Fig. S1. *Vibrio cholerae* **wild-type excision.** N16961 (serogroup O1 biotype El Tor), O395 (O1 classical) and MO2 (O139). *Vibrio cholerae* SG-7 (O56) does not contain VPI-1 or VPI-2 and served as a negative control.

Fig.S2. A. Conserved domains of IntV1 and IntV2. Amino acid alignment of IntV1 (gi: 9655299) and IntV2 (gi: 15641762) using the MUSCLE algorithm in Jalview. Both integrases share three conserved domains (represented by blocks in sequential order): DUF4102 (pfam13356) domain (IntV1: 5-94, IntV2: 8-97), SAM-like domain (pfam14659) (IntV1: 103-151, IntV2: 106-157) and the C-terminal domain contained a P4 catalytic domain (pfam00589) (IntV1: 213-390, IntV2: 215-393). The highly conserved active site residues are marked by triangles. **B.** Predicted secondary structure of N-terminus VpiT and Torl. In search for an unannotated RDF, the HHPred server identified a 52 amino acid region near the N-terminus of VpiT as having a distant relationship to Torl, a previously characterized excisionase. Although the shared identity in this region was 12% and the e-value of 0.0061, the predicted secondary structures of these regions were near identical.

Fig. S3 Mobile integrative genetic element (MIGE) recombination modules. A comparison of the genetic organization of the two *V. cholerae* VPIs examined in this study with the bacteriophage λ and the *E.coli* prophage KpIE1. Contrary to bacteriophage λ the integrases of the VPIs and KpIE1 possess promoter regions that overlap with attachment sites, making them accessible for regulation by intasome binding proteins. Additionally, the genetic organization reveals that the RDF(s) and integrase of VPI-2 and KpIE1 are not co-regulated as they are in bacteriophage λ . The

position of *vefB* also exposes the gene for possible regulation by intasome binding proteins.

Fig. S4 VefA and VefB bind the 1st half *attL2* site at a higher affinity. A.

Representation of the 1st and 2nd half fragments of the *attL2* DNA sequence, amplified with primer pairs attL2Fwd/attL2BRev and attl2CFwd/attL2Rev, respectively (Table S1), used for electrophoretic mobility shift assays (EMSAs). **B.** Varying concentrations of VefA (0 – 46 μ M) with *attL2* 1st half (30 ng) and 2nd half (30 ng). Binding is observed at 23 μ M for the first half. **C.** Varying concentrations of VefB (0 - 23.1 μ M) with *attL2* 1st half (30 ng). Binding is observed at 2.8 μ M and 2.4 μ M for the 1st and 2nd half, respectively. **D.** EMSA using control *V. vulnificus* DNA (30 ng) with varying concentrations of VefA (0 – 12 μ M) and VefB (0 - 4.19 μ M). No binding was observed.

Fig. S5. Distribution of Vefs in Bacteria. A BLAST analysis revealed over 3,000 representatives (among 105 genera and 283 species) with equal to or greater than 70% query cover and 40% identity to the *V. cholerae* RDFs. A visual representation of these results was created using the Krona visualization tool (59). Link to interactive view: file:///C:/Users/Megan%20Carpenter/Desktop/Cross-

talk%20Paper/Krona/FamilyGenusNopecies.html?dataset=0&node=0&collapse=true&c olor=false&depth=2&font=11&key=true

Fig. S6. *Vibrio* island regions inserted at tmRNA genes containing RDFs. A) Island regions of *V. cholerae* and other Vibrionaeceae which contain IntV1 homologs inserted at tmRNA genes as well as Vef homologs. Note the genetic variation of the gene content of each island. Vibrio vulnificus island (VVI) - 5. **B)** Strain name with % homology to *V. cholerae* N16961 IntV1 and RDFs VefA, VefB or VefC. These

observations suggest an evolutionary relationship between IntV1 and the Vefs,

supporting the VPI-1 cross-talk hypothesis.

