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Figure S1.  Ciliary loss of Gpr161 depends on its signaling activity and direct binding to β-arrestins. (A) Stable T-REx-293 cells expressing CAM​YEL (con-
formation-based cAMP BRET biosensor) and inducibly coexpressing untagged mouse Gpr161 were treated with 4 µg/ml doxycycline (Dox) for 12 h. The 
media was replaced with assay buffer containing 1 mM IBMX 45 min before the experiment. Readings were taken using 475- and 535-nm emission filters 
simultaneously after the addition of 5 µM coelenterazine-h. After tracking the baseline BRET ratio for 2 min, cells were treated with drugs (10 µM each) 
or 10 µM Forskolin using injectors (indicated by arrow). Oxysterols used were as follows: 7-keto-27-hydroxycholesterol, a naturally occurring oxysterol 
(Myers et al., 2013), 20α–hydroxycholesterol, a synthetic oxysterol (Nachtergaele et al., 2012), and 7α,25-dihydroxycholesterol, which is an agonist 
for Gpr183 (Hannedouche et al., 2011). The BRET ratios were subsequently quantified for 5 min. Mean values of two independent experiments are 
represented graphically. (B) Confluent NIH 3T3 Flp-In cells stably expressing GFP-tagged WT Gpr161 were starved for a total of 24 h and treated with 
SAG (500 nM) for indicated time periods before fixation. Fixed cells were processed for immunofluorescence with anti-GFP and anti–acetylated tubulin 
antibodies, for detecting GFP-positive cilia. Data represents mean ± SD from two experiments. (C and D) Confluent NIH 3T3 Flp-In cells stably expressing 
GFP-tagged full-length Gpr161 V158E mutant (VE) were starved ±1 µM SAG for 24 h, and Gpr161 (C) and Smo (D) levels in cilia were determined by 
immunofluorescence. For C, GFP ciliary intensities in cilia were quantified using ImageJ (n = 50 each; *, P < 0.01). For D, data represent mean ± SD from 
three separate fields from one experiment (*, P < 0.001 with respect to untreated cells in each cell line). (E) Confluent NIH 3T3 Flp-In cells stably expressing 
indicated constructs were starved for 30 h, and immunoblotted for indicated proteins (Materials and methods). Relative transcript levels for Gpr161GFP 
were determined in parallel by qRT-PCR (mean ± SD). (F) Confluent IMCD3 Flp-In cells were starved for 24 h and treated with ±250 nM SAG for the last 
90 min. β-arrestin localization to cilia is shown after immunofluorescence with anti–pan-β-arrestin and acetylated tubulin (AcTub) antibodies. Bar, 5 µm. (G 
and H) Confluent WT and β-arrestin1/2 double-knockout MEFs (Arrb1/2) were starved for 48 h, treated with 500 nM SAG for the indicated time points 
before fixation, and processed for immunofluorescence using anti-Gpr161 and anti-acetylated tubulin antibodies to quantify cilia positive for Gpr161 by 
microscopy. Data represent mean ± SD from three independent experiments. *, P < 0.001, with respect to untreated WT cells. (I) Confluent NIH 3T3 Flp-In 
cells stably expressing GFP-tagged Gpr161Δ376 mutant were starved for 24 h ±1 µM SAG before fixation, and immunostained using anti-GFP/anti-Smo 
and anti–acetylated tubulin antibodies. Data represent mean ± SD from two independent experiments for Gpr161 IF, and three separate fields from one 
experiment for Smo IF. *, P < 0.001 with respect to untreated cells.
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Figure S2.  Steady-state localization of Gpr161 in cilia is not controlled by Shh pathway activity. (A–D) Confluent WT, Smo−/−, Ptch1−/−, or Sufu−/− MEFs 
were serum starved for 48 h, treated with 500 nM SAG or 300 ng/ml octyl-Shh for the last 24 h before fixation, and immunostained using anti-Gpr161 
(green) and anti-acetylated tubulin (AcTub; red) antibodies. Bar, 5 µm. (E) Confluent WT and Sufu−/− MEFs were serum starved for 48 h, treated with 500 
nM SAG for the last 24 h before fixation, and immunostained using anti-Ptch1 (green) and anti–acetylated tubulin (AcTub; red) antibodies. Bar, 5 µm.
