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Figure S1, related to Figure 1. (A) Principal component analysis of metabolomics data. Color 

of dots indicates tumor (red) and normal (green) samples within the MSKCC TKCRP ccRCC 

metabolomics cohort. (B) Comparison of changes in metabolite abundance between tumor and 

normal tissue from the current study and from Li et al, 2014. Of the 575 metabolites measured in 

Li et al 2014, 425 were able to be matched to metabolites measured in the current study. Each 

dot represents one such metabolite. Each axis indicates the log2 ratio of the abundance of a 

metabolite between tumor and normal tissue (X-axis, Li et al, 2014, Y-axis, MSKCC). 

Metabolites that exhibited a statistically insignificant change in abundance (q value > 0.05) had 

fold change set to zero. A statistically significant correlation was observed between the two 

studies (Spearman correlation 0.76, p value < 2e-16). 
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Table S1, related to Figure 1. Clinical characteristics of the cohort. 

Median	  Age	  (quartiles)	   63	  (55,70)	  
Gender	  

	  
Female	  –	  38	  (27.5%)	  
Male	  –	  100	  (72.5%)	  

Race	  
	  
	  
	  
	  

White	  -‐122	  (88.4%)	  
Black	  –	  7	  (5.1%)	  
Asian	  –	  8	  (5.8%)	  
Other	  –	  1	  (0.7%)	  

	  
Median	  Tumor	  size	  -‐	  cm	  (quartiles)	   4.5(3.5,7.5)	  

Primary	  tumor	  (T	  Stage)	  
pT1	  
pT2	  
pT3	  
pT4	  

40	  (28.9%)	  
13	  (9.4%)	  
81	  (58.7%)	  
4	  (2.9%)	  

Regional	  lymph	  nodes	  (N	  Stage)	  
pNx	  
pN0	  
pN1	  

65	  (47.1%)	  
68	  (49.3%)	  
5	  (3.6%)	  

Distant	  metastases	  at	  presentation	  (M	  Stage)	  
M0	  
M1	  

118	  (85.5%)	  
20	  (14.5%)	  

AJCC	  Stage	  
1	  
2	  
3	  
4	  

38	  (27.5%)	  
10	  (7.2%)	  
70	  (50.7%)	  
20	  (14.5%)	  

Fuhrman	  Nuclear	  Grade	  
2	  
3	  
4	  

52	  (37.7%)	  
67	  (48.6%)	  
19	  (13.8%)	  

Median	  Followup	  for	  survivors	  (months)	   59.8	  
Overall	  5-‐year	  survival	   81.2%	  

Metastasis	  at	  presentation	  	   14%	  
Recurrent	  Disease	  	   14%	  
Number	  of	  deaths	   26	  

Number	  of	  death	  from	  RCC	   18	  
 

 

Table S2 related to Figure 1.  Description of metabolites quantified in this study. Provided as 

an MS Excel file. 
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Figure S2, related to Figure 2. The abundances of glucose-6-phosphate and 6-

phosphogluconate in tumor (blue, Spearman rho p value 4e-7) and normal samples (red, 

Spearman rho p value 0.91) 

 

 

Table S3 related to Figure 2.  Results of differential abundance tests for metabolites in this 

study, comparing tumors to normal tissues. Provided as an MS Excel file. 

 

Table S4 related to Figure 3. Results of differential abundance tests for metabolites in this 

study, comparing late-stage (III, IV) to early-stage (I, II) tumors. Provided as an MS Excel file. 
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Figure S3, related to Figure 4. (A) Recurrence-free survival of high-risk (mCluster 2,3,4) 

versus low-risk (mCluster 1) groups for Stage I-III patients. (B) Violin plot of the abundance of 

2-hydroxybutyrate (AHB) in Stage III patients who developed recurrent disease (blue) and Stage 

III patients who did not develop recurrent disease (red). 

