## A "Methyl Extension" Strategy for Natural Product Linker Site Validation and its Application to Dictyostatin

Stephen Ho<sup>1</sup>, Dan L. Sackett<sup>2</sup>, and James L. Leighton<sup>1</sup>\*

<sup>1</sup>Department of Chemistry, Columbia University, New York, NY 10027, USA. <sup>2</sup>Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA. \*e-mail: <u>leighton@chem.columbia.edu</u>

## **Supporting Information**

**General Information.** All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring unless otherwise indicated. Degassed solvents were purified by passage through an activated alumina column. Thin-layer chromatography was carried out on glass backed silica gel TLC plates (250 mm) from Silicycle. Visualization was accomplished with UV light (254 nm), followed by heating after staining the plate with phosphomolybdic acid or ceric ammonium molybdate solution. Optical rotations were recorded on a Jasco DIP-1000 digital polarimeter. Infrared spectra were recorded on a Perkin-Elmer Spectrum Two (Diamond ATR) IR spectrometer. <sup>1</sup>H NMR spectra were recorded on a Bruker AVIII 500 (500 MHz) or AVIII 500 Ascend (500 MHz) spectrometer and are reported in ppm, relative to residual protonated solvent peak (CHCl<sub>3</sub>, 7.26 ppm). Data are reported as follows: (bs= broad singlet, s = singlet, d = doublet, t = triplet, m = multiplet; coupling constant(s) in Hz; integration). Proton decoupled <sup>13</sup>C NMR spectra were recorded on a Bruker AVIII 500 (125 MHz) or AVIII 500 Ascend (125 MHz) spectrometer, relative to CDCl<sub>3</sub> (77.16 ppm). Gas chromatographic (GC) analyses were performed on a Hewlett-Packard 6890 Series Gas Chromatograph equipped with a capillary split-splitless inlet and flame ionization detector with electronic pneumatics control using a Supelco  $\beta$ -Dex 325 (30 m x 0.25 mm) capillary GLC column.

**Cell culture and growth inhibition.** DLD1 cells were obtained from ATCC (Manassas VA), and all other cell lines were obtained from the NCI anticancer drug screen. All cells were maintained in RPMI medium supplemented with 10% fetal bovine serum. Growth inhibition was determined by the sulforrhodamine B method, following exposure to serial dilutions of each compound for 4 days prior to fixation, staining and GI(50) determinations as described.<sup>1</sup> The results presented are mean values based on two or more determinations. The standard deviation (for three or more determinations) or half-range (for two values) were between 10% and 50% of the mean for all values.

## **Experimental Procedures**



To a solution of (*S*,*S*)-allylsilane 7 (6.7g, 12 mmol, 1.1 equiv) and 6-chloro-1-hexene (3.2 mL, 24 mmol, 2.2 equiv) in CHCl<sub>3</sub> (60 mL, 0.2 M) was added  $2^{nd}$  generation Hoveyda-Grubbs catalyst (378 mg, 0.60 mmol, 5 mol%). The reaction mixture was heated to 70 °C. After 5h, the reaction mixture was cooled to 0 °C. Aldehyde 5 (1.4 g, 11 mmol, 1 equiv) was added, followed by scandium triflate (270 mg, 0.60 mmol, 5 mol%). After

<sup>(1)</sup> Giannakakou, P., Sackett, D. L., Kang, Y. K., Zhan, Z., Buters, J. T., Fojo, T., Poruchynsky, M. S. Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. *J. Biol. Chem.* **272**, 17118-17125 (1997).

vigorously stirring for 2.5 h at 0 °C, the reaction mixture was concentrated, re-suspended in Et<sub>2</sub>O (60 mL), and quenched at 0 °C with 1N HCl (60 mL). This acidic isolation serves both to hydrolyze the C9 ketal and protonate the diaminocyclohexane controller. After stirring overnight, the reaction mixture was filtered. The aqueous layer of the filtrate was separated and extracted with EtOAc (3x100 mL). The combined organic layers were washed with saturated aqueous NaHCO<sub>3</sub> (50 mL), dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by silica gel flash column chromatography (10-40% EtOAc/Hex) affording methyl ketone **9** (1.4 g, 3:1 dr, 58% combined yield) as a dark red oil, presumably contaminated with ruthenium. A more complete purification was therefore performed after the following step. The enantiomeric excess of **9** was determined to be 90% ee by <sup>1</sup>H NMR and chiral GC analysis of the derived (*R*)-MTPA Mosher ester. **TLC**  $R_f = 0.3$  (25% EtOAc/Hex); **IR** (thin film) 3446 (bs), 2935, 1707, 1359, 1000, 917, 733 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (major diastereomer) 5.66 (dt, J = 17.3, 9.8 Hz, 1H, C<sub>5</sub>H), 5.17 – 5.02 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.03 (dt, J = 6.3, 3.4 Hz, 1H, C<sub>7</sub>H), 3.51 (t, J = 6.7 Hz, 2H,  $\alpha$ -Cl), 2.84 (d, J = 2.9 Hz, 1H, OH), 2.70 – 2.45 (m, 2H, C<sub>8</sub>H<sub>2</sub>), 2.16 (s, 3H, C<sub>10</sub>H<sub>3</sub>), 1.96 (app. tt, J = 8.9, 4.1 Hz, 1H, C<sub>6</sub>H), 1.83 – 1.67 (m, 2H,  $\beta$ -Cl), 1.56 – 1.17 (m, 4H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  (major diastereomer) 209.9, 138.0, 117.9, 69.7, 49.7, 48.0, 45.1, 32.7, 31.0, 30.1, 24.8; **HRMS:** Exact mass calcd for C<sub>11</sub>H<sub>19</sub>ClNaO<sub>2</sub> [M+Na]<sup>+</sup>: 241.0971; found 241.0984 (TOF MS ES+).



To a cooled (-78 °C) solution of ketone 9 (360 mg, 2.5:1 dr, 1.7 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (17 mL, 0.1 M) was added 2,6-lutidine (778 µL, 6.9 mmol, 4.2 equiv) and freshly-distilled TBS-OTf (794 µL, 3.5 mmol, 2.1 equiv). The reaction mixture was allowed to warm to 0 °C as the dry ice bath expired. After 3h, the reaction mixture was re-cooled to -78 °C, and a solution of N-bromosuccinimide (352 mg, 2.0 mmol, 1.2 equiv) in THF (8.5 mL) was added over 30 min. After 3h, the reaction mixture was guenched with saturated aqueous NaHCO<sub>3</sub> (20 mL). The aqueous layer was separated and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3x20 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by pH 7.0 buffered silica gel flash column chromatography (1% EtOAc/Hex) affording bromoketone 10 as a mixture of C6 diastereomers (530 mg, 2.5:1 dr, 78% combined yield). This material was used without further purification, and the separation of diastereomers was performed at a later stage. TLC  $R_f = 0.53$  (10% EtOAc/Hex, one spot); IR (thin film) 2930, 2857, 1717, 1462, 1253, 1074, 834, 776 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.62 (ddd, J = 17.3, 10.3, 9.1 Hz, 1H, C<sub>5</sub>H major), 5.59 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 10.3, 8.6 Hz, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.19 (ddd, J = 17.2, 1H, C<sub>5</sub>H minor), 5.15 – 4.99 (m, 2H, C\_{4}H\_{2}), 4.19 (m, 2H, C\_{4}H\_{2}), 6.8, 5.7, 3.0 Hz, 1H,  $C_7H$  major), 4.13 (ddd, J = 7.1, 5.5, 4.3 Hz, 1H,  $C_7H$  minor), 3.90 (s, 2H,  $C_{10}H_2$  minor), 3.88 (s, 2H,  $C_{10}H_2$  major), 3.51 (t, J = 6.7 Hz, 2H,  $\alpha$ -Cl), 2.81 – 2.61 (m, 2H,  $C_8H_2$ ), 2.16 – 2.10 (m, 1H,  $C_6H_2$ minor), 2.07 (app. tt, J = 9.3, 3.3 Hz, 1H, C<sub>6</sub>H major), 1.83 – 1.67 (m, 2H), 1.58 – 1.43 (m, 2H), 1.37 – 1.19 (m, 2H), 0.87 (s, 9H, TBS), 0.08 (s, 3H, TBS), 0.01 (s, 3H, TBS); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ (major diastereomer) 200.7, 138.1, 117.8, 71.6, 50.0, 45.1, 44.7, 35.8, 32.8, 29.4, 26.0, 25.0, 18.2, -4.4, -4.5; HRMS: Exact mass calcd for C<sub>17</sub>H<sub>31</sub>BrClO<sub>2</sub>Si [M–H]<sup>-</sup>: 409.0965; found 409.0971 (FAB+).



