## Fast antibody fragment motion: flexible linkers act as entropic spring

Laura R. Stingaciu, Oxana Ivanova, Michael Ohl, Ralf Biehl, Dieter Richter

## **Supporting information**



**Figure S1**. (a) Translational diffusion of IgG concentration series measured by DLS. Red dashed line is extrapolation to zero concentration.  $D_{T0} = 3.27e-7 \text{ cm}^2/\text{s}$ . (b) Dynamic viscosities of IgG concentration series. Blue dashed line is extrapolation to zero concentration.  $\eta_0$  fitted value of 1.128 mPa·s is comparable with  $\eta_0$  experimentally measured for solvent solution at 25°C (zero IgG concentration) = 1.147 mPa·s.

Dynamic Light Scattering (DLS) experimental diffusion coefficients of IgG concentration series between 0.8 mg/ml and 29 mg/ml are show in Fig. S1a. By extrapolating to zero concentration, we obtained  $D_{T0} = 3.27e-7$  cm<sup>2</sup>/s.

The average translational hydrodynamic function  $H_T$  can be calculated from the intrinsic viscosity  $[\eta]$  by:  $H_T = 1 - c[\eta]$ . For this purpose, we measured the dynamic viscosities  $\eta$  for IgG concentration series between 0.8 mg/ml and 29 mg/ml. These are shown in Fig. S1b. The intrinsic viscosity of the highest IgG concentration 29 mg/ml was determined to value  $[\eta] = (\eta - \eta_0) /\eta_0 c = 0.0116$  where  $\eta_0$  is the buffer measured viscosity (0.01147 Poise). For this value of the intrinsic viscosity, we calculate the average translational hydrodynamic function  $H_T = 0.66$ .