## Supplementary material

*OsMPK6* plays a critical role in cell differentiation during early embryogenesis in rice Jakyung Yi<sup>†</sup>, Yang-Seok Lee<sup>†</sup>, Dong-Yeon Lee, Man-Ho Cho, Jong-Seong Jeon and Gynheung An\*

Supplementary Fig. S1. Characterization of OsMPK6 activation tagging line.

(A) In Line 2A-10648, T-DNA was inserted 2,124 bp downstream of *OsMPK6* stop codon. Dark-gray boxes indicate exons; light-gray boxes, UTRs; lines connecting boxes, introns. Arrows a and b are primers used for analysis of *OsMPK6* transcript levels. Arrows c, d, and LB indicate primers used for genotyping the line. Scale bar = 1 kb.

(B) Quantitative RT-PCR analyses of *OsMPK6* in WT and *OsMPK6-D* embryos. Samples were harvested after imbibition. Y-axis, gene expression relative to *OsUbi1* transcript level. Error bars show standard deviations. n = 2 (DJ) or 4 (*OsMPK6-D*). Statistical significance is indicated by \* (P < 0.05). (C) Embryo phenotypes of WT and *OsMPK6-D*. Bars = 1 mm.



## Supplementary Fig. S2. Alignments of MPK family proteins.

(A) Phylogenetic analysis of MPK family proteins from rice and *Arabidopsis*, obtained by MEGA version 6.0 via the NJ method with 1000 replicates; the handling gap option was pair-wise deletion. Scale bar corresponds to 0.05 amino acid substitutions per residue. (B) Multiple alignment of TEY group MPK proteins, performed by Bioedit program (version 7.2.5). Identical amino acids are shaded in black; similar amino acids, in gray. Blue asterisk (\*) shows MAPK domain (PS01351; F-x(10)-R-E-x(72,86)-R-D-x-K-x(9)-[CS]). PK subdomains are indicated by Roman numeral (I to XI) at top of each row; aa positions, by pink line; phosphorylation-activation motif (TEY), by yellow box; docking groove for binding substrates, by green dashed line. This domain includes (V/A/T/S)vELMDTDLHQII(R/K)SNQxL(S/T)x(D/E)Hcx(V/F)F around sub-domain V and (L/V/I)NANCDL, between sub-domains VI and VII.



Supplementary Fig. S3. Analysis of endosperm development in WT and osmpk6.

(A) Mature seeds of WT, *osmpk6-1*, and *osmpk6-2*. Arrows indicate embryos. White boxes show ventral regions that are sectioned in B. Bars = 1 mm. (B) Peripheral regions of WT, *osmpk6-1*, and *osmpk6-2*. AL, aleurone layer; En, endosperm; P, pericarp; T, tegmen. Bars = 50  $\mu$ m. (C) Expression levels of genes involved in starch biosynthesis, obtained via qRT-PCR analyses of *AGPL1*, *SSIIa*, *BE1*, and *PUL* from 7 DAP seeds of WT and *osmpk6-1*. Y-axis, relative transcript level compared with that of *OsUbi1*. Error bars indicate standard deviations; *n* = 4.



**Supplementary Fig. S4**. Expression profiling of biosynthesis genes for auxin and gibberellin in embryos of WT and *osmpk6-1*.

Quantitative RT-PCR of *OsYUCCA1* (A), *OsYUCCA2* (B), *OsYUCCA3* (C), *OsYUCCA4* (D), *OsYUCCA5* (E), *OsGA20 OX-1* (F), *OsGA20 OX-2* (G), *OsGA3 OX-1* (H), and *OsGA3 OX-2* (I) in *osmpk6-1* and WT control. Y-axis, gene expression relative to *OsUbi1* transcript level. Results are averages of three independent experiments. Ten embryos were collected for each sample. Error bars show standard deviations. Statistical significance is indicated by \*\* (P < 0.01) and \* (P < 0.05).



Supplementary Table S1. Primer sequences used in this study.

