
Supplementary Information

Insight into genotype-phenotype associations through eQTL mapping in multiple
cell types in health and immune-mediated disease

James E. Peters, Paul A. Lyons, James C. Lee, Arianne C. Richard,
Mary D. Fortune, Paul J. Newcombe, Sylvia Richardson, Kenneth G.C. Smith



Supplementary Methods

Permutation method for estimating FDRs

Here we describe the application of the ‘plug-in’ method1 for estimating the FDR associated with
a given significance threshold to eQTL analysis. Having run the eQTL association scan using the
observed data, we empirically estimate the distribution of the test statistics under the null hypothesis
that there is no association between genotype and expression using a permutation approach. The
expression matrix has p rows and n columns, where each row represents expression values for one
probeset and each column expression values for one sample (one individual). The columns of the
expression matrix are randomly permuted so that the expression values assigned to each individual
are randomly swapped, but the correlation structure between transcripts is unchanged. The geno-
type matrix is not altered. The eQTL association scan is run again using the permuted expression
data, generating a set of test statistics. The permutation procedure is repeated multiple times, and
for each permutation we repeat the eQTL scan, generating another set of test statistics. The em-
pirical distribution of the statistics thus generated can be used to approximate the null distribution
as any genotype-expression relationship should have been broken through the permutation procedure.

For each value of the test statistics produced by running the eQTL scan with the real data, we set
the cut-off C for significance to that value. We can then estimate the FDR for that value of C as
follows.

1. We count the number of test statistics (chi-squared scores) greater than or equal to this
threshold in the real data to give us the number of results called significant, R.

2. We count how many test statistics in the permuted data (i.e. under the null hypothesis) were
greater than or equal to threshold C. Dividing this number by the number of permutations,
gives an estimate of the number of false positives, V̂ .

3. Our estimated FDR using that C as a significance threshold is then V̂ /R.

4. We repeatedly perform this procedure, each time changing the value of the cut point C to
the next score in the real data. We eventually have FDR estimates for setting C to the value
of each score in the real data.

Thus for each SNP-gene association we have a chi-squared score, and a corresponding estimated
FDR were we to use that score as the threshold for significance.

eQTLBMA versus comparison of lists

As described in the Results, the application of a strict significance cut-off to declare the presence
of eQTLs in each cell type, followed by intersection of the resulting lists of significant hits, as used
in previous studies2, might lead to erroneous claims of cell-type specificity. We therefore used the
Bayesian joint modelling method, eQTLBMA3, to investigate eQTL sharing between cell types. In
Fig 1, we presented results using all available samples in order to maximise power (data from 91 IBD
patients and 43 HVs in the IBD-HV analysis, and from 46 patients in the AAV analysis). eQTLBMA
can be run if even if some individuals lack expression data for certain cell types using the option
--error hybrid (see Methods). For estimates of cell-type specificity from one-at-a-time cell-type
analysis, we limited analysis to the 65 individuals (IBD-HV) with expression data available for all
cell types, to ensure equal power for each cell type. In order to present a direct and fair comparison
between eQTLBMA and single tissue analysis, we here present the results from running eQTLBMA
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on expression data from only these 65 individuals. As the expression data for each cell type came
from the same set of individuals, we used option --error mvlr. Unsurprisingly, fewer eQTLs were
detected when confined analysis to the 65 individuals, but the patterns in the results were very
similar compared to those seen when using all samples, with 45% of eQTLs shared across all 5 cell
types, and 8% declared unique to one (S19 Fig).

Does eQTLBMA unduly favour finding that eQTLs are shared?

To investigate whether the Bayesian model unduly favoured declaring eQTLs as shared across all
cell types, we randomly permuted the sample labels for the CD4 T cell expression data, leaving
the genotype data and the expression data for the other cell types unchanged. We then re-ran
the analysis with eQTLBMA. Permutation of the CD4 T cell expression data should break up any
genotype-expression relationship in this cell type. Therefore if the eQTLBMA method is behaving
appropriately we would expect very few eQTLs to be found in CD4 T cells. Indeed, we found that
after permutation of the CD4 T cell expression data, only 10 genes were declared as having an eQTL
in CD4 T cells (0.5% of the number of genes declared to have an eQTL in any cell type). The
Jaccard coefficient between CD4 and CD8 T cells was 0.1% (S6 Fig), compared to 100% in the
real (unpermuted) data. These findings indicate that eQTLBMA is not inappropriately favouring
the model of eQTL sharing between cell types.

How confident is the ‘best’ model?

