SUPPLEMENTARY MATERIALS

Structural Elements That Govern Sec14-like Phosphatidylinositol Transfer Protein Sensitivities to Potent Small Molecule Inhibitors

Danish Khan¹, Kaitlyn R. McGrath¹, Oleksandra Dorosheva¹, Vytas A. Bankaitis^{1,2,3*} and Ashutosh Tripathi^{2*}

¹Department of Biochemistry & Biophysics

Texas A&M University

College Station, Texas 77843-2128, USA

²Department of Molecular and Cellular Medicine

College of Medicine

Texas A&M Health Sciences Center

College Station, Texas 77843-1114, USA

³Department of Chemistry

Texas A&M University

College Station, Texas 77843-2128

Legend to Supplementary Movie S1

Supplementary Movie S1. Molecular dynamics simulation of NPPM bound in the Sec14 hydrophobic cavity showing interconversion between two bound poses. The movie shows a 10 ns all atom MD simulation of a Sec14::NPPM 6748-481 complex in explicit waters. NPPM 6748-481 is rendered in ball & stick representation and water as anti-aliased stick model, protein secondary structure in ribbon cartoon and pocket residues rendered in stick models. Later in the movie, for clarity, only pocket residues are shown 4.5 Å around the NPPM 6748-481. Note the rotation of the activated aryl halide group of the NPPM to achieve alternate binding modes based on previous docking and mutagenesis studies (14). Numbering of residues is offset by -3, as numbering in homology model started from 1 while numbering started from 4 in the crystal structure template (PDB: 1AUA). So, residue Ser170 in homology model corresponds to residue Ser173 in the crystal structure.

Supplementary Figure Legends

Supplementary Figure S1. Genetic screen for NPPM-resistant *SEC14* alleles. *A*, a schematic representation of the unbiased genetic screen for NPPM-resistant Sec14 proteins is illustrated. Approximately 10^7 cells were seeded onto each individual YPD agar plate supplemented with the appropriate NPPM (10μ M final concentration). After the indicated period of incubation, NPPM resistant (NPPM^R) colonies were purified by two rounds of streaking for isolated colonies on NPPM-containing agar plates. The corresponding *SEC14* genes were amplified by PCR from genomic DNA prepared isolated NPPM^R clones using the appropriate oligonucleotide primers (see Materials and Methods, Supplemental Table S1). Nucleotide sequences for each *SEC14* amplicon were determined and analyzed for missense substitutions. *B*, documents that the frequency of colony generation was inversely proportional to the inhibitor potency. Decreased potency of the challenge NPPM came with more rapidly arising NPPM^R colonies. To reduce screen background (i.e. occurrence of NPPM^R mutations that did not map to *SEC14*), a *pdr5* Δ strain that shows increased NPPM-sensitivity was used in a parallel genetic screen.

Supplementary Figure S2. Genetic screen for NPPM-resistant *SEC14* alleles. The indicated *SEC14* genes were integrated into the *MET17* locus of a *sec14-1*^{ts} *spo14* Δ strain and expressed under the control of the *S. cerevisiae SEC14* promoter to generate strains exhibiting 'physiological' levels of each Sec14 variant. The integrants were subsequently dilution spotted onto YPD plates supplemented with vehicle control DMSO or 20µM NPPM, as indicated at top, and incubated at 48hrs at the indicated temperatures. The mock condition documents the phenotype of an isogenic strain where a *SEC14*-less integration cassette was transplaced into the *MET17* locus. That expression of each Sec14 protein was sufficient to rescue *sec14-1*^{ts} growth defects at the restrictive temperature of 37°C is demonstrated by comparison of

the growth profiles in the left (25°C) and center (37°C) panels of the integrants relative to mock controls. The NPPM^R phenotypes are displayed in the right panel. The plates were incubated for 48 h at the indicated temperatures before imaging. The NPPM481-resistance phenotypes were scored at 25°C. Scale bar, 1cm.