Bromoketone **10** (880 mg, 2.5:1 dr, 2.1 mmol, 1 equiv) and methyl-diphenylphosphite (686  $\mu$ L, 3.2 mmol, 2 equiv) were combined together neat and heated to 140 °C. After 7h, aliquot <sup>1</sup>H-NMR indicated full conversion of bromoketone **10** (this reaction time may vary depending on the scale of the reaction). The reaction mixture was cooled to 0 °C. TFE (9.3 mL, 60 equiv), THF (4.7 mL), and DBU (479  $\mu$ L, 3.2 mmol, 1.5 equiv) were added in that order. The reaction mixture was heated to 45 °C. After 1h, the reaction mixture was cooled to room temperature and filtered over a silica gel plug, eluting with 50% EtOAc/Hex (250 mL). The filtrate was concentrated and purified by silica gel flash column chromatography (2-20% EtOAc/Hex) affording TFE phosphonate **11** as a mixture of C6 diastereomers (732 mg, 2.5:1 dr, 60% combined yield). This material was

used without further purification, and the separation of diastereomers was performed at a later stage. **TLC**  $R_f = 0.4$  (20% EtOAc/Hex); **IR** (thin film) 2932, 2859, 1718, 1294, 1259, 1169, 1069, 962, 836 cm<sup>-1</sup>; <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.65 – 5.51 (m, 1H, C<sub>5</sub>H), 5.15 – 4.96 (m, 2H, C<sub>4</sub>H<sub>2</sub>), 4.48 – 4.37 (m, 4H, TFE), 4.16 (app. td, J = 6.1, 2.9 Hz, 1H, C<sub>7</sub>H major), 4.09 (app. td, J = 6.3, 4.7 Hz, 1H, C<sub>7</sub>H minor), 3.51 (t, J = 6.7 Hz, 2H,  $\alpha$ -Cl), 3.34 – 3.17 (m, 2H, C<sub>10</sub>H<sub>2</sub>), 2.75 – 2.58 (m, 2H, C<sub>8</sub>H<sub>2</sub>), 2.14 – 2.01 (m, 1H, C<sub>6</sub>H), 1.82 – 1.67 (m, 2H), 1.57 – 1.41 (m, 2H), 1.37 – 1.18 (m, 2H), 0.86 (s, 9H, TBS), 0.07 (s, 3H, TBS), 0.01 (s, 3H, TBS); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  (major diastereomer) 200.1 (d, <sup>2</sup> $_{J_{C,P}} = 7.0$  Hz), 138.0, 122.6 (qd, J = 277.6, 8.6 Hz, 2C), 117.8, 70.9, 62.6 (qd, J = 38.1, 5.4 Hz), 62.5 (qd, J = 38.1, 5.3 Hz), 49.9, 49.1 (d, <sup>3</sup> $_{J_{C,P}} = 5.4$  Hz), 45.0, 42.7 (d, <sup>1</sup> $_{J_{C,P}} = 138.8$  Hz), 32.8, 29.3, 25.9, 25.0, 18.1, -4.5, -4.6; **HRMS**: Exact mass calcd for C<sub>21</sub>H<sub>35</sub>ClF<sub>6</sub>O<sub>5</sub>PSi [M–H]<sup>-</sup>: 575.1584; found 575.1602 (FAB+).



To a solution of chloride **11** (342 mg, 0.59 mmol, 1 equiv) in DMF (4 mL, 0.12 M) was added sodium azide (46 mg, 0.71 mmol, 1.2 equiv). The reaction mixture was heated to 70 °C. After 7h, aliquot <sup>1</sup>H-NMR indicated full conversion of starting material. The reaction mixture was allowed to cool to room temperature and directly purified by silica gel flash column chromatography (5-30% EtOAc/Hex) affording azide **12** as a mixture of C6 diastereomers (227 mg, 66% yield). This material was used without further purification, and the separation of diastereomers was performed at a later stage. **TLC**  $R_f = 0.55$  (30% EtOAc/Hex; product co-spots with starting material); **IR** (thin film) 2932, 2859, 2096, 1718, 1259, 1170, 1068, 836 cm<sup>-1</sup>; <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  (major diastereomer) 5.60 (ddd, J = 17.2, 10.3, 9.0 Hz, 1H, C<sub>5</sub>H), 5.13 (dd, J = 10.3, 1.9 Hz, 1H, C<sub>4</sub>H<sub>a</sub>), 5.00 (dd, J = 17.2, 1.9 Hz, 1H, C<sub>4</sub>H<sub>b</sub>), 4.50 – 4.37 (m, 4H, TFE), 4.16 (app. td, J = 6.1, 2.9 Hz, 1H, C<sub>6</sub>H), 1.66 – 1.48 (m, 3H), 1.45 – 1.20 (m, 3H), 0.87 (s, 9H, TBS), 0.08 (s, 3H, TBS), 0.02 (s, 3H, TBS); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  (major diastereomer) 200.1 (d, <sup>2</sup> $_{J_{C,P}} = 6.9$  Hz), 138.0, 122.6 (qd, J = 277.5, 8.2 Hz, 2C), 117.9, 71.0, 62.6 (qd, J = 38.0, 5.4 Hz), 62.5 (qd, J = 37.9, 5.3 Hz), 51.5, 50.0, 49.2 (d, <sup>3</sup> $_{J_{C,P}} = 5.1$  Hz), 42.8 (d, <sup>1</sup> $_{J_{C,P}} = 138.8$  Hz), 30.0, 29.0, 25.9 (3C), 24.9, 18.2, -4.5, -4.5; **LRMS**: Exact mass calcd for C<sub>21</sub>H<sub>37</sub>F<sub>6</sub>N<sub>3</sub>O<sub>5</sub>PSi [M+H]<sup>+</sup>: 584.2; found 584.2 (FAB+).



To a solution of phosphonate **12** (191 mg, 0.33 mmol, 1 equiv) and iodo-acrylate **13** (195 mg, 0.65 mmol, 2 equiv) in MeCN (3.3 mL, 0.1 M) was added AgOAc (109 mg, 0.65 mmol, 2 equiv) and Pd(OAc)<sub>2</sub> (2.2 mg, 0.0098 mmol, 3 mol%). The reaction mixture was heated to 45 °C. Additional Pd(OAc)<sub>2</sub> was added at t = 16h (2.2 mg, 3 mol%) and t = 24h (1.1 mg, 1.5 mol%; total of 7.5 mol%). After a total reaction time of 40h, the reaction mixture was cooled to room temperature and filtered over celite, eluting with 50% EtOAc/Hex (50 mL). The filtrate was washed with pH 7.0 buffer solution (20 mL). The aqueous layer was separated and extracted with 50% EtOAc/Hex (3x20 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by pH 7.0 buffered silica gel flash column chromatography (5-30% EtOAc/Hex) affording pure *cis*-dienoate **14** (74 mg, 30% yield) and a mixture of C6 epimers (68 mg, 28% yield; 58% combined yield). **TLC** R<sub>f</sub> = 0.50 (35% EtOAc/Hex);  $[\alpha]^{22}{}_{D}$  -4.0 (*c* = 1.0, CH<sub>2</sub>Cl<sub>2</sub>); **IR** (thin film) 2953, 2858, 2096, 1713, 1254, 1172, 1069, 837 cm<sup>-1</sup>; <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (dd, *J* = 15.5, 11.1 Hz, 1H, C<sub>4</sub>H), 6.53 (t, *J* = 11.3 Hz, 1H, C<sub>3</sub>H), 5.84 (dd, *J* = 15.5, 9.4 Hz, 1H, C<sub>5</sub>H), 5.62 (d, *J* = 11.3 Hz, 1H, C<sub>2</sub>H), 4.49 – 4.39 (m, 4H, TFE), 4.24 – 4.17 (m, 3H, TMSE, C<sub>7</sub>H), 3.34 – 3.20 (m, 2H, C<sub>10</sub>H<sub>2</sub>), 3.25 (t, *J* = 6.9 Hz, 2H,  $\alpha$ -N<sub>3</sub>), 2.67 (app. d, *J* = 6.1 Hz, 2H, C<sub>8</sub>H<sub>2</sub>), 2.26 – 2.19 (m, 1H, C<sub>6</sub>H), 1.64 – 1.52 (m, 3H), 1.44 – 1.32 (m, 2H), 1.32 – 1.24 (m, 1H), 1.04 – 0.99 (m, 2H, TMSE), 0.87 (s, 9H, TBS), 0.09 (s, 3H, TBS), 0.05 (s, 9H, TMSE), 0.02 (s, 3H, TBS); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  199.7 (d, <sup>2</sup>*J*<sub>C,P</sub> = 6.9 Hz), 166.7, 144.3, 143.6, 129.6, 122.6 (qd, *J* = 277.5, 8.1 Hz, 2C), 117.3, 70.7, 62.5 (app. qt, *J* = 38.0, 5.9 Hz, 2C), 62.3, 51.4, 49.6 (d, <sup>3</sup>*J*<sub>C,P</sub> = 4.9 Hz),