 

Table S5 related to Figure 4. Results of differential abundance tests, comparing individual 

mClusters against each other. Provided as an MS Excel file. 

 

Table S6 related to Figure 4. Results of differential abundance tests, comparing tumors that 

metastasized to those that did not at preparation of report. Provided as an MS Excel file. 
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Figure S4, related to Figure 5 (A) Comparison of differential abundance scores for 

metabolomic and transcriptomic data, using only the 10 mCluster 2 tumor samples from the 

MSKCC cohort.  (B) Comparison of log-fold change of metabolomics and transcriptomics data 

at a detailed level. Each dot corresponds to a single metabolite, with the x-axis value indicating 

its log2 fold change, tumor relative to normal tissue. The y-axis indicates the mean log2 fold 

change of genes using that metabolite. Plot on the left indicates genes that use metabolite as a 

substrate, while plot on the right indicates genes that produce metabolite as a product. Analysis is 

restricted to reactions annotated as irreversible in the Recon2 human metabolic reconstruction. 
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Figure S5, related to Figure 6. Exploration of the “Metabologram” Data Portal. (A) Scatter-plot 

view. One can compare log2 median normalized abundance values of two metabolites or 

compare metabolite abundance to clinical variables (e.g. gender, patient age, etc.) between 

normal and tumor samples. Shown is a comparison between glucose and fructose abundance. (B) 

Pathway view. One can visualize metabolite variation between tumor and normal samples or 

tumor stage for given metabolic pathways. Shown are changes in the galactose metabolism 

pathway changes in both transcripts and metabolites when comparing tumors to adjacent normal 

kidney tissues. 
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Figure S6, related to Figure 7. KEAP1 loss and NFE2L2 mutations in the TCGA KIRC cohort. 

Kaplan-Meier plot indicates the survival of patients with (red) or without (blue) alterations in 

KEAP1 and NFE2L2 (generated using cBioportal, log rank p value 0.003). 
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Table S7, related to Figure 7. Comparison of metabolic genes-based clusters (rClusters) and the 

published KIRC TCGA mRNA clusters.  

 

 

rCluster A rCluster B rCluster C rCluster D 

MSKCC: High 
Glutathione 9 1 0 0 

TCGA Cluster M1 0 85 24 23 

TCGA Cluster M2 22 39 13 10 

TCGA Cluster M3 41 2 39 8 

TCGA Cluster M4 17 21 8 36 

 

 

Table S8 related to Figure 7. Results of gene set analysis for rCluster A. Provided as an MS 

Excel file. 
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Supplemental Experimental Procedures 
 

Comparison of Metabolomic and Transcriptomic Changes at the Individual Reaction Level 

Recon2 (a curated, genome-scale model of human metabolism) was used to identify all pairs of 

genes/metabolites such that the gene product uses the metabolite as a substrate or produces it as a 

product in a reaction annotated in Recon2 as irreversible. Having isolated these pairs, we 

calculated for each metabolite (1) the average fold change (tumor vs. normal) of all genes using 

the metabolite as a substrate, and (2) the average fold change (tumor vs. normal) of all genes 

using the metabolite as a product. We compared these values to the fold change of the metabolite 

itself.  

 

RNA-Seq Alignment and Metabolic Gene Expression Clustering  

In order to compare transcriptomic data from our cohort to that from the TCGA (Figure 7), we 

re-aligned sequencing reads from the TCGA using the same pipeline as applied to the MSKCC 

RNA-Seq data. First, for TCGA RNA-Seq data, raw output BAMs were converted back to 

FASTQ using PICARD Sam2Fastq. Then, for both MSKCC and TCGA samples, reads were 

mapped to the human genome using rnaStar. The genome used was HG19 with junctions from 

ENSEMBL (GRCh37.69_ENSEMBL) and a read overhang of 49. Gene level counts were 

computed using htseq-count and the same gene models as used in the mapping step. Principal 

components analysis was used to analyze the resulting dataset for potential batch effects 

separating the TCGA and MSKCC samples, and no batch effects were evident. 

