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Bifurcation analysis
The variation of the FHN equations is represented as
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The nullclines of the FHN model are given by the following two equations
f1<vm7w) =0, (3)

f2(vm,w) =0. (4)

The vy,-nullcline is a cubic function of v,,, which is shown as
w = k(vm — v1)(v2 — O ) (Um — v3) + 1, (5)
and the w-nullcline is a straight line as follows:
1)
W= —Uy + —. 6
5 (6)

The equilibrium of the FHN system is the intersection of these two nullclines, which is

defined as (v¥,w*). The stimulus amplitude v can then be denoted as a function of the
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equilibrium v} with other parameters fixed:

V(o) = —k(vy — 1) (v2 = vi) (v, — vs) + (B, + ) /7. (7)

We are interested in the case when there is always only one equilibrium in the FHN
system whatever the stimulus amplitude v, for which the slope of the w-nullcline should
be greater than the maximal slope of the vy-nullcline. The slope of the straight
w-nullcline is 8 while the maximal slope of the vy-nullcline is found at the point

v
2
o = LR EUS a0 it is equal to Mw

— k(v1ve + v1v3 + vovs). The

condition for the existence and uniqueness of equilibrium is therefore given by:
A 2 36
A= (’Ul + v + ’03) — 3('{)1’02 + viv3 + Ug’l)g) — H < 0. (8)

The local stability of the equilibrium is determined by linearization of the nonlinear

FHN model at the equilibrium, which is given by

0
—x = Dz, 9
5 9)
Um — Uy : : : e
where © = , and D is the Jacobian matrix at the equilibrium (v, w*),
w—w*

which is shown as follows:

Of1(vm,w)  Of1(vm,w)

D = OUpy Jw A flvm flw
Ifa(vm,w) I fa(vm, w) e
dom o (050" . (10)
q(vy,v1,v2,v3,k) 1
— €1Cm €1Cm
526 —E27%Y

where q(vy,, v1,va,v3, k) = —3kvi2 + 2k(vy + v + v3)vE — k(v1v2 + v103 + v9v3). The

solution of Eq. @I) can be represented as

x(t) = exp(At) v, (11)
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where A is the eigenvalue of the Jacobian matrix D and v is its corresponding

eigenvector. By solving the characteristic equation

det(D — M) =0, (12)

we obtain the relationship between eigenvalue A and the equilibrium v}, which is given

as follows:

)‘2 - (fl'um + f2w))‘ + (flvmew - flwf2vm) =0. (13)

Depending on the values of eigenvalues, we can determine whether the equilibrium is
stable or not. Since we are interested in characterizing the stability of equilibrium as a
function of model parameters, we need to compute eigenvalues as a function of these
parameters and so we assess stability through the evaluation of two conditions as

presented in Table

Table 1. Conditions for the stability of equilibrium

Type Stability | Eigenvalues (\; and \) Condition 1 | Condition 2
saddle unstable A1 >0, Ao <0or A1 <0, Aa>0 | AA2<O0

node/focus | stable Re(A1) <0, Re(A2) <0 At >0 A+ A <0
node/focus | unstable Re(A1) >0, Re(A2) >0 A >0 A+ A >0

When the node or focus loses stability, it is possible to construct a bounding surface
around the unstable equilibrium. According to the Poincaré-Bendixson theorem [1], a
limit cycle must exit in the FHN system when the node or focus is unstable. In other
words, the behavior of the FHN system changes qualitatively from a stable equilibrium
to a limit cycle. Therefore, in order to identify the ranges of v so that the FHN system
has a limit cycle, we need to compute condition 1 and condition 2 in Table |I| under

which the node or focus is unstable, that is,

Mg = flvmf2w - flwf2vm

14)
. I (
:7€WQ(UmaUh’02,U3, )Jr £23 >0,
€1Cm €1Cm
)\1 + >\2 = flvm + f2w
(15)

*
vl v, 09,03, K
:q( m? 9 » U3y )7527>0'
€1Cm

With the condition , the discriminant of inequality is negative. Therefore,
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inequality is satisfied for all v}, so that we only need to consider inequality . If
the discriminant of the quadratic polynomial in inequality is negative, the
inequality is also satisfied for all v} . In this work, we are interested in the case when

the quadratic polynomial has positive discriminant, i.e.,
AQ > 0, (16)

3e1€2¢ . .
%m’y, in which case

where Ay = (v1 + va + v3)? — 3(v1ve + v1v3 + Vov3) —

inequality is satisfied if

v1 +v2 +v3 — VAs <o < v1 + v2 + v3 + 1/ Ag

- . - (17)

In a word, the equilibrium is unstable and instead the FHN system has a limit cycle if
the equilibrium satisfies inequality with the parameters vy, vo, vs, k, 3, 7, €1, €2,
cm satisfying inequalities (8) and (16]). Together with Eq. (7)) and inequality (17)), we
finally obtain the range of the stimulus amplitude v to produce a limit cycle.

At the transition point (the point at which equilibrium loses stability), the real parts

of eigenvalues vanish and the eigenvalues are

M2 = Eiy/ fro, fow — frwf2on - (18)

These eigenvalues correspond to an oscillatory solution, i.e., spike trains, with a

frequency given by

w = \/flvmwa - flwf2vm
(19)

€2
= e \/_qu(v;knvvlvv%vﬁhk) +B

According to Eq. @, vy in the above equation is a function of vy, va, vs, k, 5, 0, v, v.

Hence, the frequency can be represented as

w = =2 g(vl,vg,vg,k,ﬂ,d,’y, V)v (20)
V €1Cm

where g(vy,ve,vs3,k,3,8,v,v) = \/—vq(v;*n,vl,vg,vg, k) + 8, which is a function of vy,
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V2, U3, k'v /67 57 Y, V-
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