As described in the Methods, our approach to deciding the best model using eQTLBMA was as
follows. We took genes found to have a significant eQTL (5% Bayes FDR) in at least one cell type.
For these genes, we identified the SNP with highest posterior probability of being the eQTL. For
these SNP-gene pairs, we then examined the ‘best’ model of presence/absence across the cell types
i.e. the configuration with the highest posterior probability. From this we were able to calculate
the numbers of eQTLs for which the best model was presence in 1, 2, 3, 4, or all 5 cell types.
However, it is possible that two or more competing models could have very similar PPs. In such a
situation, we are less confident in the ‘best’ model. To investigate this further, we used the Shannon
entropy to measure uncertainty. The Shannon entropy is defined as H(X) = −

∑
i P (xi)logbP (xi),

where b is the base of the logarithm used. A high Shannon entropy indicates a high degree of
uncertainty. Where the posterior probability for one configuration is much higher than all others,
the Shannon entropy will be low. In contrast, where there are competing models with similar
probabilities the Shannon index will be high. The distribution of Shannon entropies across SNP-
probeset pairs is shown in S20 Fig, grouped according to the best configuration. This shows that
where the best configuration was presence of the eQTL across all 5 cell types, the Shannon entropies
were more skewed towards zero than for other configurations. This indicates that confidence in the
model selection was highest for those eQTLs declared common to all cell types. Therefore the
high proportion of eQTL sharing we observed from using eQTLBMA cannot be ascribed to the the
‘common to all cell types’ configuration narrowly ‘beating’ alternative models with similar posterior
probabilities.

Notes on the use of a linear model with a genotype × disease interaction
term to find IBD-dependent eQTLs

In the Methods section, we described how use of a linear model with a genotype×disease interaction
term was superior to the naive approach of separate eQTL analyses in IBD patients and in healthy
volunteers (HVs), followed by comparison of the resulting lists of eQTLs detected in each cohort.
Where the genotype×disease interaction term is significant, we have good evidence that the effect
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of genotype on expression differs in IBD versus health. In contrast, the naive approach of comparison
of lists could lead to an eQTL that is truly present in both IBD and health being falsely declared
IBD-specific simply because the test statistic for the association just passed the significance thresh-
old in IBD and narrowly failed to reach significance in health. The short-comings of the comparison
of lists approach are compounded because the IBD and HV cohorts were of different sizes, and so
the statistical power to detect eQTLs was not the same in each.

More formally, the two approaches are testing different null hypotheses.

Consider first the naive approach of separate analyses of the IBD and HV cohorts, followed by the
comparison of lists of eQTLs discovered in each. Simple linear models of the form shown in Equation
(1) are fitted for the HV and IBD datasets separately. For clarity of presentation we first consider
the case of testing association of expression of one gene with genotype at one SNP.

Y = α + βX + ε (1)

where Y is the vector of gene expression levels for individuals 1 to n; X is the vector of genotypes
for individuals 1 to n (which can take values 0, 1, or 2); α and β are constants, and ε is the error
term. ŷi, the predicted value of Y for the i th individual is given by:

ŷi = α + βX i (2)

The error term or residual for the i th individual, εi, is the observed value (yi) minus the predicted
value (ŷi). The error term, ε, is assumed to be normally distributed with mean zero.

In Equations (3) and (4) we fit this form of linear model separately to each dataset (IBD and healthy
volunteers). Subscripts H and IBD indicate in health and in IBD respectively. For clarity, at this
stage we are still considering only one SNP-gene pair.

Y i = αH + βHX i + ε1i for healthy individuals i = 1, ..., n1 (3)

Y j = αIBD + βIBDXj + ε2j for IBD patients j = 1, ..., n2 (4)

In Equation (3) we can test the null hypothesis that βH equals zero i.e. in healthy people there is
no effect of genotype on expression (no eQTL). Similarly in Equation (4) we can test the null that
βIBD equals zero (there is no eQTL in IBD patients).

Now consider testing expression of the gene against all cis SNPs, and repeating this process for all
genes in the expression matrix. These models are simply fitted again for each SNP-gene pair. At
the end of this process, we have a list of SNP-gene pairs where we have found sufficient evidence to
reject the null hypothesis that βH equals zero, and a list where we have rejected the null that βIBD

equals zero. These lists can be intersected to find eQTLs detected in only one condition or the other.

Using a significance threshold corresponding to a false discovery rate of 5% means that on average
5% of the eQTLs we declare as significant in each group are false positives. In addition there will be
type 2 errors i.e. eQTLs that are truly present that we do not identify. Thus false positives in each
list (and false negatives not in the lists) may cause eQTLs to falsely be declared condition-specific.
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In order to take a more robust approach to finding eQTLs influenced by the presence or absence of
disease, we instead jointly analysed the IBD and healthy volunteer data together using the following
linear model with a genotype×disease interaction term:

Y i = α + β1X i + β2Di + β3X iDi + εi for individuals i = 1, ..., n1 + n2 (5)

where

Y is expression level

X is genotype

D is disease status (0= healthy, 1=IBD)

Di = 0 for individuals i = 1, ..., n1

Di = 1 for individuals i = n1 + 1, ..., n2

and α and the βs are constants.