49.1, 42.7 (d,  ${}^{1}J_{C,P}$  = 137.9 Hz), 30.3, 29.0, 26.0 (3C), 24.9, 18.2, 17.5, -1.4 (3C), -4.4, -4.6; **LRMS**: Exact mass calcd for C<sub>29</sub>H<sub>50</sub>F<sub>6</sub>N<sub>3</sub>NaO<sub>7</sub>PSi<sub>2</sub> [M+Na]<sup>+</sup>: 776.27; found 776.18 (FAB+).



To a cooled (-78 °C) solution of phosphonate 14 (60 mg, 0.080 mmol, 1.5 equiv) in THF (1 mL, 0.05 M) was added NaHMDS (1M THF, 69 µL, 0.069 mmol, 1.3 equiv). After 20 min, aldehyde 15 (37 mg, 0.053 mmol, 1 equiv) was added, and the reaction mixture was allowed to warm to room temperature. After 48h, the reaction mixture was guenched at 0 °C with a solution of PPTS (5 mg) in MeOH (2 mL). After 2h, the reaction mixture was diluted with pH 7.0 buffer solution (10 mL). The aqueous layer was separated and extracted with EtOAc (5x10 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by silica gel flash column chromatography (4% EtOAc/Hex) affording a 3:1 Z:E mixture of enone **16** (44 mg of Z-isomer, 75% yield of Z-isomer). **TLC**  $R_f = 0.50$  (10% EtOAc/Hex);  $[\alpha]_{D}^{22}$  -14.7 (c = 0.33, CH<sub>2</sub>Cl<sub>2</sub>); **IR** (thin film) 2930, 2862, 2095, 1713, 1637, 1604, 1461, 1251, 1172, 1059, 835, 774, 675 cm<sup>-1</sup>; <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 (dd, J = 15.5, 11.3 Hz, 1H, C<sub>4</sub>H), 6.66 (dt, J = 16.9, 10.6 Hz, 1H, C<sub>2</sub>5H), 6.57  $(t, J = 11.3 \text{ Hz}, 1\text{H}, C_3\text{H}), 6.32 \text{ (dd}, J = 11.6, 9.7 \text{ Hz}, 1\text{H}, C_{11}\text{H}), 6.09 \text{ (t}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}, C_{24}\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{H}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{Hz}, 1\text{Hz}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}, 1\text{Hz}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}), 6.03 \text{ (d}, J = 11.0 \text{ Hz}),$ 11.7 Hz, 1H,  $C_{10}$ H), 5.94 (dd, J = 15.5, 9.4 Hz, 1H,  $C_5$ H), 5.61 (d, J = 11.3 Hz, 1H,  $C_2$ H), 5.49 (t, J = 10.3 Hz, 1H, C<sub>23</sub>H), 5.21 (dd, J = 16.9, 2.0 Hz, 1H, C<sub>26</sub>H<sub>a</sub>), 5.12 (d, J = 10.3 Hz, 1H, C<sub>26</sub>H<sub>b</sub>), 4.31 (td, J = 6.0, 2.6 Hz, 1H, C<sub>7</sub>H), 4.26 – 4.21 (m, 2H, TMSE), 4.01 – 3.93 (m, 1H, C<sub>19</sub>H), 3.77 – 3.67 (m, 1H, C<sub>12</sub>H), 3.60 – 3.56 (m, 1H, C<sub>21</sub>H), 3.50 (app. t, J = 3.4 Hz, 1H, C<sub>13</sub>H), 3.26 (t, J = 7.0 Hz, 2H, α-N<sub>3</sub>), 2.88 – 2.80 (m, 1H, C<sub>22</sub>H), 2.78 (d, J = 1.7 Hz, 1H, OH), 2.61 – 2.50 (m, 2H, C<sub>8</sub>H<sub>2</sub>), 2.27 – 2.19 (m, 1H, C<sub>6</sub>H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 199.3, 166.7, 152.5, 144.8, 144.6, 135.9, 132.6, 129.6, 129.3, 125.4, 117.6, 116.7, 79.9, 79.3, 78.5, 71.0, 62.2, 51.5, 50.1, 49.5, 41.2, 37.4, 36.5, 36.2, 36.1, 32.7, 31.9, 30.9, 30.9, 29.1, 26.3, 26.1, 25.0, 20.7, 19.3, 18.6, 18.5, 18.4, 18.2, 18.0, 17.6, 15.9, 13.6, 5.9, -1.3, -3.5, -3.8, -4.1, -4.6. **HRMS:** Exact mass calcd for  $C_{61}H_{118}N_3O_7Si_4$ [M+H]<sup>+</sup>: 1116.8047; found 1116.7997 (TOF MS ASAP+).



*C1 Deprotection*: To a cooled (0 °C) solution of TMSE ester **16** (44 mg, 0.039 mmol, 1 equiv) in DMF (3.9 mL, 0.01M) was added a solution of TAS-F (11 mg, 0.041, 1.05 equiv) in DMF (0.5 mL) dropwise. The reaction mixture was allowed to warm to room temperature. After 20h, the reaction mixture was diluted with Et<sub>2</sub>O (10 mL) and quenched at 0 °C with 1M NaHSO<sub>4</sub> (5 mL). The reaction mixture was further diluted with saturated aqueous NaCl (5 mL) and extracted with Et<sub>2</sub>O (5x10 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated to afford acid **27**, which was used immediately without purification.

*Macrolactonization*: To a solution of crude acid **27** in Toluene (39 mL, 0.001M) was added 2-methyl-6nitrobenzoic anhydride (41 mg, 0.12 mmol, 3 equiv), DMAP (5 mg, 0.039 mmol, 1 equiv), and NEt<sub>3</sub> (55  $\mu$ L, 0.39 mmol, 10 equiv). After 24h, the reaction mixture was quenched with saturated aqueous NaHCO<sub>3</sub> (20 mL) The aqueous layer was separated and extracted with EtOAc (3x50 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by pH 7.0 buffered silica gel flash

column chromatography (1-5% EtOAc/Hex) affording macrocycle **28** (21 mg, 54% yield over 2 steps). **TLC**  $R_f = 0.52$  (10% EtOAc/Hex);  $[\alpha]^{19}{}_{D}$  -9.7 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>); **IR** (thin film) 2931, 2864, 2096, 1707, 1462, 1380, 1255, 1051, 836, 775 cm<sup>-1</sup>; <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.13 (dd, J = 15.6, 11.1 Hz, 1H, C<sub>4</sub>H), 6.62 – 6.52 (m, 2H, C<sub>25</sub>H, C<sub>3</sub>H), 6.38 (dd, J = 11.7, 10.2 Hz, 1H, C<sub>11</sub>H), 6.09 (d, J = 11.7 Hz, 1H, C<sub>10</sub>H), 6.04 (t, J = 11.2 Hz, 1H, C<sub>24</sub>H), 5.91 (dd, J = 15.5, 9.0 Hz, 1H, C<sub>5</sub>H), 5.61 (d, J = 11.6 Hz, 1H, C<sub>2</sub>H), 5.47 (t, J = 10.8 Hz, 1H, C<sub>23</sub>H), 5.36 (dd, J = 9.1, 2.9 Hz, 1H, C<sub>21</sub>H), 5.21 (d, J = 16.8 Hz, 1H, C<sub>26</sub>H<sub>a</sub>), 5.13 (dd, J = 10.6 Hz, 1H, C<sub>26</sub>H<sub>b</sub>), 4.17 – 4.11 (m, 1H, C<sub>7</sub>H), 3.89 – 3.80 (m, 1H, C<sub>19</sub>H), 3.80 – 3.69 (m, 1H, C<sub>12</sub>H), 3.32 (dd, J = 5.7, 2.0 Hz, 1H, C<sub>13</sub>H), 3.26 (t, J = 7.0 Hz, 2H,  $\alpha$ -N<sub>3</sub>), 3.19 – 3.11 (m, 1H, C<sub>22</sub>H), 2.61 (dd, J = 13.8, 6.8 Hz, 1H, C<sub>8</sub>H<sub>a</sub>), 2.45 (dd, J = 13.8, 4.9 Hz, 1H, C<sub>8</sub>H<sub>b</sub>), 2.13 (m, 1H, C<sub>6</sub>H); <sup>13</sup>C **NMR** not included due to rotamers causing significant line broadening; **LRMS**: Exact mass calcd for C<sub>53</sub>H<sub>103</sub>N<sub>3</sub>NaO<sub>6</sub>Si<sub>3</sub> [M+Na]<sup>+</sup>: 1020.7; found 1020.8 (FAB+).