Supplementary Figure S1

NPPM		Appearance (hrs.)	Frequency (cell/generation)	Sequenced
4130-1276		48	3 x 10 ⁻⁵	х
67107-49		48	3 x 10 ⁻⁶	Х
6748-481	PDR5	96	1 x 10 ⁻⁷	40
	pdr5 Δ	96	3 x 10 ⁻⁸	5

Supplementary Figure S2

Supplementary Table S1.

A. Gene replacement cassette plasmids

Plasmid	Description	Origin
pVB9	pBSK(<i>pdr5∆∷GFP, KanMX</i>)	This study
pVB16(mock)	pBSK(<i>leu2</i> ∆:: <i>HIS3</i>)	This study
pVB18	pBSK(<i>leu2A</i> :: <i>SEC14</i> , <i>HIS3</i>)	This study
pVB70	pVB18(<i>leu2A</i> :: <i>SEC14 S173C</i> , <i>HIS3</i>)	This study
pKM16	pVB18(<i>leu2A</i> :: <i>SEC14 P120Q</i> , <i>HIS3</i>)	This study
pDK154	pVB18(<i>leu2Δ</i> ::SEC14 V154F,HIS3)	This study
pDK155	pVB18(<i>leu2Δ</i> ::SEC14 V155F,HIS3)	This study
pKM14	pVB18(<i>leu2</i> Δ::SEC14 S173P,HIS3)	This study
pDK156	pVB18(<i>leu2A</i> :: <i>SEC14 R208L</i> , <i>HIS3</i>)	This study
pDK157	pVB18(<i>leu2</i> Δ::SEC14 G210V,HIS3)	This study
pKM17	pVB18(<i>leu2</i> Δ::SEC14 F212L,HIS3)	This study
pDK257	pVB18(<i>leu2A</i> ::SEC14 V154M, V155C,HIS3)	This study
pDK9	$pVB18(leu2\Delta::SEC14_{CA}, HIS3)$	This study
pDK265	pVB18(<i>leu2Δ</i> ::SEC14 _{CA} M154V, C155V, HIS3)	This study
pDK248	$pVB18(leu2\Delta::SEC14_{KL}, HIS3)$	This study
pDK266	pVB18(<i>leu2</i> ∆::SEC14 _{KL} F152V, HIS3)	This study
pDK247	pVB18(<i>leu2∆::SEC14_{CG}</i> , <i>HIS3</i>)	This study
pDK267	pVB18(<i>leu2</i> ∆::SEC14 _{CG} V152F, HIS3)	This study
pDK268	pVB18(<i>leu2Δ</i> ::SEC14 _{CG} V152F, V153F, HIS3)	This study
pDK80	pBSK(<i>met17∆::URA3</i>)	This study
pDK81	pBSK(<i>met17A</i> ::SEC14,URA3)	This study
pDK239	pDK81(<i>met17Δ</i> ::SEC14 V154F,URA3)	This study
pDK240	pDK81(<i>met17A</i> ::SEC14 V154A, URA3)	This study
pDK241	pDK81(<i>met17Δ</i> ::SEC14 V154E, URA3)	This study
pDK242	pDK81(<i>met17Δ</i> ::SEC14 V154Y,URA3)	This study
pDK243	pDK81(<i>met17Δ</i> ::SEC14 V155F,URA3)	This study
pDK244	pDK81(<i>met17Δ</i> ::SEC14 V155A,URA3)	This study
pDK245	pDK81(<i>met17Δ</i> ::SEC14 V155E,URA3)	This study
pDK246	pDK81(<i>met17Δ</i> ::SEC14 V155Y,URA3)	This study
pDK280	pDK81(<i>met17Δ</i> ::SEC14 F212L,URA3)	This study
pDK281	pDK81(<i>met17Δ</i> ::SEC14 S173P,URA3)	This study
pDK282	pDK81(<i>met17Δ</i> ::SEC14 P120Q,URA3)	This study
pDK283	pDK81(<i>met17Δ</i> ::SEC14 R208L,URA3)	This study

B. Yeast plasmids.

Plasmid	Description	Origin
pCTY1716	YCp(SFH1, URA3)	(22)
pCTY1727	YCp(SFH1 E126A, URA3)	(22)
pDK252	YCp(SFH1 F156V, URA3)	This study
pDK255	YCp(SFH1 F156V A157V, URA3)	This study

Supplementary Table S2. Primers used.

