c-nullcline disappears, leading to only
one stable point. (C) A Type II c-nullcline. For k < kL, there is only one intersection
at the lower branch. For all k > kL there are two intersections.
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The specific locations of the bifurcation points, as well as kL and kR, are compli-

cated functions of all parameters. However, Eqs. A3 allows us to distinguish three

qualitatively different regimes. The first possibility is kL > kR, where there can be

at most only one intersection between the slow and fast nullclines. We denote this

as a Type 0 scenario (Fig. A2A) characterized by having at most a single stable

state towards which the system will always return upon cessation of external stress.

In Type 0 situations with intermediate values of k, the intersection will arise in the

unstable branch of the c-nullcline. In this case, we expect the system to oscillate

between the two stable branches of the c-nullcline. Here, the fast variables a, o, and

r will cycle periodically between two oscillating levels.

In order for the two nullclines to intersect three times (twice on stable branches

of the c-nullcline), the q-nullcline must “fit” within the bistable region of the c-

nullcline. As shown in Fig. A2, there are two separate subcases of nullclines that

intersect twice. If kL < kR, a value of kL < k < kR would imply that the q−nullcline

can intersect both stable branches of the c-nullcline, leading to two stable solutions.

We refer to this case as Type I (Fig. A2B).

Another possibility is that the right bifurcation point is beyond the maximum

value q = q0 dictated by the function h(〈c∞(cR)〉). As shown in Fig. A2C, the

bistable c-nullclines exhibits only one bifurcation point within the domain of q.

The lower branch of the c-nullclines in this set extends across the entire range of

physiological values of q, ensuring that the q-nullcline will intersect with the lower

branch for any value of k. Therefore, to determine if there are two intersections we

only need to check that kL ≤ k is satisfied. In this Type II case, the system is either

perpetually in the diseased low cortisol state, or is bistable between the diseased

and normal states; the system will always be at least susceptible to low-cortisol

disease. Summarizing,

- Type 0: Exactly one solution (one nullcline intersection) exists for the reduced

subsystem. Here, kR < kL and the intersection may occur on the lower or

upper stable branches, or on the unstable branch of the c-nullcline. The system

is either permanently diseased, permanently resistant, or oscillates between

normal and diseased states.

- Type I: At least one solution exists. A stable diseased solution exists if k < kL,

two stable solutions (diseased and normal) arise if kL ≤ k ≤ kR, and fully

resistant state arises if k > kR.

- Type II: At least one solution exists. A stable diseased state arises if k < kL

while both diseased and normal solutions arise if k > kL. A fully disease-

resistant state cannot arise.

With the parameters fixed according to Table A1, we will treat k as a control pa-

rameter and exhaustively sweep the three-dimensional parameter space (q0, q1, µc)

to determine the regions which lead to each of the nullcline structural types. In addi-

tion, we restrict the parameter domain to regions which admit oscillating solutions

of the full problem. In other words, parts of both stable branches of the c-nullclines

must fall within values of c which support oscillations in the PA-subsystem (Fig. 3).

The regions in (µc, q0, q1) space that satisfy these conditions and that yield each of

the types of nullcline crossings are indicated in Fig. A3.
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Figure A3: Phase diagram in (µc, q0, q1)-space. Regimes for each of the three types
of bistable c-nullclines shown in the parameter space (µc, q0, q1) and (µc, q1) with n = 5.
The uncolored regions correspond to systems that do not exhibit either bistability or
oscillations.

Based on measurements of self-upregulation of CRH secretion during stress, µc =

0.6 is chosen to set the baseline level of the Hill function gc(c = 0) ≈ 0.4. q1 is

approximated by setting the inflection point of gc(c) to arise at c ≈ 25, the average

value used by Walker et al. Assuming c ≈ 25 is a fixed point of Eq. 15 when

I = 1 and cs ≈ 〈c∞(25)〉, q0 can be estimated as a root of the right-hand-side of

Eq. 15. This choice for the remaining parameters puts our nullcline system into the

Type I category that can exhibit one or two stable states with oscillating (a, o, r)

subsystems. We restricted the analysis of our model to Type I systems.

Minimum duration and magnitude of stress

We plot the minimum duration required for normal-to-diseased transition against

stress magnitude (Fig. A4). Higher magnitude of Iext generally requires a shorter

duration of stress, as expected. Note that the minimum duration is also dependent

on the phase of intrinsic oscillations of the system at stress onset.

Timing of stress onset and transient response

Here, we show how the dynamics of the system changes after the onset and cessation

of stress. In previous studies, changes in corticosterone levels in rats weremeasured

in response to stress induced by noise applied at different phases of the animals

oscillating cortisol cycle. It was observed that the timing of the stress onset relative

to the ultradian phase was crucial in determining the magnitude of corticosterone

response. Increases in corticosterone levels were markedly higher when noise was

initiated during the rising phase than when initiated during the falling phase.