Equation (5) is a multivariate regression model as we have more than one predictor variable. We
can test the following null hypotheses:

1. α equals zero (i.e. the intercept is zero), which is generally not of biological interest.

2. β1 equals zero (i.e. there is no main effect of genotype on expression).

3. β2 equals zero (i.e. there is no main effect of IBD on expression). Rejecting this null is
equivalent to stating that the gene is differentially expressed in IBD versus health.

4. β3 equals zero i.e. there is no genotype×disease interaction effect.

SNP-gene pairs where the genotype×disease interaction term is significant indicate that the effect
of genotype on expression is significantly different in IBD versus health. In biological terms, this
includes (i) eQTLs present in health but abrogated in IBD, (ii) eQTLs present in IBD but not in
health, (iii) eQTLs with opposing directions of effect in health compared to IBD, and (iv) eQTLs
whose effects in health and IBD are in the same direction, but of significantly different magnitudes
(S12 Fig). More formally, the interaction term assesses whether there is a significant difference in
the slope of the genotype-expression regression line between healthy individuals and IBD patients
i.e. whether the effect size of a unit change in allele dose on expression is significantly different
between health and IBD.

Consider individuals i = 1, ..., n. They are healthy (i.e. Di = 0). Therefore

Y i = α + β1X i + εi

If there is no genotype×disease interaction, β3 equals zero. Therefore for individuals i = n1+1, ..., n2

who have IBD (i.e. Di = 1),

Y i = α + β1X i + β2 + εi

= (α + β2) + β1X i + εi

α + β2 is simply a constant (the intercept). Therefore if there is no genotype×disease interaction,
the slope of the regression line is β1 in both IBD patients and healthy individuals. Thus we can think
of testing the null hypothesis that there is no genotype×disease interaction (β3 = 0) as equivalent
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to testing whether βH = βIBD in Equations (3) and (4). The only difference is that in Equation (5)
the error term is assumed to come from the same distribution for both HVs and IBD patients. By
testing whether βH and βIBD from Equations (3) and (4) are equal, we have to first estimate the
error separately for IBD patients and HVs resulting in lost of power. Note that the naive approach of
asking which eQTLs are significant in HVs and which are significant in IBD patients is not the same
thing. The latter compares the list of eQTLs for which we have significant evidence to conclude
βH 6= 0 and that βIBD 6= 0, which is problematic for the reasons outlined previously.

eQTLs with contrasting direction of effect on gene expression between cell
types

Comparisons between eQTL direction of effect in CD8 T cells and monocytes were shown in Fig 3.
Here we show the results for all cell type pairings. We show results from the joint analysis of the
IBD-HV cohort, the analysis of the IBD cohort alone, and the analysis of the AAV cohort.

Joint IBD-HV analysis

eQTLs with opposite directions of effect after in vitro inflammatory stimuli have been described4.
Given this, we considered the possibility that some eQTLs might have the opposite direction of effect
in IBD versus health, and that this could confound our comparison of direction of effect between cell
types in the joint IBD-HV analysis if the sample composition for each cell type differed. It is unlikely
that eQTLs with opposing directions of effect between IBD and health would be declared significant
in the joint analysis of the IBD-HV cohort, as the opposing signals in each cohort would be expected
to mask one another. Nevertheless, to err on the side of caution, when comparing directions of effect
between eQTLs in different cell types using the joint IBD-HV dataset we restricted analysis to the
same set of individuals to avoid the potential for any such confounding. There were 65 individuals
in the IBD-HV dataset with expression data available for all five cell types, and 93 individuals
with expression data available in CD4 and CD8 T cells, monocytes and neutrophils. Therefore to
increase power we performed an analysis omitting B cells using the 93 samples (S8 Fig; analysis
using expression data after adjustment with PEER5). We emphasise that we only plotted the effect
sizes where the SNP-gene association was significant in both cell types to reduce the possibility that
eQTLs that appeared to have discordant effects were false positives. S9 Fig shows results limited
to the 65 individuals. Clearly, fewer eQTLs are detected (either in total or with discordant effects)
in the latter analysis.