Primer Name	Sequence (5' \rightarrow 3')	Product size (bp)		
Mutant Construction				
VC0817A	tctagaAAGCTGCGATAGGGAGCT	520		
VC0817B	ACCACAGCGTCGACATACGAG			
VC0817C	CTCGTATGTCGACGCTGTGGT	561		
	ATCAAGAAAGAGCGGTTTCAAG			
VC0817D	gageteGGCTAACGTCCCTATAGTC			
VC0817FF	ĂGČTCTTCCATCGACAACACCTCT	2,200		
VC0817FR	TCGCCAGTGGAAGCAGAGCA			
VC0847A	tctagaTAGCCATTCGTTAGCGTGTC	556		
VC0847B	ATCGTCTTGTGGATCGATGC			
VC0847C	GCATCGATCCACAAGACGAT	548		
	AGAGGTAGCCTATCTGTGAC			
VC0847D	gageteTGAGGATCCATGATATCCGC			
VC0847FF	CTAGCTTCCGCTTGTAAGAC	2.287		
VC0847FR	TACTAACGGGTATCGAACTC	_,		
cnVC1758A	tctagaGATTCGGTGAGTTGTCCGAG	531		
cnVC1758B	TTGCCATGAGCGAGAATTGC			
cnVC1758C	GCAATTCTCGCTCATGGCAA	578		
	GGAAGTTACAGTGTGGCTGG	010		
cnVC1758D	gageteTCAGTAACAGAAAGGCTGCC			
cnVC1758FF	AAGCAAACGCACTCAATGCG	2 285		
cnVC1758FR		2,200		
VC0497A	CCtctagaGTACTCTTGCGATGCGTTTGG	541		
VC0497R	TCGTAGAAATCTCATGGGAATTGTC	541		
VC0497D		554		
1004910	GAATCOTTCAGTAACACAAACATC	554		
VC0497D				
VC0497EE		1 345		
VC0497ER	GAGTETGAACAACTGTATTGG	1,040		
Excision Assays (attP)				
	ATCGTCTTGTGGATCGATCC	744		
Inv/Nest\/C0817P2	CONTRACTOR ATTECTOR TAC	744		
Noct\/C0847E2		192		
NeetVC0047F3		403		
		1 250		
		1,352		
		404		
Nest/C1/56comR		401		
	GUGITAAUTGAGAAAGTGTG			
		400		
VPI-1 attBF1	ATAGGGAGCTGGGCGTTAAT	428		
VPI-1 attBR1	TGTAAGACGGGGAAATCAGG	0.17		
VPI-1 attBF2	TIGATGAGACGCICIGAACC	217		
VPI-1 attBR2	ATTCGTTAGCGTGTCGG			
VPI-2 fk1	CTGGCTATGAGCTGATTTG	1,449		
VPI-2 fk2	AGGGATTGGCTTTGAGG			
VPI-2attF	AGAGTGAAAGTCGCCAAAGC	524		
VPI-2attR	GGGTGCAATTTCGCATGTTGC			
Complementation				
VC0847F	gagetcAGGTACACTACAAGGTACAC	1,385		
VC0847R	tctagaAGCGTATTCCACTGACAACC			

Table S1. Primers used in this study

VC1758F	ggtaccGAGCTCGCTTTGAATATAGG	1.303
VC1758R	gagetcGAGTCCTCATGCTCTAGCCAG	.,
VC1785F	tctagaGGCATGCTGGTGTGTTACTAC	414
VC1785R	tctagaGACGCATGTATAATCACGC	
VC1809F	gageteGTGGTTGATAGGCAATTGCAC	414
VC1809R	ctgcagGATCACACAAGTAAACCAGC	
VC0497F	gagetcCAGTGGCGGCTTATCCATGG	293
VC0497R	ctgcagCAGCGCCCTGTTGATGATGT	
Protein Expression		
BamHIVC1785R	CTCGGATCCTCATCGCTGTTTAAGAC	225
NcoIVC1785F	TGCCCATGGATGGGACAACAAGACATAG	
VefAmutRev	CATGGACTGAAAATACAGG	
VefAmutFwd	GGACAACAAGACATAGGAG	
NcolVefBFwd	TGCCCATGGGATTGCAACTAACCAACCTGAG	251
BamHIVefBRev	CTCGGATCCCTAATCCATTCGACGATTGG	
Binding Assays		
attL2Fwd	TCTCACTCACCGCCACATTCAA	327
attL2Rev	GCCATTTCAATCCCTCAAGT	
attR1Fwd	GATGGGTACACCAGATTAACACG	190
attR1Rev	CCCCAGCTCCACCAAATCATAG	
attL2BRev	GTGGGTAGCTGGGTATTACTT	
attL2CFwd	AAGTAATACCCAGCTACCCAC	
VV1_0809A	tctagaAGCCAGGGTTTAACTACCGC	440
VV1 0809B	GGCTGAGTAAGCACGTTGA	

Figure S1

A. IntV1 and IntV2 sequence alignment

B. IntV1 and IntV2 sequence alignment

Figure S3

Figure S4

V. vulnificus

V. vulnificus

Figure S5

Strain	INTVI	verA	verb	verc
V. cholerae sv Inaba 12129(1)	93%	99%	83%	
V. cholerae CT 5369-93	81%			98%
V. cholerae sv. O135 RC385	100%	91%	97%	
Listonella anguillarum sv. O1 96F	82%			94%
V. cholerae HE-09	81%			100%
V. diazotrophicus NBRC 103148	81%			94%
V. vulnificus YJ016	81%	88%		