For metabolic gene expression clustering, counts were normalized and rescaled into log2 counts 

using the limma R package (Anders et al., 2013). A list of metabolic genes were extracted from 

the Recon2 Human Metabolic Network Reconstruction. Gene expression profiles for the list of 

metabolic genes were extracted from the transcript profiles described above, restricting ourselves 

to genes which were expressed at a level of at least 16 reads per sample. The resulting dataset 

consisted of 1,506 unique metabolic genes across 488 samples.  

Log2 normalized counts were clustered using consensus clustering via the ConsensusClusterPlus 

R package using K-means clustering with Euclidean distances. Rank estimation was performed 
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for k = 2...6 clusters, randomly subsampling 80% of samples and 80% of genes for a total of 200 

iterations. The choice of k=4 clusters was identified as the most robust clustering based on 

analysis of the cumulative distribution function (CDF) of the consensus (co-clustering) matrix. 

Cluster assignments were robust for k = 2,3,4, and decreases in the area under the curve of the 

CDF showed no appreciable increase after k=4. Therefore, k = 4 was chosen as the final number 

of clusters. Consensus clustering assignments were compared with TCGA RNA clusters. We 

found highly significant association between the two clustering assignments (Table S6, Chi-

squared p value < 2e-16). 

To identify pathways significantly over- or under-expressed in rCluster A, we used the limma 

voom package to identify genes which were differentially expressed in rCluster A, relative to all 

other clusters. The limma function geneSetTest was used to identify GO pathways enriched for 

over- or under-expressed genes. Analysis was restricted to gene sets with less than 500 members. 

	  

Metabolomics Supplemental Methods 

Data Quality: Instrument and Process Variability 

Instrument variability was determined by calculating the median relative standard deviation 

(RSD) for the internal standards that were added to each sample prior to injection in the mass 

spectrometers. Overall process variability was determine by calculating the median RSD for all 

endogenous metabolites (i.e., non-instrument standards) present in 100% of the Client Matrix 

samples, which are technical replicates of pooled client samples. Values for instrument and 

process variability meet Metabolon’s acceptance as shown in the table below. 

 
QC Sample Measurement Median RSD  

Internal Standards Instrument Variability 6 %  

Endogenous Biochemicals Total Process Variability 13 %  
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Sample Preparation 

At the time of analysis, samples were thawed and extracts prepared according to Metabolon’s 

standard protocol, which is designed to remove protein, dislodge small molecules bound to 

protein or physically trapped in the precipitated protein matrix, and recover a wide range of 

chemically diverse metabolites.  A separate aliquot of each experimental plasma sample was 

taken then pooled for the creation of “Client Matrix” (CMTRX) samples.  These CMTRX 

samples were injected throughout the platform run and served as technical replicates allowing 

variability in the quantitation of all consistently detected biochemicals to be determined and 

overall process variability and platform performance to be monitored.  Extracts of all 

experimental and CMTRX samples were split for analysis on the GC/MS and LC/MS/MS 

platforms.  

Data Collection and Normalization 

The CMTRX technical replicate samples were treated independently throughout the process as if 

they were client study samples.  All process samples (CMTRX, GROBs – a mixture of organic 

components used to assess GC column performance, process blanks, etc.) were spaced evenly 

among the injections for each day and all client samples were randomly distributed throughout 

each day’s run. Data were collected over multiple platform run days and thus, ‘block normalized’ 

by calculating the median values for each run-day block for each individual compound.  This 

minimizes any inter-day instrument gain or drift, but does not interfere with intra-day sample 

variability. Missing values (if any) were assumed to be below the level of detection for that 

biochemical with the instrumentation used and were imputed with the observed minimum for 

that particular biochemical. 