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Figure S3.  Presence of activated Smo in cilia determines steady-state levels of Gpr161. (A) Confluent WT MEFs were serum starved for 48 h, treated with 
drugs for last 24 h before fixation, and immunostained for Gpr161 (green) and acetylated tubulin (AcTub; red). Drugs used were as follows: 500 nM SAG, 
1 µM KAAD-cyclopamine (KAAD), 1 µM GDC-0449 (GDC), 1 µM SANT1, and 5 µM cyclopamine (cyclo). Arrows and arrowheads indicate cilia positive 
and negative for Gpr161, respectively. Bar, 5 µm. (B) Confluent Ptch1−/− MEFs were serum starved for 48 h, treated ±1 µM SANT1 for the last 24 h before 
fixation, and immunostained using anti-Gpr161 (green) and anti–acetylated tubulin (AcTub; red) antibodies. Bar, 5 µm. (C) Confluent WT and Dync2h1lln/lln 
MEFs (Ocbina et al., 2011) were serum starved for 48 h, treated ±500 nM SAG for the indicated time periods before fixation, and immunostained using 
anti-Gpr161 (green) and anti–acetylated tubulin (red) antibodies to quantify Gpr161-positive cilia. N, total counted cilia from one experiment. (D) Confluent 
WT and β-arrestin1/2 double-knockout MEFs (Arrb1/2 ko) were serum starved for 48 h, treated ±1 µM SAG in starvation media for 36 h before fixation, 
and immunostained using anti-Smo (green) and anti–acetylated tubulin (AcTub; red) antibodies. Arrows and arrowheads indicate cilia positive and negative 
for Smo, respectively. (E) β-arrestin1/2 double-knockout MEFs were transfected with siRNAs against Gpr161 (Materials and methods). Confluent cells were 
starved for 24 h and further treated ±1 µM SAG for 30 h in starvation media. Total RNA was isolated, and Gli1 expression levels were determined by 
quantitative real-time RT-PCR. Percentages of Gpr161-positive cilia upon RNAi suggests partial knockdown of the receptor in the primary MEFs. Data rep-
resent mean ± SEM from three independent experiments. ***, P < 0.001. (F) SAG-pretreated IMCD3 cells ± KAAD-cyclopamine, as described in Fig. 3 F, 
were immunostained to detect ciliary Gpr161 levels. Arrowheads and arrows indicate cilia negative and positive for Gpr161, respectively. Bar, 10 µm.
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Figure S4.  Smo enhances recruitment of β-Arrestin to Gpr161. (A and B) T-REx 293 cells were cotransfected with a constant amount of Rluc–β-arrestin1/2 
(donor) and increasing amounts of Gpr161-eYFP (acceptor), ±1 µg/well of a six-well plate untagged human Smo (10×), ±1 µg/well of a six-well plate 
Flag-D2R. Flag-D2R-transfected cells were also finally treated with 1 µM of the D2R agonist quinpirole for 20 min (A). The cells were incubated with 800 
ng/ml pertussis toxin for 12 h before the BRET assays (B). Cells were subjected to BRET analysis (Materials and methods). The titration curves are mean 
± SEM from three independent experiments (A) and mean ± SD from one experiment performed in duplicate (B). *, P < 0.05; **, P < 0.01 for BRET50 
values with respect to only Gpr161/β-arrestin2 cotransfected cells in A. (C) BRET assays for Gpr161–β-arrestin2 interactions as in Fig. 5 C with GRK2 
knockout line 2 from two independent experiments (mean ± SD). *, P < 0.05; **, P < 0.01 with respect to Rluc–β-arrestin2 binding to Gpr161-eYFP.  
