Supporting Information

for

Donor substrate promiscuity of bacterial β 1–3-*N*-acetylglucosaminyltransferases and acceptor substrate flexibility of β 1–4-galactosyltransferases

Yanhong Li^{a,†}, Mengyang Xue^{a,b,c†}, Xue Sheng^{a,d}, Hai Yu^a, Jie Zeng^{a,e}, Vireak Thon^{a,f,g}, Yi Chen^a, Musleh M. Muthana^{a,h}, Peng G. Wang^{b,f}, Xi Chen^{a,*}

^aDepartment of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA

^bNational Glycoengineering Research Center and Shandong Province Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China

^cCurrent address: Shandong Province Key Laboratory of Emergency and Critical Care Medicine, Shandong University, Jinan, Shandong 250100, China

^dCurrent address: Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA

^eSchool of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China ^fDepartment of Chemistry, Georgia State University, Atlanta, GA 30303, USA

^gCurrent address: Laboratory of Bacterial Polysaccharides, Food and Drug Administration, Bethesda, MD 20892, USA

^hCurrent address: Children's National Medical Center, Washington DC, 20010, USA

*Corresponding author. Mailing address: Department of Chemistry, One Shields Avenue, Davis, CA 95616, USA. Phone: 530-754-6037. Fax: 530-752-8995. E-mail: xiichen@ucdavis.edu

[†] These authors contributed equally.

Contents

Figure S1. SDS-PAGE analysis of Bβ4GalT	S2
Figure S2. Metal effects of Hpβ3GlcNAcT (A) and NmLgtA (B)	S2
Figure S3. Sugar nucleotides and derivatives used for the donor substrate specificity s	tudies of
Hpβ3GlcNAcT and NmLgtA	S3
Figure S4. Protein sequence alignment of Hpβ4GalT, NmLgtB, and Bβ4GalT	S3
Figure S5. High resolution mass spectrometry analysis of the acceptor substrate specif	icities of
Hpβ4GalT, NmLgtB, and Bβ4GalT	S4–S11
Table S2. ¹³ C NMR chemical shift assignment of Lac β ProN ₃ and GalNAc β 1–3Lac β ProN ₃ (1)	S12
Table S3. ¹³ C NMR chemical shift assignment of Lac and Gal β 1–3Lac (2)	S13
¹ H and ¹³ C NMR spectra of GalNAcβ1–3Galβ1–4GlcβProN ₃ (1)	S14
¹ H and ¹³ C NMR spectra of Gal β 1–3Gal β 1–4Glc (2)	S15
References	S16

Figure S1. SDS-PAGE (4–20% Tris-Glycine gel) analysis of B β 4GalT. Lanes: BI, whole cell extract before induction; AI, whole cell extract after induction; L, lysate after induction; PP, Ni²⁺-NTA column purified protein; M, protein markers (Bio-Rad precision Plus Protein Standards, 10–250 kDa).

Figure S2. Metal effect of Hp β 3GlcNAcT (A) and NmLgtA (B). *Gray columns*, MnCl₂; *white columns*, MgCl₂; *black columns*, CaCl₂. The reactions were carried out with the addition of different concentrations (1, 5, 10, and 20 mM) of different metal ions (MgCl₂, MnCl₂, CaCl₂) or EDTA (10 mM) in Tris-HCl buffer (100 mM, pH 8.0) containing UDP-GlcNAc (1 mM), Lac β MU (1 mM), and Hp β 3GlcNAcT (3 µg) or NmLgtA(2 µg). Reactions were performed at 30 °C for 10 min. The reaction without metal ion nor EDTA was used as a control.

Figure S3. Sugar nucleotides and derivatives¹⁻⁶ used for donor substrate specificity studies of Hp β 3GlcNAcT and NmLgtA.

Figure S4. Protein sequences alignment of Hpβ4GalT, NmLgtB, and Bβ4GalT analyzed by software of ClustalW2 and GeneDoc.

Hpβ1-4GalT NmLgtB Bβ1-4GalT	:	MRVFAISINQKVCDTFGLVFRDTTTLLNSINATHHQAQIFIAIYSKTFEGELHP MQNHVISIASAAERRAHIADTFGRHGIPFQFFLAIMPSERTEQAMAELVPGLSAHPYLSGVEK MRSLTACPEESPLLVGFMLIEFN-IPVDLKLVEQQNPKVKIG-GRYTFMICISPHKVAIIIPF	:	54 63 61
Hpβ1-4GalT NmLgtB Bβ1-4GalT		LVKKHLHEYFITQNIKCMGITTNLISEVSKFYYALKYHAKFMSLGELGCYASHYSLWEKCIEL ACFMSHAVIMKÇALDEGIPYITVFEDDVLLGEGAEKFLAECAWLQERFDPDTAFIVRLETM RNRQEHLKYWLYYLHPILQRQQLDYGIYVINÇAGESMFNRAKL <mark>I</mark> NVGFKEALKDY		117 124 116
Hpβ1-4GalT NmLgtB Bβ1-4GalT	: : :	NEAICIIEDDITLKEDFKEGLDFLE-KHIQELGYIRLMHILYDASVKSEFLSHKNHEIQERVG FMHVLTSPSGVADYCGRAFPLLESEHWGTAGYIISRKAMRFFLDRFAAIPPEGLHPVD-LM DYNCFVFSDVDLIFMNDHNTYRCFS-QPRHISVAMDKFGLSLPYVQYEGGVSALSKQQFLSIN	: : :	179 184 178
Hpβ1-4GalT NmLgtB Bβ1-4GalT	:::::	IIKAYSECVETQGYVITEKIAKVELKOSEKWVVPVDTIMCATFIHG-VKNLVLQPEVIADDEQ MESDFFDRECMPVCQLNEAICAQELHYAKFHDQNSALGSLIEHDELLNEKQQERDSFANTF GEPNNYWCWEGEDDDIYNELAFEGMSVSEPNAVIGKCEVIE-HSEDKKNEPNPQEFDEIAHTK		241 245 240
Hpβ1-4GalT NmLgtB Bβ1-4GalT		ISTIARKEEPYSPKIAIMRELHFKYLKYWQFV : 273 KHRIIRAITKISREREKRRQRREQFIVPFQ : 275 ETMISDGINSLTYMVLEVQRYPLYTKITVDIGTPS : 275		