To a cooled (-78 °C) solution of enone **28** (18 mg, 18 µmol, 1 equiv) in Toluene (360 µL, 0.05M) was added (*R*)-2-Methyl-CBS oxazaborolidine (1M Tol, 90 µL, 90 µmol, 5 equiv) and catecholborane (50% w/w Toluene, 50 µL, 0.18 mmol, 10 equiv). After 24h at -78 °C, the reaction mixture was quenched with MeOH (2 mL), followed by saturated aqueous NaHCO<sub>3</sub> (2 mL). The aqueous layer was separated and extracted with Et<sub>2</sub>O (5x10 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by silica gel flash column chromatography (5-10% EtOAc/Hex) affording allylic alcohol **29** (14 mg, 79% yield). **TLC**  $R_f = 0.32$  (10% EtOAc/Hex);  $[\alpha]^{22}_{D}$  -114 (*c* = 0.1, CH<sub>2</sub>Cl<sub>2</sub>); **IR** (thin film) 3492, 2930, 2863, 2096, 1711, 1462, 1254, 1052, 836, 775, 678 cm<sup>-1</sup>; <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.04 (dd, *J* = 15.4, 11.4 Hz, 1H, C<sub>4</sub>H), 6.57 (dt, *J* = 16.9, 10.5 Hz, 1H, C<sub>2</sub>H), 6.52 (t, *J* = 11.4 Hz, 1H, C<sub>3</sub>H), 6.06 (t, *J* = 11.1 Hz, 1H, C<sub>24</sub>H), 5.98 (dd, *J* = 15.7, 7.6 Hz, 1H, C<sub>5</sub>H), 5.69 (t, *J* = 9.9 Hz, 1H, C<sub>11</sub>H), 5.60 (d, *J* = 11.4 Hz, 1H, C<sub>2</sub>H<sub>b</sub>), 4.55 (t, *J* = 9.5 Hz, 1H, C<sub>9</sub>H), 4.05 (dt, *J* = 9.9 Hz, 1H, C<sub>11</sub>H), 3.77 (bs, 1H, C<sub>19</sub>H), 3.23 (m, 3H, C<sub>13</sub>H, α-N<sub>3</sub>), 3.08 (bs, 1H, C<sub>22</sub>H), 2.73 - 2.64 (m, 1H, C<sub>12</sub>H), 2.31 (bs, 1H, C<sub>6</sub>H), 1.86 (bs, 1H, C<sub>20</sub>H); <sup>13</sup>C **NMR** not included due to rotamers causing substantial line broadening; **HRMS:** Exact mass calcd for C<sub>56</sub>H<sub>104</sub>N<sub>3</sub>O<sub>5</sub>Si<sub>3</sub> [M+H-H<sub>2</sub>O]<sup>+</sup>: 982.7284; found 982.7284 (TOF MS ASAP+).



To a cooled (0 °C) solution of **29** (14 mg) in THF (2 mL) in a Nalgene tube was added HF-pyridine (100  $\mu$ L). The reaction mixture was allowed to warm to room temperature. At t = 24h, 48h, and 60h, additional HF-pyridine (100  $\mu$ L; total of 400  $\mu$ L) was added. After a total reaction time of 90h, the reaction mixture was slowly quenched at 0 °C with saturated aqueous NaHCO<sub>3</sub> (10 mL) and then diluted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL). The aqueous layer was separated and extracted with CH<sub>2</sub>Cl<sub>2</sub> (5x20 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by silica gel flash column chromatography (50-100% EtOAc/Hex) affording **3** (6.5 mg, 76% yield). **TLC** R<sub>f</sub> = 0.48 (80% EtOAc/Hex); [ $\alpha$ ]<sup>18</sup><sub>D</sub> 48.5 (*c* = 0.1,

CH<sub>2</sub>Cl<sub>2</sub>); **IR** (thin film) 3403, 2925, 2096, 1694, 1456, 1277, 1042, 961 cm<sup>-1</sup>; <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 (dd, J = 15.8, 11.3 Hz, 1H, C<sub>4</sub>H), 6.64 – 6.55 (m, 1H, C<sub>25</sub>H), 6.49 (t, J = 11.3 Hz, 1H, C<sub>3</sub>H), 6.02 (dd, J = 15.9, 7.4 Hz, 1H, C<sub>5</sub>H), 5.99 (t, J = 11.0 Hz, 1H, C<sub>24</sub>H), 5.57 (t, J = 10.2 Hz, 1H, C<sub>10</sub>H), 5.49 (d, J = 11.3 Hz, 1H, C<sub>2</sub>H), 5.34 (t, J = 10.5 Hz, 1H, C<sub>11</sub>H), 5.26 (t, J = 10.5 Hz, 1H, C<sub>21</sub>H), 4.81 (dt, J = 16.9, 1.9 Hz, 1H, C<sub>9</sub>H), 4.01 – 3.96 (m, 1H, C<sub>7</sub>H), 3.51 – 3.46 (m, 1H, C<sub>19</sub>H), 3.30 – 3.24 (m, 3H, C<sub>13</sub>H,  $\alpha$ -N<sub>3</sub>), 3.04 – 2.94 (m, 1H, C<sub>20</sub>H), 2.81 – 2.70 (m, 1H, C<sub>12</sub>H), 2.27 – 2.20 (m, 1H, C<sub>6</sub>H), 1.91 – 1.83 (m, 1H, C<sub>20</sub>H), 1.06 (d, J = 6.8 Hz, 3H, C<sub>10</sub>CH<sub>3</sub>); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.7, 145.7, 145.2, 134.9, 134.0, 133.0, 132.2, 130.3, 128.5, 118.1, 116.3, 76.3, 76.2, 73.3, 70.1, 66.5, 51.5, 47.5, 42.4, 40.0, 38.9, 35.3, 35.3, 32.1, 31.6, 31.4, 29.9, 29.5, 29.3, 24.5, 21.3, 17.8, 17.6, 14.2, 10.4; **HRMS:** Exact mass calcd for C<sub>35</sub>H<sub>55</sub>N<sub>3</sub>NaO<sub>5</sub> [M+Na-H<sub>2</sub>O]<sup>+</sup>: 620.4039; found 620.4043 (TOF MS ES+).



*Silylformylation*: To the glass liner of a Parr bomb was added 6-chloro-1-hexyne (5.0 g, 43 mmol, 1 equiv), diphenyl-isopropoxy-silane (10 g, 4.3 mmol, 1 equiv), and benzene (43 mL, 1M). The glass liner was cooled to -78 °C, and Rh(acac)(CO)<sub>2</sub> (111 mg, 0.043 mmol, 1 mol%) was added on top of the frozen benzene solution. While frozen, the glass liner was quickly placed into the Parr bomb, which was then charged to 250 psi with CO (vented and re-charged 3X). After 6h, aliquot <sup>1</sup>H-NMR indicated full conversion of 6-chloro-1-hexyne to aldehyde 17. The reaction mixture was concentrated and aldehyde 17 was used immediately without purification.

