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Bifurcation analysis

The variation of the FHN equations is represented as

∂vm
∂t

=
1

ε1cm
(k(vm − v1)(v2 − vm)(vm − v3)− w + ν) , f1(vm, w), (1)

∂w

∂t
= ε2(βvm − γw + δ) , f2(vm, w). (2)

The nullclines of the FHN model are given by the following two equations

f1(vm, w) = 0, (3)

f2(vm, w) = 0. (4)

The vm-nullcline is a cubic function of vm, which is shown as

w = k(vm − v1)(v2 − vm)(vm − v3) + ν, (5)

and the w-nullcline is a straight line as follows:

w =
β

γ
vm +

δ

γ
. (6)

The equilibrium of the FHN system is the intersection of these two nullclines, which is

defined as (v∗m, w
∗). The stimulus amplitude ν can then be denoted as a function of the
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equilibrium v∗m with other parameters fixed:

ν(v∗m) = −k(v∗m − v1)(v2 − v∗m)(v∗m − v3) + (βv∗m + δ)/γ. (7)

We are interested in the case when there is always only one equilibrium in the FHN

system whatever the stimulus amplitude ν, for which the slope of the w-nullcline should

be greater than the maximal slope of the vm-nullcline. The slope of the straight

w-nullcline is
β
γ , while the maximal slope of the vm-nullcline is found at the point

vm = v1 + v2 + v3
3 and it is equal to

k(v1 + v2 + v3)2

3 − k(v1v2 + v1v3 + v2v3). The

condition for the existence and uniqueness of equilibrium is therefore given by:

∆1 , (v1 + v2 + v3)2 − 3(v1v2 + v1v3 + v2v3)− 3β

kγ
< 0. (8)

The local stability of the equilibrium is determined by linearization of the nonlinear

FHN model at the equilibrium, which is given by

∂

∂t
x = Dx, (9)

where x =

 vm − v∗m

w − w∗

, and D is the Jacobian matrix at the equilibrium (v∗m, w
∗),

which is shown as follows:

D =

 ∂f1(vm, w)
∂vm

∂f1(vm, w)
∂w

∂f2(vm, w)
∂vm

∂f2(vm, w)
∂w



(v∗

m,w∗)

,

 f1vm f1w

f2vm f2w



=

 q(v∗m, v1, v2, v3, k)
ε1cm − 1

ε1cm

ε2β −ε2γ

 ,

(10)

where q(v∗m, v1, v2, v3, k) = −3kv∗2m + 2k(v1 + v2 + v3)v∗m − k(v1v2 + v1v3 + v2v3). The

solution of Eq. (9) can be represented as

x(t) = exp(λt) v, (11)
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where λ is the eigenvalue of the Jacobian matrix D and v is its corresponding

eigenvector. By solving the characteristic equation

det(D − λI) = 0, (12)

we obtain the relationship between eigenvalue λ and the equilibrium v∗m, which is given

as follows:

λ2 − (f1vm + f2w)λ+ (f1vmf2w − f1wf2vm) = 0. (13)

Depending on the values of eigenvalues, we can determine whether the equilibrium is

stable or not. Since we are interested in characterizing the stability of equilibrium as a

function of model parameters, we need to compute eigenvalues as a function of these

parameters and so we assess stability through the evaluation of two conditions as

presented in Table 1.

Table 1. Conditions for the stability of equilibrium

Type Stability Eigenvalues (λ1 and λ2) Condition 1 Condition 2
saddle unstable λ1 > 0, λ2 < 0 or λ1 < 0, λ2 > 0 λ1λ2 < 0
node/focus stable Re(λ1) < 0, Re(λ2) < 0 λ1λ2 > 0 λ1 + λ2 < 0
node/focus unstable Re(λ1) > 0, Re(λ2) > 0 λ1λ2 > 0 λ1 + λ2 > 0

When the node or focus loses stability, it is possible to construct a bounding surface

around the unstable equilibrium. According to the Poincaré-Bendixson theorem [1], a

limit cycle must exit in the FHN system when the node or focus is unstable. In other

words, the behavior of the FHN system changes qualitatively from a stable equilibrium

to a limit cycle. Therefore, in order to identify the ranges of v∗m so that the FHN system

has a limit cycle, we need to compute condition 1 and condition 2 in Table 1 under

which the node or focus is unstable, that is,

λ1λ2 = f1vmf2w − f1wf2vm

= −ε2γ
q(v∗m, v1, v2, v3, k)

ε1cm
+

ε2β

ε1cm
> 0,

(14)

λ1 + λ2 = f1vm + f2w

=
q(v∗m, v1, v2, v3, k)

ε1cm
− ε2γ > 0.

(15)

With the condition (8), the discriminant of inequality (14) is negative. Therefore,
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inequality (14) is satisfied for all v∗m so that we only need to consider inequality (15). If

the discriminant of the quadratic polynomial in inequality (15) is negative, the

inequality is also satisfied for all v∗m. In this work, we are interested in the case when

the quadratic polynomial has positive discriminant, i.e.,

∆2 > 0, (16)

where ∆2 = (v1 + v2 + v3)2 − 3(v1v2 + v1v3 + v2v3)− 3ε1ε2cmγ
k

, in which case

inequality (15) is satisfied if

v1 + v2 + v3 −
√

∆2

3
< v∗m <

v1 + v2 + v3 +
√

∆2

3
. (17)

In a word, the equilibrium is unstable and instead the FHN system has a limit cycle if

the equilibrium satisfies inequality (17) with the parameters v1, v2, v3, k, β, γ, ε1, ε2,

cm satisfying inequalities (8) and (16). Together with Eq. (7) and inequality (17), we

finally obtain the range of the stimulus amplitude ν to produce a limit cycle.

At the transition point (the point at which equilibrium loses stability), the real parts

of eigenvalues vanish and the eigenvalues are

λ1,2 = ±i
√
f1vmf2w − f1wf2vm . (18)

These eigenvalues correspond to an oscillatory solution, i.e., spike trains, with a

frequency given by

ω =
√
f1vmf2w − f1wf2vm

=

√
ε2
ε1cm

√
−γq(v∗m, v1, v2, v3, k) + β.

(19)

According to Eq. (7), v∗m in the above equation is a function of v1, v2, v3, k, β, δ, γ, ν.

Hence, the frequency can be represented as

ω =

√
ε2
ε1cm

g(v1, v2, v3, k, β, δ, γ, ν), (20)

where g(v1, v2, v3, k, β, δ, γ, ν) =
√
−γq(v∗m, v1, v2, v3, k) + β, which is a function of v1,
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v2, v3, k, β, δ, γ, ν.
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