Sample Accessioning 

Each sample received was accessioned into the Metabolon LIMS system and was assigned by the 

LIMS a unique identifier, which was associated with the original source identifier only.  This 

identifier was used to track all sample handling, tasks, results etc.  The samples (and all derived 

aliquots) were bar-coded and tracked by the LIMS system.  All portions of any sample were 

automatically assigned their own unique identifiers by the LIMS when a new task was created; 
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the relationship of these samples was also tracked.  All samples were maintained at -80°C until 

processed.  

Sample Preparation 

The sample preparation process was carried out using the automated MicroLab STAR® system 

from Hamilton Company.  Recovery standards were added prior to the first step in the extraction 

process for QC purposes.  Sample preparation was conducted using a proprietary series of 

organic and aqueous extractions to remove the protein fraction while allowing maximum 

recovery of small molecules. The resulting extract was divided into two fractions; one for 

analysis by LC and one for analysis by GC.  Samples were placed briefly on a TurboVap® 

(Zymark) to remove the organic solvent.  Each sample was then frozen and dried under vacuum.  

Samples were then prepared for the appropriate instrument, either LC/MS or GC/MS. 

QA/QC 

For QA/QC purposes, a number of additional samples are included with each day’s analysis.  

Furthermore, a selection of QC compounds is added to every sample, including those under test.  

These compounds are carefully chosen so as not to interfere with the measurement of the 

endogenous compounds.  The two tables below describe the QC samples and compounds.    

These QC samples are primarily used to evaluate the process control for each study as well as 

aiding in the data curation. 

 

Type Description Purpose 

MTRX 
Large pool of human plasma 
maintained by Metabolon that has 
been characterized extensively. 

Assure that all aspects of Metabolon process 
are operating within specifications. 

CMTRX 
Pool created by taking a small 
aliquot from every customer 
sample. 

Assess the effect of a non-plasma matrix on 
the Metabolon process and distinguish 
biological variability from process variability. 

PRCS Aliquot of ultra-pure water Process Blank used to assess the contribution 
to compound signals from the process. 

SOLV Aliquot of solvents used in 
extraction. 

Solvent blank used to segregate 
contamination sources in the extraction. 
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Type Description Purpose 

DS Derivatization Standard Assess variability of derivatization for GC/MS 
samples. 

IS Internal Standard Assess variability and performance of instrument. 

RS Recovery Standard Assess variability and verify performance of 
extraction and instrumentation. 

 

Liquid chromatography/Mass Spectrometry (LC/MS, LC/MS2) 

The LC/MS portion of the platform was based on a Waters ACQUITY UPLC and a Thermo-

Finnigan LTQ mass spectrometer, which consisted of an electrospray ionization (ESI) source and 

linear ion-trap (LIT) mass analyzer.  The sample extract was split into two aliquots, dried, then 

reconstituted in acidic or basic LC-compatible solvents, each of which contained 11 or more 

injection standards at fixed concentrations.  One aliquot was analyzed using acidic positive ion 

optimized conditions and the other using basic negative ion optimized conditions in two 

independent injections using separate dedicated columns.  Extracts reconstituted in acidic 

conditions were gradient eluted using water and methanol both containing 0.1% Formic acid, 

while the basic extracts, which also used water/methanol, contained 6.5mM Ammonium 

Bicarbonate.  The MS analysis alternated between MS and data-dependent MS2 scans using 

dynamic exclusion. 

  

Gas chromatography/Mass Spectrometry (GC/MS) 

The samples destined for GC/MS analysis were re-dried under vacuum desiccation for a 

minimum of 24 hours prior to being derivatized under dried nitrogen using bistrimethyl-silyl-

triflouroacetamide (BSTFA).  The GC column was 5% phenyl and the temperature ramp is from 

40° to 300° C in a 16 minute period.  Samples were analyzed on a Thermo-Finnigan Trace DSQ 

fast-scanning single-quadrupole mass spectrometer using electron impact ionization.  The 

instrument was tuned and calibrated for mass resolution and mass accuracy on a daily basis.  The 

information output from the raw data files was automatically extracted as discussed below. 
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Accurate Mass Determination and MS/MS fragmentation (LC/MS), (LC/MS/MS) 