Crotylation: To a solution of crude aldehyde 17 in CH<sub>2</sub>Cl<sub>2</sub> (214 mL, 0.2 M) was added (S,S)-cis-crotylsilane (27 g, 47 mmol, 1.1 equiv), followed by Sc(OTf)<sub>3</sub> (633 mg, 1.3 mmol, 3 mol%). After vigorously stirring for 3h, the reaction mixture was quenched at 0 °C with TBAF (47 mL, 1M THF) and allowed to warm to room temperature. After 1h, the reaction mixture was concentrated and filtered over a plug of silica gel, eluting with 50% EtOAc/Hex (2L). The filtrate was then concentrated and purified by silica gel flash column chromatography (1-5% EtOAc/Hex) affording vinylsilane 18 (15 g, 90% yield over 2 steps). The enantiomeric excess of 18 was determined to be 95% ee by <sup>1</sup>H NMR of the derived (*R*)-MTPA Mosher ester of acetal 19. Aldehyde 17: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.02 (s, 1H, CHO), 7.65 – 7.60 (m, 4H), 7.49 – 7.36 (m, 6H), 7.08 (t, J = 1.3 Hz, 1H, C<sub>11</sub>H), 4.13 (hept, J = 6.1 Hz, 1H, -O*i*Pr), 3.55 (t, J = 6.6 Hz, 2H,  $\alpha$ -Cl), 2.41 (td, J = 7.7, 1.3 Hz, 2H), 1.86 – 1.77 (m, 2H), 1.71 – 1.60 (m, 2H), 1.16 (d, J = 6.1 Hz, 6H). Vinylsilane 18: TLC R<sub>f</sub> = 0.6  $(10\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{19}_{p} - 20.7 (c = 2.0, CH_2Cl_2); IR (thin film) 3068, 2934, 1580, 1428, 1113, 996, 822, 739, 100\% \text{ EtOAc/Hex}); [\alpha]^{10}_{p} - 20.7 (c = 2.0, CH_2Cl_2); [\alpha]^{10}_{p} - 20.7 (c = 2.0$ 699 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.66 – 7.63 (m, 2H), 7.53 – 7.50 (m, 2H), 7.47 – 7.32 (m, 6H), 6.09  $(ddd, J = 16.5, 9.8, 6.7 Hz, 1H, C_{15}H), 6.05 (d, J = 1.7 Hz, 1H, C_{11}H), 5.14 - 5.05 (m, 2H, C_{16}H_2), 4.87 (t, J = 1.5 Hz, 1H, C_{12}H)$ 2.1 Hz, 1H, C<sub>13</sub>H), 3.59 (t, J = 6.4 Hz, 2H,  $\alpha$ -Cl), 2.59 – 2.52 (m, 1H, C<sub>14</sub>H), 2.31 – 2.16 (m, 2H), 1.91 – 1.84 (m, 2H), 1.84 – 1.76 (m, 2H), 0.76 (d, J = 6.9 Hz, 3H, C<sub>14</sub>CH<sub>3</sub>); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  167.0, 142.6, 135.8, 135.1, 135.0, 134.7, 130.2, 127.9, 127.9, 119.2, 114.0, 88.3, 45.0, 40.9, 32.4, 31.5, 25.0, 12.3; HRMS: Exact mass calcd for  $C_{23}H_{26}OCISi [M-H]^{-1}: 381.1441$ ; found 381.1448 (FAB+).



Tamao oxidation: To a cooled (0 °C) solution of vinylsilane 18 (2.5 g, 6.5 mmol, 1 equiv) in 1:1 THF / <sup>i</sup>PrOH (65 mL, 0.1 M) was added KHCO<sub>3</sub> (686 mg, 6.9 mmol, 1.05 equiv), followed by H<sub>2</sub>O<sub>2</sub> (8.5 mL, 85 mmol, 13 equiv, 30% wt in H<sub>2</sub>O). After 3h at 0 °C, the reaction mixture was quenched with H<sub>2</sub>O (20 mL). The aqueous layer was separated and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3x20 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated to afford aldehvde **30**, which was used immediately without purification. Protection: To a solution of crude aldehyde 30 in Toluene (65 mL, 0.1M) was added ethylene glycol (3.7 mL, 65 mmol, 10 equiv) and PPTS (1.6 g, 6.5 mmol, 1 equiv). The reaction mixture was heated to 100 °C. After 1h, the reaction mixture was cooled to room temperature and concentrated to ca. 10 mL. Purification was accomplished by silica gel flash column chromatography affording acetal 19 as a mixture of C12 diastereomers (1.14 g, 10:1 dr, 66% combined yield). This material was used without further purification, and the separation of diastereomers was performed at a later stage. Aldehvde **30**: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.77 (d, J = 2.5 Hz, 1H, CHO), 5.78 - 5.66 (m, 1H, C<sub>15</sub>H), 5.13 - 5.06 (m, 2H, C<sub>16</sub>H<sub>2</sub>), 3.64 (t, J = 5.9 Hz, 1H, C<sub>13</sub>H), 3.53 (t, J = 6.5Hz, 2H,  $\alpha$ -Cl), 2.60 – 2.53 (m, 1H, C<sub>12</sub>H), 2.47 – 2.40 (m, 1H, C<sub>14</sub>H), 1.84 – 1.72 (m, 2H), 1.65 – 1.44 (m, 4H), 1.09 (d, J = 6.8 Hz, 3H,  $C_{14}$ CH<sub>3</sub>). Acetal 19: TLC  $R_f = 0.38$  (25% EtOAc/Hex); IR (thin film) 3523 (bs), 2877, 1639, 1458, 1406, 1100, 999, 915 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.74 (ddd, J = 17.3, 10.4, 8.1 Hz, 1H,  $C_{15}H$ , 5.12 – 4.93 (m, 3H,  $C_{16}H_2$ ,  $C_{11}H$ ), 4.06 – 3.94 (m, 2H), 3.93 – 3.80 (m, 2H), 3.54 (td, J = 6.7, 1.5 Hz, 2H,  $\alpha$ -Cl), 3.49 (dd, J = 7.5, 4.8 Hz, 1H, C<sub>13</sub>H), 2.82 (bs, 1H, OH), 2.40 (app. hept, J = 7.0 Hz, 1H, C<sub>14</sub>H), 2.00 – 1.94 (m, 1H, C<sub>12</sub>H), 1.83 – 1.72 (m, 2H), 1.64 – 1.40 (m, 4H), 1.10 (d,  $J = 6.7, 3H, C_{14}CH_3$ ); <sup>13</sup>C NMR (125) MHz, CDCl<sub>3</sub>) δ 141.7, 114.9, 104.9, 75.0, 65.2, 64.8, 45.1, 42.5, 42.2, 33.1, 24.9, 24.8, 16.2; HRMS: Exact mass calcd for C<sub>13</sub>H<sub>22</sub>O<sub>3</sub>Cl [M–H]<sup>-</sup>: 261.1257; found 261.1269 (FAB+).



To a cooled (-78 °C) solution of **19** (1.0 g, 10:1 dr, 3.8 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (38 mL, 0.1 M) was bubbled in ozone. Immediately after the solution began turning blue, the reaction mixture was purged with oxygen until colorless. PPh<sub>3</sub> (1.1 g, 4.2 mmol, 1.1 equiv) was added, and the reaction mixture was allowed to warm to room temperature. After 12h, the reaction mixture was diluted with Toluene (38 mL). Freshly prepared phosphonium A (1.6 g, 4.6 mmol, 1.2 equiv) was added, and the reaction mixture was heated to 45 °C. After 5h, additional phosphonium A (1.6 g, 1.2 equiv) was added. After a total reaction time of 24h, the reaction mixture was cooled to room temperature and concentrated to ca. 10 mL. Purification was accomplished by silica gel flash column chromatography (10-40% EtOAc/Hex) affording methyl ester 20 (1.05 g, 10:1 dr, 83% combined yield). This material was used without further purification, and the separation of diastereomers was performed at a later stage. TLC  $R_f = 0.37$  (30% EtOAc/Hex); IR (thin film) 3515 (bs), 2951, 2873, 1710, 1436, 1273, 1225, 1123, 1101, 988, 752 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.59 (dd, J = 10.2, 1.5 Hz, 1H, C<sub>15</sub>H), 4.89 (d, J = 3.3 Hz, 1H,  $C_{11}H$ , 4.04 – 3.92 (m, 2H), 3.92 – 3.80 (m, 2H), 3.72 (s, 3H, CO<sub>2</sub>Me), 3.58 – 3.48 (m, 3H,  $C_{13}H$ ,  $\alpha$ -Cl), 2.93  $(d, J = 7.4 Hz, 1H, OH), 2.80 - 2.66 (m, 1H, C_{14}H), 1.85 (d, J = 1.5 Hz, 3H, C_{16}CH_3), 1.83 - 1.68 (m, 3H, C_{16}CH_3), 1.83$  $C_{12}H$ , 1.59 – 1.42 (m, 4H), 1.09 (d, J = 6.6 Hz, 3H,  $C_{12}CH_3$ ); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  168.6, 144.3, 127.0, 104.9, 75.0, 65.1, 64.7, 51.8, 44.9, 43.3, 37.9, 32.9, 25.3, 24.6, 16.1, 12.7; HRMS: Exact mass calcd for C<sub>16</sub>H<sub>26</sub>ClO<sub>5</sub> [M–H]<sup>-</sup>: 333.1469; found 333.1481 (FAB+).