Figure S5. HRMS analysis of the acceptor substrate specificities of Hp4GalT, NmLgtB, and B β 4GalT using products obtained from NmLgtA or Hp β 3GlcNAcT-catalyzed reactions. Starting materials and products (m/z values) are shown in red circles. Reference m/z values are shown in green circles. Estimated yields are shown.

S6

Residue	Carbon atom	Chemical shift (ppm)	
βGlc	С	$Lac\beta ProN_3$	$GalNAc\beta 1-3Gal\beta 1-4Glc\beta ProN_3(1)$
	1	101.99	101.97
	2	72.67	72.65
	3	74.23	74.22
	4	78.22	78.20
	5	74.64	74.63
	6	59.92	59.92
β Gal(1-4)	1	102.79	102.81
-	2	70.82	69.93
	3	72.37	81.63
	4	68.41	67.61
	5	75.22	74.84
	6	60.89	60.82
βGalNAc(1-3)	1		103.20
	2		69.93
	3		70.59
	4		68.34
	5		74.74
	6		60.85
	C=O	174.61	175.03
	CH_3	22.37	22.09
ProN ₃	$OCH_2CH_2CH_2N_3$	67.24	67.23
	OCH2CH2CH2N3	28.10	28.10
	$OCH_2CH_2\underline{C}H_2N_3$	47.73	47.73

Table S1. ¹³C NMR chemical shifts assignment of Lac β ProN₃ (Gal β 1–4Glc β ProN₃) and GalNAc β 1–3Gal β 1–4Glc β ProN₃ (1).

Residue	Carbon atom	Chemical shift (ppm)		
βGlc	С	Lac (α -isomer)	$Gal\beta 1-3Gal\beta 1-4Glc (\alpha-isomer) (2)$	
	1	91.68	91.70	
	2	71.28	71.27	
	3	71.01	71.03	
	4	78.27	78.08	
	5	69.97	68.43	
	6	60.92	60.87	
β Gal(1-4)	1	102.75	102.39	
1	2	70.83	69.95	
	3	72.38	81.75	
	4	68.43	68.28	
	5	75.22	74.65	
	6	59.94	59.80	
βGal(1–3)	1		104.21	
	2		70.07	
	3		72.36	
	4		68.30	
	5		74.85	
	6		59.94	

Table S2. ¹³C NMR chemical shifts assignment of Lac (Gal β 1–4Glc) and Gal β 1–3Gal β 1–4Glc (2).

¹H and ¹³C NMR spectra of GalNAc β 1–3Gal β 1–4Glc β ProN₃ (1)

¹H and ¹³C NMR spectra of Gal β 1–3Gal β 1–4Glc (2)

References:

- 1. Chen, Y.; Thon, V.; Li, Y.; Yu, H.; Ding, L.; Lau, K.; Qu, J.; Hie, L.; Chen, X. *Chem. Commun.* **2011**, *47*, 10815.
- 2. Muthana, M. M.; Qu, J.; Li, Y.; Zhang, L.; Yu, H.; Ding, L.; Malekan, H.; Chen, X. Chem. Commun. 2012, 48, 2728.
- 3. Zhang, L.; Muthana, M. M.; Yu, H.; McArthur, J. B.; Qu, J.; Chen, X. *Carbohydr. Res.* **2016**, *419*, 18.
- Muthana, M. M.; Qu, J.; Xue, M.; Klyuchnik, T.; Siu, A.; Li, Y.; Zhang, L.; Yu, H.; Li, L.; Wang, P. G.; Chen, X. Chem. Commun. 2015, 51, 4595.
- 5. Yu, H.; Yu, H.; Karpel, R.; Chen, X. Bioorg. Med. Chem. 2004, 12, 6427.
- Zhang, L.; Lau, K.; Cheng, J.; Yu, H.; Li, Y.; Sugiarto, G.; Huang, S.; Ding, L.; Thon, V.; Wang, P. G.; Chen, X. *Glycobiology* 2010, 20, 1077.