The LC/MS portion of the platform was based on a Waters ACQUITY UPLC and a Thermo-

Finnigan LTQ-FT mass spectrometer, which had a linear ion-trap (LIT) front end and a Fourier 

transform ion cyclotron resonance (FT-ICR) mass spectrometer backend.    For ions with counts 

greater than 2 million, an accurate mass measurement could be performed.  Accurate mass 

measurements could be made on the parent ion as well as fragments.  The typical mass error was 

less than 5 ppm.  Ions with less than two million counts require a greater amount of effort to 

characterize.  Fragmentation spectra (MS/MS) were typically generated in data dependent 

manner, but if necessary, targeted MS/MS could be employed, such as in the case of lower level 

signals. 

 

Bioinformatics 

The informatics system consisted of four major components, the Laboratory Information 

Management System (LIMS), the data extraction and peak-identification software, data 

processing tools for QC and compound identification, and a collection of information 

interpretation and visualization tools for use by data analysts.  The hardware and software 

foundations for these informatics components were the LAN backbone, and a database server 

running Oracle 10.2.0.1 Enterprise Edition. 

 

LIMS 

The purpose of the Metabolon LIMS system was to enable fully auditable laboratory automation 

through a secure, easy to use, and highly specialized system.  The scope of the Metabolon LIMS 

system encompasses sample accessioning, sample preparation and instrumental analysis and 

reporting and advanced data analysis.  All of the subsequent software systems are grounded in 

the LIMS data structures. It has been modified to leverage and interface with the in-house 

information extraction and data visualization systems, as well as third party instrumentation and 

data analysis software. 
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Data Extraction and Quality Assurance 

The data extraction of the raw mass spec data files yielded information that could loaded into a 

relational database and manipulated without resorting to BLOB manipulation.  Once in the 

database the information was examined and appropriate QC limits were imposed.  Peaks were 

identified using Metabolon’s proprietary peak integration software, and component parts were 

stored in a separate and specifically designed complex data structure. 

 

Compound identification 

Compounds were identified by comparison to library entries of purified standards or recurrent 

unknown entities.  Identification of known chemical entities was based on comparison to 

metabolomic library entries of purified standards.  As of this writing, more than 2000 

commercially available purified standard compounds had been acquired registered into LIMS for 

distribution to both the LC and GC platforms for determination of their analytical characteristics.  

The combination of chromatographic properties and mass spectra gave an indication of a match 

to the specific compound or an isobaric entity.  Additional entities could be identified by virtue 

of their recurrent nature (both chromatographic and mass spectral).  These compounds have the 

potential to be identified by future acquisition of a matching purified standard or by classical 

structural analysis.   

 

Curation 

A variety of curation procedures were carried out to ensure that a high quality data set was made 

available for statistical analysis and data interpretation.  The QC and curation processes were 

designed to ensure accurate and consistent identification of true chemical entities, and to remove 

those representing system artifacts, mis-assignments, and background noise.   
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Metabolon data analysts use proprietary visualization and interpretation software to confirm the 

consistency of peak identification among the various samples.  Library matches for each 

compound were checked for each sample and corrected if necessary. 

 

Normalization 

For studies spanning multiple days, a data normalization step was performed to correct variation 

resulting from instrument inter-day tuning differences.  Essentially, each compound was 

corrected in run-day blocks by registering the medians to equal one (1.00) and normalizing each 

data point proportionately (termed the “block correction”).   For studies that did not require more 

than one day of analysis, no normalization is necessary, other than for purposes of data 

visualization. 

 

CCRCC Data Explorer Normalization 

All metabolomics data in plotted in the data explorer is log2-transformed for visualization 

purposes. Before further analysis, users should re-transform the data to natural units. 

  