To the glass liner of a Parr bomb was added methyl ester **20** (1.1 g, 3.3 mmol, 1 equiv) and  $CH_2Cl_2$  (8.2 mL, 0.4M). The Parr bomb was charged with  $H_2$  (300 psi) and stirred overnight in order to saturate the solution.

Then, Crabtree's catalyst (53 mg, 0.066 mmol, 2 mol%) was added, and the bomb was charged to 300 psi with H<sub>2</sub>. After 20h, additional Crabtree's catalyst (12 mg) was added. After a total reaction time of 36h, aliquot  $^{1}$ H-NMR indicated full conversion of the major C12 diastereomer; the minor C12 diastereomer was not appreciably reduced. The glass liner was removed from the bomb and cooled to -78 °C. 2,6-lutidine (1.5 mL, 13 mmol, 4 equiv) and TBS-OTf (1.5 mL, 6.6 mmol, 2 equiv) were added, and the reaction mixture was allowed to warm to 0 °C as the dry ice bath expired. After 4h, the reaction mixture was guenched with saturated aqueous NH<sub>4</sub>Cl (50 mL). The aqueous layer was separated and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3x50 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by silica gel flash column chromatography (2-5% EtOAc/Hex) affording a mixture of product 21 and the minor C12 diastereomer starting material (1.25 g, 84% combined yield). This material was used without further purification, and the separation was performed at a later stage. TLC  $R_f = 0.33$  (10% EtOAc/Hex); IR (thin film) 2953, 2931, 1736, 1461, 1253, 1059, 835, 773 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.84 (d, J = 4.0 Hz, 1H, C<sub>11</sub>H), 3.98 – 3.89 (m, 2H), 3.84 –  $3.76 \text{ (m, 2H)}, 3.69 \text{ (dd, } J = 5.9, 2.4 \text{ Hz}, 1\text{H}, \text{C}_{13}\text{H}), 3.65 \text{ (s, 3H)}, 3.52 \text{ (t, } J = 6.7 \text{ Hz}, 2\text{H}, \alpha\text{-Cl}), 2.60 - 2.45 \text{ (m, 2H)}, 3.65 \text{ (s, 3H)}, 3.52 \text{ (t, } J = 6.7 \text{ Hz}, 2\text{H}, \alpha\text{-Cl}), 2.60 - 2.45 \text{ (m, 2H)}, 3.65 \text{ (s, 3H)}, 3.52 \text{ (t, } J = 6.7 \text{ Hz}, 2\text{H}, \alpha\text{-Cl}), 2.60 - 2.45 \text{ (m, 2H)}, 3.65 \text{ (s, 3H)}, 3.52 \text{ (t, } J = 6.7 \text{ Hz}, 2\text{H}, \alpha\text{-Cl}), 3.60 - 2.45 \text{ (m, 2H)}, 3.65 \text{ (s, 3H)}, 3.52 \text{ (t, } J = 6.7 \text{ Hz}, 2\text{H}, \alpha\text{-Cl}), 3.60 - 2.45 \text{ (m, 2H)}, 3.65 \text{ (s, 3H)}, 3.52 \text{ (t, } J = 6.7 \text{ Hz}, 2\text{H}, \alpha\text{-Cl}), 3.60 - 2.45 \text{ (m, 2H)}, 3.65 \text{ (s, 3H)}, 3.52 \text{ (t, } J = 6.7 \text{ Hz}, 2\text{H}, \alpha\text{-Cl}), 3.60 - 2.45 \text{ (m, 2H)}, 3.65 \text{ (s, 3H)}, 3.52 \text{ (t, } J = 6.7 \text{ Hz}, 2\text{H}, \alpha\text{-Cl}), 3.60 - 2.45 \text{ (m, 2H)}, 3.65 \text{ (s, 3H)}, 3.52 \text{ (t, } J = 6.7 \text{ Hz}, 2\text{H}, \alpha\text{-Cl}), 3.60 - 2.45 \text{ (m, 2H)}, 3.65 \text{ (s, 3H)}, 3.52 \text{ (t, } J = 6.7 \text{ Hz}, 2\text{H}, \alpha\text{-Cl}), 3.60 - 2.45 \text{ (m, 2H)}, 3.65 \text{ (s, 3H)}, 3.52 \text{ (t, } J = 6.7 \text{ Hz}, 2\text{H}, \alpha\text{-Cl}), 3.60 - 2.45 \text{ (m, 2H)}, 3.65 \text{ (s, 3H)}, 3.52 \text{ (t, } J = 6.7 \text{ Hz}, 2\text{H}, \alpha\text{-Cl}), 3.60 - 2.45 \text{ (m, 2H)}, 3.65 \text{ (s, 3H)}, 3.52 \text{ (t, } J = 6.7 \text{ Hz}, 2\text{H}, \alpha\text{-Cl}), 3.60 - 2.45 \text{ (m, 2H)}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J = 6.7 \text{ Hz}, 3.65 \text{ (t, } J =$ 1H,  $C_{16}$ H), 1.85 – 1.78 (m, 1H,  $C_{12}$ H), 1.78 – 1.64 (m, 4H), 1.61 – 1.39 (m, 5H,  $C_{15}$ H<sub>a</sub>), 1.24 (m, 1H,  $C_{15}$ H<sub>b</sub>), 1.15 (d, J = 6.9 Hz, 3H,  $C_{16}$ CH<sub>3</sub>), 0.89 (s, 9H, TBS), 0.88 (d, J = 6.9 Hz, 3H,  $C_{14}$ CH<sub>3</sub>), 0.06 (s, 3H, TBS), 0.05 (s, 3H, TBS); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 177.4, 105.2, 75.7, 64.9, 64.5, 51.6, 46.9, 45.1, 40.3, 37.5, 34.0, 33.4, 26.6, 26.3, 25.1, 18.6, 18.1, 14.5, -4.0, -4.0; HRMS: Exact mass calcd for C<sub>22</sub>H<sub>42</sub>ClO<sub>5</sub>Si [M-H]<sup>-</sup>: 449.2490; found 449.2479 (FAB+).



To a cooled (-78 °C) solution of ester **21** (1.25 g, 2.8 mmol, 1 equiv) in Toluene (28 mL, 0.1M) was added DIBAL (1M Hex, 7.6 mL, 7.6 mmol, 2.7 equiv) dropwise. After 4h, the reaction mixture was quenched with MeOH (10 mL), followed by a saturated aqueous solution of Rochelle's salt (50 mL). After vigorously stirring for 1h, the aqueous layer was separated and extracted with 50% EtOAc/Hex (3x50 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by silica gel flash column chromatography (10-20% EtOAc/Hex) affording pure alcohol **31** (1.04 g, 89% yield). **TLC**  $R_f = 0.47$  (39% EtOAc/Hex);  $[\alpha]^{21}_{D}$  -10.2 (c = 0.8, CH<sub>2</sub>Cl<sub>2</sub>); **IR** (thin film) 3393 (bs), 2928, 2857, 1462, 1251, 1059, 834, 772 cm<sup>-1</sup>; <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.85 (d, J = 4.4 Hz, 1H, C<sub>11</sub>H), 3.97 – 3.90 (m, 2H), 3.84 – 3.77 (m, 2H), 3.65 (dd, J = 5.0, 3.4 Hz, 1H, C<sub>13</sub>H), 3.53 (t, J = 6.7 Hz, 2H,  $\alpha$ -Cl), 3.50 (dd, J = 10.8, 4.4 Hz, 1H, C<sub>17</sub>H<sub>a</sub>), 3.45 (dd, J = 10.8, 6.0 Hz, 1H, C<sub>17</sub>H<sub>b</sub>), 1.89 – 1.66 (m, 5H, C<sub>12</sub>H, C<sub>14</sub>H,  $\beta$ -Cl, C<sub>16</sub>H), 1.57 – 1.37 (m, 5H, C<sub>15</sub>H<sub>a</sub>), 0.98 – 0.93 (m, 1H, C<sub>15</sub>H<sub>b</sub>), 0.94 (d, J = 6.7 Hz, 2H, C<sub>16</sub>CH<sub>3</sub>), 0.90 (s, 9H, TBS), 0.89 (d, J = 6.8 Hz, 3H, C<sub>14</sub>CH<sub>3</sub>), 0.06 (s, 3H, TBS), 0.05 (s, 3H, TBS); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  105.3, 75.8, 67.6, 64.8, 64.5, 46.8, 45.1, 39.0, 33.3, 33.1, 26.6, 26.3, 25.5, 18.6, 18.0, 15.8, -3.8, -3.9; HRMS: Exact mass calcd for C<sub>21</sub>H<sub>43</sub>CINaO<sub>4</sub>Si [M+Na]<sup>+</sup>: 445.2517; found 445.2517 (FAB+).



