Supplementary Material

Table S1. Primers used in this study

Cana(a)	Saanaaa 51-22		Defenence
			Kelerence
KPC F	TGTCACTGTATCGCCGTC	Gene detection	
KPC R	CTCAGTGCTCTACAGAAAACC	Gene detection	
OXA-48 F	TTGGTGGCATCGATTATCGG	Gene detection	2
OXA-48 R	GAGCACTTCTTTTGTGATGGC	Gene detection	2
IMI F	GTTCCATTCACCCATCACAAC	Gene detection	This study
IMI R	CTACCGCATAATCATTTGCCG	Gene detection	This study
New IMI variant F	CTACGCTTTAGACACTGGC	Gene detection	This study
New IMI variant R	TTGGTACGCTAGCACGAATA	Gene detection	This study
VIM F	GATGGTGTTTGGTCGCCATA	Gene detection	3
VIM R	CGAATGCGCAGCACCAG	Gene detection	3
IMP F	GGAATAGAGTGGCTTAAYTCT	Gene detection	3
IMP R	CCAAACCACTACGTTATCT	Gene detection	3
FRI-1 F	TGAACTCATTCGCCTCTCAG	Gene detection	11
FRI-1 R	CTGCTTCGTCATGTTTGTCG	Gene detection	11
TEM F	CATTTTCGTGTCGCCCTTAT	Gene detection	4
TEM R	TCCATAGTTGCCTGACTCCC	Gene detection	4
CTX-M multiplex		Gene detection	5
SHV F	ATGCGTTATATTCGCCTG	Gene detection	6
SHV R	TTAGCGTTGCCAGTGCTC	Gene detection	6
GES F	TTCCGATCAGCCACCTCTCA	Gene detection	7
GES R	CTGGCAGGGATCGCTCACTC	Gene detection	7
ampC multiplex		Gene detection	8
ampC F	GACATCCCCTTGACTCGCTA	Whole gene amplification & sequencing	This study
ampC R	GTTTTACTGTAGCGCCTCGA	Whole gene amplification & sequencing	This study
ampR F	TTTCATCTTCTCCACCAGCC	Whole gene amplification & sequencing	This study
ampR R	ATAGCGAGTCAAGGGGATGT	Whole gene amplification & sequencing	This study
ampD F	ATGTTGTTAGAAAACGGATG	Whole gene amplification & sequencing	9
ampD R	TCATGTTATCTCCTTATCTG	Whole gene amplification & sequencing	9
ompC F	TGAGGAGAATGAAATTGCCGAC	Whole gene amplification & sequencing	This study
ompC R	GCGGCAAGAGTACACCAAAA	Whole gene amplification & sequencing	This study
ompF F	AGACACCAAACTCTCATCAATAGTTC	Whole gene amplification & sequencing	10
ompF R	CGCTATCAGGTTAACGGTA	Whole gene amplification & sequencing	10
rspL F	ACGTACAGCACCACGACG	Expression analysis	This study
rspL R	AGCGTGTCTTCCAGACTCAC	Expression analysis	This study
ampC F	GCATGGCGGTGGCCGTTAT	Expression analysis	10
ampC R	CTGCTTGCCCGTCAGCTGT	Expression analysis	10
ompF F	TAATGACAGCAACGATGGCGAC	Expression analysis	This study
ompF R	AGCGCCTTCAGAGTTGTTACC	Expression analysis	This study
ompC F	CGGCCAGTGGGAATACCAGA	Expression analysis	This study
ompC R	GAATGAACCCGCATCAGCGAA	Expression analysis	This study
		· ·	

Figure S1: UPGMA tree of concatenated sequences of *ampC*, *ampR*, *ompF* and the corresponding amino acid changes of AmpC, AmpR, OmpF and OmpC and cephalosporin and carbapenem MIC

CTX: cefotaxime, CAZ: ceftazidime, FEP; cefepime, IM: imipenem, MEM: meropenem, ERP: ertapenem, MICs in mg/L, NCTC13405: reference wild type E-cloacae, NCTC13405: reference wild type E-cloacae, NCTC13405: network and for start codes, OTC 13405: and for start codes, OTC 13405: network and for start codes, and for start cod