(D) IMCD3 cells transfected with ciliary-targeted Grk2 C-terminus fusion (CLS-mCherry-Grk2CT; Materials and methods) were starved ±500 nM SAG for 
17 h and subjected to immunofluorescence for Gpr161 (green) and anti–acetylated tubulin (magenta). CLS-mCherry-Grk2CT positive (red) cilia were 
scored for Gpr161. Data represents mean ± SD from two experiments. ***, P < 0.001. (E) Pixel intensities of Smo in control or Grk2 siRNA-treated IMCD3 
cilia ± SAG treatment represented graphically. n = 100 each; ****, P < 0.0001 with respect to untreated cells in each background. (F) IMCD3 cells with 
stable expression of Gpr161vlVN155I1522L were infected ± retroviruses expressing VC155-βArr2. After antibiotic selection, confluent cells were starved 
for 24 h before fixing and immunostained with anti-GFP (red) anti–acetylated tubulin (AcTub; magenta) antibodies. Intensities of eVenus complementation 
in the cilia (green channel) of GFP-positive cells (red channel) were quantified using ImageJ and represented graphically (right); n = 21 each. Bar, 5 µm.  
(G) IMCD3 cells were transfected with the indicated constructs (Materials and methods), starved for 17 h before fixing, and immunostained with anti-HA 
(red) anti-GFP (magenta) antibodies. Intensities of eVenus complementation in the cilia (green channel) of HA/GFP-positive cells were quantified using Im-
ageJ and represented graphically (right); n ≥ 22 each. Bar, 5 µm. P < 0.001 between groups. Arrows and arrowheads indicate cilia positive and negative 
for eVenus complementation, respectively (F and G).
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Figure S5.  Disappearance of Gpr161 from cilia is dependent on clathrin-mediated endocytosis. (A) Confluent NIH 3T3 Flp-In cells stably expressing GFP-
tagged Gpr161vl mutant were treated ±1 µM SAG for 24 h in starvation media before fixation, and Smo levels were quantified by immunofluorescence. 
Data represent mean ± SD from three separate fields from one experiment. **, P < 0.01 with respect to untreated cells. (B) Confluent NIH 3T3 Flp-In cells 
stably transfected with indicated constructs were starved for 30 h and immunoblotted for indicated proteins (Materials and methods). Relative transcript lev-
els for Gpr161GFP were determined in parallel by quantitative real-time RT-PCR (mean ± SD). (C and D) IMCD3 Flp-In cells were transfected with predesigned 
On-target Plus siRNAs against clathrin heavy chain (Chc) for 72 h. Confluent cells were starved for 30 h, treated ±250 nM SAG for 5 h before fixing, 
and immunostained using anti-Smo (green) and anti-acetylated tubulin (AcTub; red) antibodies to quantify cilia positive for Smo. Arrows and arrowheads 
indicate cilia positive and negative for Smo, respectively. Bar, 10 µm. Data represent mean ± SD from three separate fields from one experiment. *, P < 
0.001; **, P < 0.0001 with respect to DMSO-treated cells in each case. (E) IMCD3 Flp-In cells transfected with indicated predesigned siRNAs for 72 h 
were starved for the last 24 h, fixed, and immunostained for CHC. CHC siRNA-treated cells show specificity of the anti-CHC antibody. Arrowheads denote 
cilia. Bar, 5 µm. (F) ARPE-19 cells reverse transfected with siRNAs against CHC were transfected with plasmids expressing CD8α-tagged with Gpr161 C 
tail or third intracellular loop (IC3) fragments (Materials and methods) the next day. Cells were subjected to ELI​SA (Materials and methods). Endocytosed 
CD8α fusion proteins were expressed as a percentage of surface CD8 fusions. Inset shows immunoblot for CHC. Data represent mean ± SEM from three 
experiments. *, P < 0.05; **, P < 0.01 with respect to control siRNA-treated cells at respective time points. (G) Confluent NIH 3T3 cells stably expressing 
untagged codon-wobbled wild type or mutant Gpr161 (Materials and methods) were treated ±SAG in starvation media for 30 h, followed by RNA isolation 
and quantification of Gli1 levels by quantitative real-time RT-PCR. Data represent mean ± SEM from three separate stable lines in each background and 
one to four independent experiments for each line. Quantitative real-time RT-PCR confirmed Gpr161 overexpression to be identical between the respective 
lines (Materials and methods). *, P < 0.05.
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