DKO98	To subclone SEC14 into pVB16 at SacII,
DKO99	SphI sites
DKO107	To generate SEC14 V154F by
DKO108	mutagenesis
DKO105	To generate SEC14 V155F by
DKO106	mutagenesis
DKO201	To generate SEC14 S173P by
DKO202	mutagenesis
DKO109	To generate SEC14 R208L by
DKO110	mutagenesis
DKO111	To generate SEC14 G210V by
DKO112	mutagenesis
KMO104	To generate SEC14 P120Q by
KMO105	mutagenesis
KMO106	To generate SEC14 F212L by
KMO107	mutagenesis
DKO189	To generate SEC14 V155A by
DKO190	mutagenesis
DKO191	To generate SEC14 V155E by
DKO192	mutagenesis
DKO193	To generate SEC14 V155Y by
DKO194	mutagenesis
DKO195	To generate SEC14 V154A by
DKO196	mutagenesis
DKO197	To generate SEC14 V154E by
DKO198	mutagenesis
DKO199	To generate SEC14 V154Y by
DKO200	mutagenesis
DKO335	To generate SEC14 V154M by
DKO336	mutagenesis
DKO337	To generate SEC14 V154M, V155C by
DKO338	mutagenesis
DKO1	To amplify $SEC14_{CA}$ from gDNA and
DKO2	sub-clone into pVB16 at SacII, SphI sites
DKO14	To sub-clone 8His-SEC14 _{CA} into pET28b
DKO15	at NcoI, SacI sites
CA84	To generate $SEC14_{CA}$ M154V, C155V by
CA85	mutagenesis
KL100	To amplify $SEC14_{KL}$ from gDNA and
KL101	sub-clone into pVB16 at SacII, SphI sites
	To sub close 8 His $SEC14$ into pET28 h
KL90	at Ncol Sacl sites
KL91	
KL92	To generate $SEC14_{KL}$ without internal
KI 93	<i>ivcoi</i> sile by silent base-pair exchange and mutagenesis
111/3	

aaaccgcggatggttacagtatgttgttgc tttgcatgctcatttcatcgaaaaggcttccgg cttggtttgggaatacgaatctttcgttcaatacagattacctgccggcaggtaatctgtattgaacgaaagattcgtattcccaaaccaag cagg cagg taat ctg tatt gaa ag a cag att cg tatt cc caa accctggtcacctagtg gaaactccatgtacaattat ggatttgaaa g cttt caa at ccat a attgt a cat gg a gttt ccact a gg t g a c cagcataagtcaaaactattaccccgaacttatgggtaaattttacatcatc gatgatgtaaaatttacccataagttcggggtaatagttttgacttatg caaaactattaccccgaacgtatggttaaattttacatcatcaacgcgccggcgcgttgatgatgtaaaatttaaccatacgttcggggtaatagttttg cataaaaccgataaagatggccgc caa gtatattttgaagaattaggtg cacctaattcttcaaaatatacttggcggccatctttatcggttttatg ctattaccccgaacgtatgggtaaa ctt ttttacatcatcaacgcgccattc gaatggcgcgttgatgatgtaaaaaagtttacccatacgttcggggtaatag gaacaggcaggtaatctgtattgagcgacagattcgtattcccaaaccggtttgggaatacgaatct gtcgaacaata cagattacct gcctgttc gaacaggcaggtaatctgtattgttcgacagattcgtattcccaaaccggtttgggaatacgaatctgtctatcaata cagattacct gcctgttc gaacaggcaggtaatctgtattgatagacagattcgtattcccaaacc cttggtttgggaatacgaatctgccgttcaata cagattacct gcctg caggcaggtaatctgtattgaacggcagattcgtattcccaaaccaag cttggtttgggaatacgaatctgaagttcaata cagattacct gcctg cagg cagg taat ctg tatt gaact t cag att cg tatt c c caa accaagcttggtttgggaatacgaatcttacgttcaata cagattacct gcctg cagg cagg taat ctg tatt gaacg taag att cg tatt cc caa accaaggaaaaaacttggtttgggaatacgaatctatggttcaatacagattacctgcgcaggtaatctgtattgaaccatagattcgtattcccaaaccaagtttttc gaaaaacttggtttgggaatacgaatct atg tgt caatacagattacctgcctgttc gaacaggcaggtaatctgtattgacacatagattcgtattcccaaaccaagtttttcaaaccgcggatgactacgatgactactgaagaaatattggc tttgcatgcttaaatgttataagctctaggacattcaccaaccatgggtcatcatcatcatcatcatcatcatatgactacgatgactactgaaaagagetetta aatgttataagetetaggaeatteace cttggtatgggaatatgaagccgtggttcaatatcgtttacctgcatgttc gaacatgcaggtaaacgatattgaaccacggcttcatattcccataccaag aaccgcggatggtaagtgaacaagaaattttag ttgcatgcttacaattgaaaagcctttggagcttc aaccatgggtcatcatcatcatcatcatcatcatatggtaagtgaacaagaaattttag aagagctcttacaattgaaaagcctttggagcttcaccttcaggtccaatgtatctatatctatccgatattggtccctggagagaggaggaatacattggacc