Separate analysis of IBD cohort

We repeated the comparisons of directions of eQTL effect between cell types using results from eQTL
mapping restricted to patients with IBD. When analysing the IBD cohort on its own, concerns about
eQTLs having opposite effects in IBD versus health no longer apply. Therefore, to maximise power,
we performed eQTL mapping in each cell type using all IBD available samples. This meant that,
although highly overlapping, the sets of individuals used for analysis in each cell type were not
identical. (S10 Fig). Because, unlike in the IBD-HV analysis we were not restricted to the subset
of individuals with full expression data, we had more power and found more eQTLs with discordant
effects between cell types.

AAV cohort

We are reassured that the majority of eQTLs with discordant effects between cell types are not
false positives from analysis using the independent AAV dataset (S11 Fig). Unsurprisingly we found

5



many fewer eQTLs (either in total or with discordant effects) in the AAV analysis, given the AAV
sample size was around half that of the IBD-HV data. However, of the genes with statistically
significant eQTLs that had discordant effects between cell types in the AAV data, all but one of
these genes (SPAG1) were identified as having a discordant effect in the IBD-HV analysis (S11 Fig).
For example, the finding of eQTLs with discordant effects on CD52 expression in CD8 T cells versus
monocytes in the IBD-HV data, was replicated in the independent AAV analysis. Moreover, where
a discordant eQTL was found in the IBD-HV data, but the eQTL did not pass significance in both
cell types in the AAV dataset when controlling the FDR at <5%, the trend of discordant effects
could nevertheless frequently be seen. An example is the CD101 eQTL, which was significant in the
IBD-HV data in both monocytes and CD8 T cells, but with opposing directions of effect between
the cell types (Fig 3). In AAV, the eQTL was also significant in monocytes with direction of effect
consistent with the IBD-HV data. In CD8 T cells, the eQTL was not significant in AAV, but the
direction of effect was consistent with that in the IBD-HV data.

Intersecting eQTLs with disease-associated SNPs identified through GWAS

We took IBD-associated SNPs from Supplementary Table 2 of the IBD meta-analysis by Jostins
et al 6, and proxy SNPs in high linkage disequilibrium (r 2 >0.8), and intersected these with eQTL
SNPs (eSNPs) from our analysis (Figs S13-S14, and Table S4). The IBD meta-analysis paper6

defines SNPs which are associated specifically with Crohn’s disease (‘CD-associated’) or with ulcer-
ative colitis (‘UC-associated’), and those which are associated with both (‘IBD-associated’). We
use the same nomenclature here. We compared the results of our eQTL analysis with those from
eQTL database mining in the IBD meta-analysis paper6, which synthesised eQTL information from
three different sources: The University of Chicago eQTL database (http://eqtl.uchicago.edu/cgi-
bin/gbrowse/eqtl), The Dixon et al eQTL dataset (http://www.sph.umich.edu/csg/liang/asthma/),
and the Merck Research Laboratories eQTL dataset7. These databases contain results from eQTL
studies in LCLs, fibroblasts, T cells, monocytes, liver, omental adipose tissue, and subcutaneous
adipose tissue. The SNP annotation in Table S4 (e.g. intronic, intergenic) was performed with
SNPnexus8 (http://snp-nexus.org/index.html).

We also intersected all IBD-associated SNPs (CD, UC, or both) listed in the NHGRI GWAS cat-
alogue (and proxy SNPs in high linkage disequilibrium) with eSNPs from our analysis. The genes
whose expression is associated with these eSNPs are shown in S15 Fig, according to which cell type
the eQTL is found in. Using this information, we may now update our list of ‘IBD-associated genes’
based not on proximity to disease risk SNPs but on the effects of these SNPs on gene expression.
The list of IBD-associated SNPs in the NHGRI catalogue is not confined to those listed in the IBD
meta-analysis6 as it includes the lead SNPs reported by all previous IBD genome-wide association
studies.

Figs S13-S15 were generated by intersecting all significant (FDR <0.05) eQTL SNPs with GWAS
SNPs and their proxies. We also implemented a more conservative approach to declaring overlap
of eQTLs and GWAS hits, described as follows. Where there were multiple significant eSNPs for a
given gene (as typically occurs due to linkage disequilibrium), we took only the most-highly asso-
ciated eSNP per gene (the ‘peak’ eQTL signal). The list of peak eQTL SNPs thus generated was
then intersected with the list of GWAS SNPs and their proxies. S16 Fig has been generated using
this approach, and as a result contains fewer genes than S15 Fig.

Figs S13-16 have all been generated based on the eQTL mapping performed using PEER-adjusted5

expression data and all available IBD and HV samples (i.e. not restricted to the individuals for whom
genotype and expression data was available in all cell types). As a result, the sample size, and hence
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power to detect eQTLs, vary between cell types (see Table 1 for sample sizes for each cell type).
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