| Primer name    | purpose    | Sequence (5'-3')         |
|----------------|------------|--------------------------|
| f              |            | CAACTTCCTAGACATGCAAG     |
| r              |            | TTGATCTGCTTCTGCTCCAGC    |
| с              | genotyping | CCATTTCTTCAAGGGCTATC     |
| d              | 0 71 0     | GAACGATGTGAGGGCTGCAT     |
| LB             |            | CTAGAGTCGAGAATTCAGTACA   |
| a              |            | GATGGATACTGATCTGCATC     |
| b              |            | GTTGCTGGGCTTCAAGTCTC     |
| AGPL1 gF       |            | GGAAGACGGATGATCGAGAAAG   |
| AGPL1 qR       |            | CACATGAGATGCACCAACGA     |
| OsSSIIIa qF    |            | GCCTGCCCTGGACTACATTG     |
| OsSSIIIa qR    |            | GCAAACATATGTACACGGTTCTGG |
| BEI qF         |            | TGGCCATGGAAGAGTTGGC      |
| BEI qR         |            | CAGAAGCAACTGCTCCACC      |
| PULqF          |            | GCTGTCGCTTCTTATGATGCTC   |
| PUL qR         |            | AAGTGGTCCAGTATAAGCAAACAT |
| ROC2 qF        |            | ATCAGTGGGAAGTCAAGAAC     |
| ROC2 qR        |            | GAGAGGCGAACATGAAGAGG     |
| ROC3 qF        |            | GAGCAACATGGGATCAGACAC    |
| ROC3 qR        |            | TGAGTAGCTGTTAGTGTTGG     |
| ROC4 qF        |            | CTGCTACATCTGTGTGGATG     |
| ROC4 qR        |            | CAGGAGATAAGGTTGCTCAC     |
| HAZ1 qF        |            | GAAGACTGGCAGGTGAAACTC    |
| HAZ1 qR        |            | GTCCTAATTCAAGGTAGTACAG   |
| RAmyl1A qF     |            | CAAAGATTGGACCAAGATACG    |
| RAmyl1A qR     |            | GAAGTACTTCGTGGACAATTG    |
| HB1 qF         |            | GTGCAGGCAAGGAGATAAGAG    |
| HB1 qR         | qRT-PCR    | CTGAAGCCGTGAAGACTCCTTC   |
| HB2 qF         |            | TGCTCGCAGTCATCGTCGTTG    |
| HB2 qR         |            | CCAGATCAAATTAGTGCAAAAC   |
| HB3 qF         |            | GGACCCCAGATCGGAATGA      |
| HB3 qR         |            | AAGTGTGCGTGTCGCAGATG     |
| HB4 qF         |            | CAGGCTTCCGTGTGATACCA     |
| HB4 qR         |            | AAGTGTGCGTGTCGCAGATG     |
| OsSCR qF       |            | CGATGGATACACGCTTATTGAG   |
| OsSCR qR       |            | GATCAAGTGATACTTCAGCTC    |
| OsYUCCA1 qF    |            | TCATCGGACGCCCTCAACGTCGC  |
| OsYUCCA1 qR    |            | GGCAGAGCAAGATTATCAGTC    |
| OsYUCCA2 qF    |            | GTCCAAAGGGAGGAGTCGTCCAG  |
| OsYUCCA2 qR    |            | GCATGATGTTTACACCCGGCCTT  |
| OsYUCCA3 qF    |            | GTGAGAACGGGCTCTACTCGGTCG |
| OsYUCCA3 qR    |            | GCTTATGCATGACCGATGAACACG |
| OsYUCCA4 qF    |            | GCAGAATGGCCTGTACGCTGTTGG |
| OsYUCCA4 qR    |            | CAGACCAGCACATGACGTGTCTAC |
| OsYUCCA5 qF    |            | ACCTCCTACGACGCCGCCATGATC |
| OsYUCCA5 qR    |            | CTCCCAACAGCGACGACAGAAC   |
| OsGA20 OX-1 qF |            | TACGGGCCGACATGCGCACG     |
| OsGA20 OX-1 qR |            | GCATGCATGTAGGAGTAGCTAGG  |
| OsGA20 OX-2 qF |            | GCGCCATGGTCATCAACATCGG   |

| OsGA20 OX-2 qR |                   | AGCGCATGAGGTCGGCCCAGGT          |
|----------------|-------------------|---------------------------------|
| OsGA3 OX-1 qF  |                   | ATGGAGGAGTACGACTCGTCGTCGATGAGAG |
| OsGA3 OX-1 qR  |                   | CTCTGCAGGATGAAGGTGAAGAAGCCTG    |
| OsGA3 OX-2 qF  |                   | TCTCCAAGCTCATGTGGTCCGAGGGCTA    |
| OsGA3 OX-2 qR  |                   | TGGAGCACGAAGGTGAAGAAGCCCGAGT    |
| OsCPS4-F       |                   | TGACGAGGCTGGGCATATC             |
| OsCPS4-R       |                   | TCTGGAGTCCAGTTCCTGAAA           |
| OsKSL4-F       |                   | CGCCTTTGTAACTCTAAGGTA           |
| OsKSL4-R       |                   | ACGTAAAAGGCTTGTATATC            |
| OsMAS-F        |                   | AAATGATTTGGGACCAGTGG            |
| OsMAS-R        |                   | GACAGAATCTAGCTAGCGATGGA         |
| CYP99A2-F      |                   | ATACGGCTCCTACCCAAAGC            |
| CYP99A2-R      |                   | CATTATTCCGGGGGACAAACAT          |
| CYP99A3-F      |                   | TCGCTTACGTGCTTGCATAC            |
| CYP99A3-R      |                   | CAAAGCACGGGGTATCAACT            |
| CPS2-QPCR-F    |                   | CGAGGAGCTTACTGTACGC             |
| CPS2-QPCR-R    |                   | TGAGCAGATCTCGATTGTG             |
| OsUBQ1 qF      |                   | TGAAGACCCTGACTGGGAAG            |
| OsUBQ1 qR      |                   | CACGGTTCAACAACATCCAG            |
| MPK6 F2        | in situ           | GTCCATCAATTACGTCTACTA           |
| MPK6 R2        |                   | CTGGTAATCAGGGTTGAAC             |
| ROC1 F         |                   | ACAGCAACCCTCAGTAGTAG            |
| ROC1 R         | qRT-PCR / in situ | CCAACAAGCAACAACCACAAGT          |
| OsPNH1 F       |                   | CCACTGGGACGAACGGAAC             |
| OsPNH1 R       |                   | GATACAACAACTATTATACATGC         |
| OSH1 F         |                   | ACGAGATGCAGTTCGTGATGATG         |
| OSH1 R         |                   | TCGAACGATCAGCAAATTATATAATC      |