To a solution of chloride **31** (120 mg, 0.28 mmol, 1 equiv) in DMF (1.9 mL, 0.15 M) was added NaN<sub>3</sub> (20 mg, 0.31 mmol, 1.1 equiv). The reaction mixture was heated to 70 °C. After 6h, aliquot <sup>1</sup>H NMR indicated full conversion of starting material. The reaction mixture was allowed to cool to room temperature and directly purified by silica gel flash column chromatography (5-20% EtOAc/Hex) affording azide **22** (120 mg, 98% yield). **TLC**  $R_f = 0.47$  (39% EtOAc/Hex; product co-spots with starting material);  $[\alpha]^{18}_{D}$  -5.9 (c = 2.0, CH<sub>2</sub>Cl<sub>2</sub>); **IR** (thin film) 3359 (bs), 2929, 2858, 2094, 1462, 1252, 1063, 835, 773 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 

4.85 (d, J = 4.4 Hz, 1H, C<sub>11</sub>H), 3.98 – 3.89 (m, 2H), 3.84 – 3.77 (m, 2H), 3.66 (dd, J = 5.1, 3.3 Hz, 1H, C<sub>13</sub>H), 3.50 (dd, J = 10.8, 4.5 Hz, 1H, C<sub>17</sub>H<sub>a</sub>), 3.46 (dd, J = 10.8, 6.0 Hz, 1H, C<sub>17</sub>H<sub>b</sub>), 3.26 (t, J = 6.9 Hz, 2H,  $\alpha$ -N<sub>3</sub>), 1.88 – 1.77 (m, 2H, C<sub>12</sub>H, C<sub>14</sub>H), 1.74 – 1.66 (m, 1H, C<sub>16</sub>H), 1.63 – 1.57 (m, 2H,  $\beta$ -N<sub>3</sub>), 1.53 – 1.38 (m, 5H, C<sub>15</sub>H<sub>a</sub>), 0.98 – 0.93 (m, 1H, C<sub>15</sub>H<sub>b</sub>), 0.94 (d, J = 6.7 Hz, 3H, C<sub>16</sub>CH<sub>3</sub>), 0.90 (s, 9H, TBS), 0.89 (d, J = 6.9 Hz, 3H, C<sub>14</sub>CH<sub>3</sub>), 0.06 (s, 3H, TBS), 0.05 (s, 3H, TBS); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  105.3, 75.8, 67.6, 64.8, 64.5, 51.5, 46.9, 39.0, 33.3, 33.1, 29.5, 26.5, 26.3, 25.8, 18.6, 18.0, 15.9, -3.8, -3.9; HRMS: Exact mass calcd for C<sub>21</sub>H<sub>44</sub>N<sub>3</sub>O<sub>4</sub>Si [M+H]<sup>+</sup>: 430.3101; found 430.3109 (FAB+).



To a cooled (0 °C) solution of PPh<sub>3</sub> (714 mg, 2.7 mmol, 1.8 equiv) and imidazole (515 mg, 7.6 mmol, 5 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (5.6 mL) was added iodine (729 mg, 2.9 mmol, 1.9 equiv). After 10 min, a solution of alcohol 22 (640 mg, 1.5 mmol, 1 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL; final volume 7.6 mL, 0.2 M) was added, and the reaction mixture was allowed to warm to room temperature. After 12h, the reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL) and quenched with saturated aqueous sodium thiosulfate (20 mL). The aqueous layer was separated and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3x20 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by pH 7.0 buffered silica gel flash column chromatography (1-5% EtOAc/Hex) affording iodide 23 (740 mg, 92% yield). TLC  $R_f = 0.56$  (10% EtOAc/Hex);  $[\alpha]_{D}^{17}$  -14.8 (c = 2.0, CH<sub>2</sub>Cl<sub>2</sub>); **IR** (thin film) 2928, 2861, 2093, 1461, 1251, 1067, 1032, 835, 773 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.85 (d, J = 4.2 Hz, 1H, C<sub>11</sub>H), 3.99 – 3.90 (m, 2H), 3.84 – 3.78 (m, 2H), 3.68 (dd, J = 5.8, 2.6 Hz, 1H, C<sub>13</sub>H), 3.29 - 3.23 (m, 3H,  $C_{17}H_a$ ,  $\alpha$ -N<sub>3</sub>, 3.15 (dd, J = 9.7, 5.9 Hz, 1H,  $C_{17}H_b$ ), 1.85 - 1.80 (m, 1H,  $C_{12}H$ ), 1.79 - 1.70 (m, 1H, C<sub>14</sub>H), 1.63 - 1.56 (m, 2H,  $\beta$ -N<sub>3</sub>), 1.53 - 1.37 (m, 5H, C<sub>16</sub>H), 1.31 (ddd, J = 13.3, 7.8, 5.3 Hz, 1H,  $C_{15}H_a$ , 1.11 (ddd, J = 13.5, 8.8, 6.0 Hz, 1H,  $C_{15}H_b$ ), 0.97 (d, J = 6.5 Hz, 3H,  $C_{16}CH_3$ ), 0.90 (s, 9H, TBS), 0.87  $(d, J = 6.7 \text{ Hz}, 3H, C_{14}CH_3), 0.07 (s, 3H, TBS), 0.06 (s, 3H, TBS);$  <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  105.1, 75.6, 64.8, 64.4, 51.3, 46.9, 42.4, 33.0, 31.5, 29.4, 26.4, 26.1, 25.4, 21.6, 18.4, 18.1, 14.5, -4.1 (2C); HRMS: Exact mass calcd for C<sub>21</sub>H<sub>41</sub>IN<sub>3</sub>O<sub>3</sub>Si [M–H]<sup>-</sup>: 538.1962; found 538.1923 (FAB+).



*Hydrazone Alkylation*: To a cooled (-10 °C) solution of  $iPr_2NH$  (61 µL, 0.43 mmol, 1.8 equiv) in THF (600 µL, 0.4 M) was added MeLi (1.3 M Et<sub>2</sub>O, 600 µL, 0.39 mmol, 1.6 equiv) under Argon. After 10 min, hydrazone **32** (122 mg, 0.36 mmol, 1.5 equiv) was added. After an additional 30 min, the reaction was cooled to -78 °C and DMPU (120 µL) was added, followed by iodide **23** (130 mg, 0.24 mmol, 1 equiv). The resulting solution was allowed to warm to -20 °C. After 15h at -20 °C, the reaction mixture was quenched with pH 7.0 buffer solution (4 mL). The aqueous layer was separated and extracted with EtOAc (5x20 ml). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by pH 7.0 buffered silica gel flash column chromatography (4-10% EtOAc/Hex) affording the coupled adduct, which was contaminated with a small amount of unreacted iodide **23**. This mixture was used without further purification.