We can frame these experimental observations mechanistically within our theory.

Following the experimental protocol, we simulate the stress response using a brief

stressor with a duration of 30min. As shown in Fig. A5A, an external stress that is

applied mostly over the falling phase of the cortisol oscillation results in a higher

subsequent nadir in o(t) than one that is applied predominantly during a rising

phase. However, as shown in Fig. A5B, stress applied mainly during the rising

phase leads to a higher subsequent peak level. This observation is consistent with
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Figure A4: Phase diagram of stress-induced transitions (A) Minimum duration
of stress required for normal-to-disease transition is plotted against stress magnitude.
The phase of intrinsic oscillations at stress onset is denoted as θ∗. (B) Four θ∗ values
were chosen and marked on the plot of o(T ) with different colors assigned. The color
of each curve in plot (A) corresponds to the θ∗ of stressor onset shown in (B).

the results of the experiment on rats and can be explained by the dynamics inherent

in our model.

The immediate increase in q = q0Ih(cs) associated with the increase in I leads to

a rapid increase in c, as shown in Fig. 7. This higher level of circulating CRH shifts

the stable limit cycle of the PA subsystem to a new one with higher minimum and

maximum values of ACTH and cortisol (as shown in Fig. 3). This new limit cycle is

shown by the blue curve in Figs. A5C,D. Under external stress, a trajectory of the

system quickly deviates and approaches the new limit cycle, but quickly returns to

the original limit cycle after cessation of stress. Thus, depending on the position of

the trajectory relative to that of the new stressed limit cycle, the initial deviation

may try to reach the new limit cycle in the falling or rising cortisol phases as shown

in Figs. A5C,D. Moreover, if the duration of the stress is shorter than the period of

the inherent oscillation, the trajectory will return to its original limit cycle before

completing a full cycle of the new limit cycle. These properties of the limit cycle

dynamics explain the difference in the level of subsequent peak following the stress

onset depending on the timing of the stress onset.

Cortisol-dependent Iext

Since it has been shown that synaptic input into PVN cells is modulated by cortisol

for certain stressor types, we briefly discuss how cortisol-dependent Iext(T,O) may

affect results from our model. We assume a simple form of Iext(T,O) = Itime(T ) +

Icort(O) where Iext(T,O) assumed to be lower when cortisol levels are higher. A

possible form of cortisol-dependent Iext is illustrated in Fig. A6B. Since cortisol does

not affect the basal release rate, the cortisol-dependent component of the external

input function, Icort(O), should be zero when there is no stress. On the other hand, it

was also shown that the inhibition effect cannot decrease the release rate below the

basal rate so we can further assume that Iext(T,O) ≥ 0. When these conditions are

met, the modification in Iext(T,O) should not affect the bistability of the system

since I(T ) = Ibase = 1 is unchanged. However, a cortisol-dependent Iext(T,O)
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Figure A5: Stress timing and cortisol response. (A) A stressor of duration of 30min
with magnitude Iext = 0.2 was applied mainly over the falling phase of the underlying
cortisol oscillation. The first peak after the stress onset was almost unchanged, but
the first nadir was elevated. (B) The same stressor used in (A) applied during the
rising phase led to a significantly increased subsequent peak while the first nadir was
unaffected. (C) The trajectory of the system (red) is projected onto the cortisol-ACTH
plane. The new limit cycle of the PA-subsystem corresponding to fixed I(t) = 1.2
is indicated by the blue curve. During stress, the trajectory of the system is attracted
towards the new limit cycle. The system recovers after making a smaller cycle within the
normal limit cycle, reaching a higher nadir. (D) The trajectory of the system deviates
then recovers back through a trajectory above the normal limit cycle, reaching a higher
peak.

will make the timing of stress onset become more relevant in predicting whether a

stressor can induce transitions between normal and diseased states. Driven by the

intrinsic oscillations in O(T ), Iext(T,O) will also oscillate during stress, driving the

q-nullcline back and forth in the (q, c)-plane as shown in Fig. A6C. Stress-driven

oscillations in the q-nullcline affect the net decrease in q, changing the position of

the system on the (q, c)-plane relative to the separatrix between the normal and the

diseased basins of attraction upon stress termination. Since transitions are sensitive

to the position of q at stress termination, including a cortisol-dependent Iext(T,O)

will make transitions more strongly dependent on the timing of stress onset.
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Figure A6: Cortisol-dependent synaptic input of the PVN and its possible
effects (A) Cortisol independent Iext(T ) used in our current model. (B) An example of
cortisol-dependent Iext(T,O), where we assume the synaptic input of the PVN is atten-
uated at higher levels of O(T ). (C) During stress, the q-nullcline shifts back and forth
in the (q, c)-plane due to oscillations in Iext(T,O) as driven by the intrinsic ultradian
oscillations in O(T ). In turn, theses shifts in q-nullcline will affect the net decrease in
q during stress.