	Amino acid	cnanges																													
							OmpF	;															OmpC								
	u		12		L3	L4						β.			A					15				L6		L7			L8		
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp					Pro17	7Ala			Leu211lle		Pro227Ala	Tyr229Phe	Phe230Tyr		Val265Ala	Gln268Leu	Ile303leu	Asn305_Tyr306insGlu	lle311Leu	lle338Val (Gin346Ala	Thr347Ala
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp					Pro17	7Ala			Leu211Ile		Pro227Ala	Tyr229Phe	Phe230Tyr		Val265Ala	Gln268Leu	Ile303leu	Asn305_Tyr306insGlu	lle311Leu	Ile338Val (GIn346Ala	Thr347Ala
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp					Pro17	7Ala			Leu211Ile		Pro227Ala	Tyr229Phe	Phe230Tyr		Val265Ala	Gln268Leu	Ile303leu	Asn305_Tyr306insGlu	lle311Leu	Ile338Val (GIn346Ala	Thr347Ala
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp	Glu220Asp					As	p189Glu			Ala222Asp	Pro227Met	Tyr229Ala	Phe230Tyr	Glu232Asn	Val265Ala	Gln268Leu	Ile303leu	Asn305_Tyr306insGlu	lle311Leu	Ile338Val (GIn346Ala	Thr347Ala
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp					Pro17	7Ala			Leu211Ile		Pro227Ala		Phe230Tyr		Val265Ala	Gln268Leu	Ile303leu	Asn305_Tyr306insGlu	lle311Leu	Ile338Val (GIn346Ala	Thr347Ala
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp		Leu242X			IS1(-15) Pro17	7Ala			Leu211Ile		Pro227Ala		Phe230Tyr		Val265Ala	Gln268Leu	Ile303leu	Asn305_Tyr306insGlu	lle311Leu	Ile338Val (GIn346Ala	Thr347Ala
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp	Glu220Asp				40-4851 Pro17	7Ala As	p189Glu			Ala222Asp	Pro227Met	Tyr229Ala	Phe230Tyr	Glu232Asn	Val265Ala	Gln268Leu	Ile303leu	Asn305_Tyr306insGlu	lle311Leu	Ile338Val (GIn346Ala	Thr347Ala
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp					_	As	p189Glu	Arg191Cys		Ala222Asp	Pro227Met	Tyr229Ala	Phe230Tyr	Glu232Asn	Val265Ala	Gln268Leu	Ile303leu	Asn305_Tyr306insGlu	lle311Leu	Ile338Val (Gin346Ala	Thr347Ala
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp	Glu220Asp				Δ1-1218																	
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp					Δ1-54																	
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp	Glu220Asp				_					Ala222Asp	Pro227Met	Tyr229Ala	Phe230Tyr	Glu232Asn	Val265Ala	Gln268Leu	Ile303leu	Asn305_Tyr306insGlu	lle311Leu	Ile338Val (GIn346Ala	Thr347Ala
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp	Glu220Asp				Δ1-7																	
			Ala88Gly	Val140Ala							Val301X			Pro17	7Ala As	p189Glu		Leu211Ile		Pro227Ala		Phe230Tyr		Val265Ala	Gln268Leu	Ile303leu	Asn305_Tyr306insGlu	lle311Leu	Ile338Val (Gin346Ala	Thr347Ala
			Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp					Pro17	7Ala As	p189Glu		Leu211lle		Pro227Ala		Phe230Tyr		Val265Ala	GIn268Leu	lle303leu	Asn305_Tyr306insGlu	lle311Leu	lle338Val (GIn346Ala	Thr347Ala
			Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		G	u199Asp					Pro17	7Ala As	p189Glu		Leu211lle		Pro227Ala		Phe230Tyr		Val265Ala	Gln268Leu	Ile303leu	Asn305_Tyr306insGlu	lle311Leu	Ile338Val (GIn346Ala	Thr347Ala
														1021-221																	
														(33(*35)																	
														_																	
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		Phe198Tyr				Ile306Val \	/al307ile	Pro17	7Ala As	p189Glu		Leu211lle		Pro227Ala		Phe230Tyr		Val265Ala	Gln268Leu	lle303leu	Asn305_Tyr306insGlu	lle311Leu	lle338Val (Gin346Ala	Thr347Ala
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp		Phe198Tyr				Ile306Val \	/al307ile							Pro227Ala		Phe230Tyr									
Asn47Tyr	Asp48Ala	Ser49Gly	Ala88Gly	Val140Ala	Ser146Ala	Thr180Asp	Val183Leu	Phe198Tyr		Lys223G	ŝlu	Ile306Val \	/al307lle							Pro227Ala		Phe230Tyr									
Asn47Tvr	Asp48Ala	Ser49Glv	Ala88Glv	Val140Ala	Ser146Ala	Thr180Asp		Phe198Tvr		Lvs223G	ŝlu	lle306Val \	/al307ile							Pro227Ala		Phe230Tvr									

Figure S2: UPGMA tree of concatenated sequences of the 7 DNA fragments of MLST. Isolate numbers (sequence types by MLST)

0.008 0.006 0.004 0.002 0.000 0.010

Figure S 3. Outer membrane profiles of selected isolates on 12% SDS-polyacrylamide gel

References

1.	Yigit H, Queenan AM, Anderson GJ et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrobial agents and chemotherapy 2001; 45: 1151-61.
2.	Poirel L, Heritier C, Tolun V et al. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrobial agents and chemotherapy 2004; 48: 15-22.
3.	Ellington MJ, Kistler J, Livermore DM et al. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. The Journal of antimicrobial chemotherapy 2007; 59: 321-2.
4.	Walker RA, Lindsay E, Woodward MJ et al. Variation in clonality and antibiotic-resistance genes among multiresistant Salmonella enterica serotype typhimurium phage-type U302 (MR U302) from humans, animals, and foods. <i>Microbial drug resistance</i> 2001; 7: 13-21.
5.	Woodford N, Fagan EJ, Ellington MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. The Journal of antimicrobial chemotherapy 2006; 57: 154-5.
6.	Hopkins KL, Deheer-Graham A, Threlfall EJ et al. Novel plasmid-mediated CTX-M-8 subgroup extended-spectrum beta-lactamase (CTX-M-40) isolated in the UK. International journal of antimicrobial agents 2006; 27: 572-5.
7.	Bogaerts P, Naas T, El Garch F et al. GES extended-spectrum beta-lactamases in Acinetobacter baumannii isolates in Belgium. Antimicrobial agents and chemotherapy 2010; 54: 4872-8.
8.	Perez-Perez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. Journal of clinical microbiology 2002; 40: 2153-62.
9.	Naas T, Massuard S, Garnier F et al. AmpD is required for regulation of expression of NmcA, a carbapenem-hydrolyzing beta-lactamase of Enterobacter cloacae. Antimicrobial agents and chemotherapy 2001; 45: 2908-15.
10.	Doumith M, Ellington MJ, Livermore DM et al. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. The Journal of antimicrobial chemotherapy 2009; 63: 659-
11	Dortet L, Poirel L, Abbas S, Queslati S, Nordmann P. Genetic and biochemical characterization of FRI-1, a carbapenem-hydrolyzing class A β-lactamase from Enterobacter cloacae. Antimicrobial agents and chemotherapy 2015;Sep21