KL95	To generate $SEC14_{KL}$ F152V by	Į
KL96	mutagenesis	g
CG102	To amplify SEC14 _{CG} from gDNA and	ć
CG103	sub-clone into pVB16 at SacII, SphI sites	t
CC00	To sub-clone 8His-SEC14 _{CG} into pET28b	8
	at NcoI, SacI sites	2
CG89		t
CG104	To generate $SEC14_{CG}$ without internal	(
	<i>Ncol</i> site by silent base-pair exchange and	
CG105	mutagenesis	Ę
CG112	To generate $SEC14_{CG}$ F152V by	Ę
CG113	mutagenesis	Ę
CG114	To generate SEC14 _{CG} F152V, F153V by	Ę
CG115	mutagenesis	Ę
DKO94	To sub-clone SFH1 into pVB16 at SacII,	ć
DKO95	SphI sites	t
DKO163	To generate SFH1 F156V by mutagenesis	Ę
DKO164	To generate SFIII 1 150V by mutagenesis	(
DKO147	To generate SFH1 F156V, A157V by	(
DKO148	mutagenesis	(

gaacttggtetgggaatacgaagetgttgttagatacagattgeetgeatgt te gaacatgeaggeaatetgtatetaacaacagettegtatteecagaecaagtte aacegeggatggttagtgaageggagtttttg ttgeatgettattteatggaaaaeatete aaceatgggteateateateateateateateatg gttagtgaageggagttttgge ttgagetettattteatggaaaaeatetetggggetteaeette ectgtaettgteegaeateggeeeetggagagaegeeaagtaeate

gatgtacttggcgteteteceaggggccgatgteggacaagtacagg gaacttggtgtgggagtacgagtee ttt gteaactacagaetgeetgettgete gageaageaggeagtetgtagttgacaaaggaetegtaeteecaaceaagtte gaacttggtgtgggagtacgagteettttteaactacagaetgeetgettgete gageaageaggeagtetgtagtteaaaaaggaetegtaeteecaaceaagtte aaacegeggatgaeaaceageataete

tttgcatgcttagctggtaacagtaaatttac

gaaacttagtcaaggagtacgaattagttgccacgtaccgggtcccagcgtgttcg cgaacacgctgggacccggtacgtggcaactaattcgtactccttgactaagtttc cttagtcaaggagtacgaattagttgtcacgtaccgg gtcccagcgt gttcg cgaacacgctgggacccggtacgtgacaactaattcgtactccttgactaag

