Supplementary Table 1 – Summary of the five main TBF structures studied. | Enzyme | CATH ID Superfamily name | PDB
ID/Chain,
Domain
(Sequence
index) | E.C. | Catalytic residues | Substrate
and/or
metal-ion
binding
residues | Phosphate binding? ¹ | |--|---|---|-----------------------|---|---|--| | Triosephosphate isomerase | 3.20.20.70
Aldolase Class I | 1N55/Chain
A, 00 (2-250) | 5.3.1.1 | From [7]:
N11, K13,
H95,
E167 | From
1NEY[63]:
A171, I172,
G212, L232 | From [7]:
G173, S213,
G234, G235 | | Chitinase B | 3.20.20.80
Glycosidase | 1E15/Chain
A01 (3-290,
381-448) | 3.2.1.14,
3.2.1.96 | From [64]:
Y214,
D140,
D142,
E144 | From
1E6N[65]:
Y10, F51,
W97, Y98,
Y145, F190,
F191,
M212,
D215,
W220,
E221, L265,
W403 | No | | Methylaspartate
ammonia lyase | 3.20.20.120
Enolase | 1KKO/Chain
A02 (165-
411) | 4.3.1.2,
4.2.113 | H194,
K331 | From [66]:
Q329,
C361, T360,
Q172, L384
/ Mg2+:
D238, E273,
D307 | No | | Transaldolase B | 3.20.20.70
Aldolase Class I | 3CWN/ Chain
A00 (2-317) | 2.2.1.2 | From [67]:
K132,
E96 via water,
T156 via water and D17 | N35, N154,
S176, F178,
S226 | From [67] & [9]: R228, S226, R181 | | Glycerophospho
diester
phosphodiesteras
e | 3.20.20.190 Phosphatidylinosit ol (PI) phosphodiesterase | 3CH0/ Chain
A00 (0-271) | 3.1.4.46 | From [68]: H13, H55 ² | H13, R14,
E40, D42,
H55, E135,
K137 /
Ca2+: E40,
D42, E135 | H13, R14,
H55 and
K137 | _ ¹ This refers to sites that bind to phosphate moieties of the substrate, and may or may not have the standard phosphate-binding motif as defined in Nagano (2002). $^{^2}$ Reaction involves the phosphate moiety of the substrate, so both the catalytic residues and phosphate-binding residues are the same.