Plasmid	Description	Origin
pRE1201	pET28b (His ₈ -SEC14)	(9)
pDK221	pET28b (His ₈ - <i>SEC14 P120Q</i>)	This study
pDK150	pET28b (His ₈ -SEC14 V154F)	This study
pDK152	pET28b (His ₈ -SEC14 V155F)	This study
pRE1270	pET28b (His ₈ - <i>SEC14 S173C</i>)	(14)
pDK171	pET28b (His ₈ - <i>SEC14 S173P</i>)	This study
pDK151	pET28b (His ₈ - <i>SEC14 R208L</i>)	This study
pDK153	pET28b (His ₈ - <i>SEC14 G210V</i>)	This study
pDK222	pET28b (His ₈ - <i>SEC14 F212L</i>)	This study
pDK31	pET28b (His ₈ -SEC14 _{CA})	This study
pDK212	pET28b (His ₈ - <i>SEC14_{CA} M154V</i> , <i>C155V</i>)	This study
pDK262	pET28b (His ₈ -SEC14 _{KL})	This study
pDK269	pET28b (His ₈ - <i>SEC14_{KL} F152V</i>)	This study
pDK261	pET28b (His ₈ -SEC14 _{CG)}	This study
pDK270	pET28b (His ₈ - <i>SEC14_{CG} V152F</i>)	This study
pDK271	pET28b (His ₈ -SEC14 _{CG} V152F, V153F)	This study
pRE1227	pET28b (His ₈ -SFH1)	(9)
pRE1234	pET28b (His ₈ -SFH1 E126A)	(22)
pDK77	pET28b (His ₈ -SFH1 F153V, L176M, I193V, V196A,	This study
	A197S, Q204A, V227F)	
pDK149	pET28b (His ₈ -SFH1 E126A,F156V)	This study
pDK126	pET28b (His ₈ - <i>SFH1 E126A,F156V,A157V</i>)	This study

Supplementary Table S3. Protein expression plasmids.

Protein	Activity (Transfer as % of input [³ H]-PtdIns)	Total Input [³ H]-PtdIns (c.p.m.)	Background (c.p.m.)
Sec14	18-26	8915-10863	645-955
Sfh1 Q204,6X	22-25	8915-10863	645-955

Supplementary Table S4. Intrinsic Sfh1^{Q204,6X} PtdIns-transfer activity.

Protein	Activity (Transfer as % of input [³ H]-PtdIns)	Total Input [³ H]-PtdIns (c.p.m.)	Background (c.p.m.)
Sec14	16-28	7410-10100	530-570
$P120Q^*$	-	-	-
V154F	13-18	8510-12125	780-1630
V155F	10-20	7400-10915	570-870
S173P*	-	-	-
R208L	6-10	8500-12125	570-1630
$G210V^*$	-	-	-
F212L	13-21	7805-10400	590-870

Supplementary Table S5.Intrinsic PtdIns-transfer activities for NPPMRSec14 proteins.

*Insufficient activity for confident assessment (<3% transfer).

Supplementary Table S6.

Intrinsic PtdIns-transfer activities of Sec14-like PITPs and VV-motif variants.

Protein	Basal Activity (%)	Total Input (c.p.m.)	Background (c.p.m.)
Sec14	18-26	8915-10863	645-955
Sec14 _{CA}	24-27	10243-11080	810-1054
Sec14 _{CA} ^{M154V, C155V}	12-18	8955-10470	960-1105
Sec14 _{CG}	22-24	10787-11113	1547-1669
Sec14 _{KL}	20-23	10585-11240	1460-1517
$Sec14_{KL}$ F152V	25-27	9421-11133	1226-1330
Sfh1 ^{E126A}	18-26	8716-8976	645-955
$\mathrm{Sfh1}^{\mathrm{E126A, F156V}}$	19-24	9220-10878	825-980
Sfh1 ^{E126A, F156V, A157V}	13-16	10510-11285	834-1060