Deprotection: To a cooled (0 °C) solution of the coupled adduct in 9:1 THF/H<sub>2</sub>O (2.5 mL) in a Nalgene tube was added 1 mL of a freshly prepared HF-pyr solution buffered with excess pyridine (stock solution prepared from 500  $\mu$ L HF-pyr, 1 mL pyridine, and 4 mL THF). The reaction was allowed to warm to room temperature. After 8h, additional HF-pyr (50  $\mu$ L) was added. After a total reaction time of 20h, the reaction mixture was quenched at 0 °C with pH 7.0 buffer solution (10 mL). The aqueous layer was separated and extracted with EtOAc (5x20 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification

was accomplished by pH 7.0 buffered silica gel flash column chromatography (4-10% EtOAc/Hex to elute unreacted iodide **23**, then 10-20% EtOAc/Hex) affording keto-alcohol **33** (86 mg, 60% yield over 2 steps). **TLC**  $R_f = 0.39$  (20% EtOAc/Hex);  $[\alpha]^{23}_{\ D} 3.9$  (c = 1.3, CH<sub>2</sub>Cl<sub>2</sub>); **IR** (thin film) 3498 (bs), 2955, 2928, 2095, 1707, 1461, 1377, 1252, 1062, 836, 773 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 6.56 (dt, J = 16.9, 10.6 Hz, 1H, C<sub>25</sub>H), 6.11 (t, J = 10.9 Hz, 1H, C<sub>24</sub>H), 5.39 (t, J = 10.5 Hz, 1H, C<sub>23</sub>H), 5.23 (d, J = 16.7 Hz, 1H, C<sub>26</sub>H<sub>a</sub>), 5.13 (d, J = 10.2 Hz, 1H, C<sub>26</sub>H<sub>b</sub>), 4.83 (d, J = 4.1 Hz, 1H, C<sub>11</sub>H), 3.98 – 3.88 (m, 2H), 3.83 – 3.76 (m, 2H), 3.75 – 3.71 (m, 1H, C<sub>21</sub>H), 3.67 (dd, J = 5.2, 1.8 Hz, 1H, C<sub>13</sub>H), 3.25 (t, J = 6.9 Hz, 2H,  $\alpha$ -N<sub>3</sub>), 2.80 – 2.71 (m, 1H, C<sub>22</sub>H), 2.70 – 2.64 (m, 1H, C<sub>20</sub>H), 2.47 (t, J = 7.7 Hz, 2H, C<sub>18</sub>H<sub>2</sub>), 2.39 – 2.27 (bs, 1H, OH), 1.84 – 1.73 (m, 2H, C<sub>12</sub>H, C<sub>14</sub>H), 1.70 – 1.62 (m, 1H, C<sub>17</sub>H<sub>a</sub>), 1.62 – 1.54 (m, 2H,  $\beta$ -N<sub>3</sub>), 1.53 – 1.38 (m, 5H, C<sub>16</sub>H), 1.30 – 1.22 (m, 2H, C<sub>15</sub>H<sub>a</sub>, C<sub>17</sub>H<sub>b</sub>), 1.16 (d, J = 7.1 Hz, 3H, C<sub>20</sub>CH<sub>3</sub>), 1.05 – 0.98 (m, 1H, C<sub>15</sub>H<sub>b</sub>), 0.99 (d, J = 6.8 Hz, 3H, C<sub>22</sub>CH<sub>3</sub>), 0.89 (s, 9H, TBS), 0.84 (app. d, J = 5.8 Hz, 6H, C<sub>14</sub>CH<sub>3</sub>, C<sub>16</sub>CH<sub>3</sub>), 0.05 (s, 6H, TBS); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 215.1, 134.2, 132.2, 130.7, 118.5, 105.3, 75.5, 75.2, 64.9, 64.5, 51.5, 48.4, 47.0, 43.3, 39.3, 35.7, 33.1, 30.0, 29.8, 29.5, 26.6, 26.3, 25.5, 20.1, 18.6, 17.7, 15.2, 10.6, -3.9, -4.0; HRMS: Exact mass calcd for C<sub>32</sub>H<sub>59</sub>N<sub>3</sub>NaO<sub>5</sub>Si [M+Na]<sup>+</sup>: 616.4122; found 616.4099 (FAB+).



To a cooled (-78 °C) solution of keto-alcohol **33** (90 mg, 0.15 mmol, 1 equiv) in 1:1 THF / MeOH (3 mL, 0.05M) was added Et<sub>2</sub>B-OMe (1M THF, 455 uL, 0.45 mmol, 3 equiv) dropwise. After 1h at -78 °C, NaBH<sub>4</sub> (11 mg, 0.30 mmol, 2 equiv) was added. After an additional 4h, the reaction mixture was quenched with AcOH (100 µL) and diluted with EtOAc (20 mL). Saturated aqueous NaHCO<sub>3</sub> (20 mL) was then added. The aqueous layer was separated and extracted with EtOAc (5x20 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. The crude reaction mixture was azeotroped with methanol (3x20 mL) in order to hydrolyze the intermediate boronate. Purification was accomplished by silica gel flash column chromatography (10-20% EtOAc/Hex) affording syn-diol 34 (80 mg, 89% yield). TLC  $R_f = 0.30$  (25% EtOAc/Hex);  $[\alpha]^{22}_{D}$  -6.7  $(c = 0.5, CH_2Cl_2)$ ; **IR** (thin film) 3420 (bs), 2927, 2856, 2095, 1712, 1462, 1252, 1063, 836, 773 cm<sup>-1</sup>; <sup>1</sup>H NMR  $(500 \text{ MHz}, \text{CDCl}_3) \delta 6.64 \text{ (dt}, J = 16.9, 10.6 \text{ Hz}, 1\text{H}, \text{C}_{25}\text{H}), 6.19 \text{ (t}, J = 11.0 \text{ Hz}, 1\text{H}, \text{C}_{24}\text{H}), 5.30 - 5.23 \text{ (m}, 2\text{H}), 5.30 + 5.23 \text{ (m}, 2\text{H}),$  $C_{23}H$ ,  $C_{26}H_a$ ), 5.18 (d, J = 10.1 Hz, 1H,  $C_{26}H_b$ ), 4.84 (d, J = 4.0 Hz, 1H,  $C_{11}H$ ), 3.97 – 3.88 (m, 2H), 3.83 – 3.75 (m, 3H,  $C_{19}H$ ), 3.67 (dd, J = 5.8, 2.4 Hz, 1H,  $C_{13}H$ ), 3.46 (dd, J = 9.2, 2.2 Hz, 1H,  $C_{21}H$ ), 3.25 (t, J = 6.9 Hz, 2H,  $\alpha$ -N<sub>3</sub>), 2.86 – 2.76 (m, 1H, C<sub>22</sub>H), 1.84 – 1.74 (m, 2H, C<sub>12</sub>H, C<sub>14</sub>H), 1.73 – 1.66 (m, 1H, C<sub>20</sub>H), 1.63 - 1.55 (m, 1H, C<sub>20</sub>H), 1.63 – 1.55 (m, 1H, C<sub>20</sub> 2H,  $\beta$ -N<sub>3</sub>), 1.54 – 1.37 (m, 8H, C<sub>16</sub>H, C<sub>17</sub>H<sub>a</sub>, C<sub>18</sub>H<sub>2</sub>), 1.33 – 1.25 (m, 1H, C<sub>15</sub>H<sub>a</sub>), 1.04 – 0.92 (m, 2H, C<sub>15</sub>H<sub>b</sub>),  $C_{17}H_b$ ), 0.94 (d, J = 7.1 Hz, 3H,  $C_{20}CH_3$ ), 0.94 (d, J = 6.6 Hz, 3H,  $C_{22}CH_3$ ), 0.89 (12H, TBS,  $C_{16}CH_3$ ), 0.85 (d, J= 6.8 Hz, 3H,  $C_{14}CH_3$ ), 0.05 (s, 3H, TBS), 0.04 (s, 3H, TBS); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  134.6, 132.1 (2C), 119.1, 105.3, 80.8, 77.2, 75.7, 64.9, 64.5, 51.5, 46.9, 43.4, 37.3, 36.5, 33.3, 33.0, 32.4, 30.3, 29.5, 26.6, 26.3, 25.5, 20.4, 18.6, 16.8, 15.3, 4.4, -3.9, -3.9; **HRMS**: Exact mass calcd for  $C_{32}H_{61}N_3NaO_5Si [M+Na]^+$ : 618.4278; found 618.4263 (FAB+).



To a cooled (-78 °C) solution of *syn*-diol **34** (80 mg, 0.13 mmol, 1 equiv) in  $CH_2Cl_2$  (2.7 mL, 0.05M) was added 2,6-lutidine (155  $\mu$ L, 1.3 mmol, 10 equiv) and TIPS-OTF (40  $\mu$ L, 0.15 mmol, 1.1 equiv). After 2h, freshly distilled TMS-OTF (121  $\mu$ L, 0.67 mmol, 5 equiv) was added, and the reaction mixture was warmed to 0 °C. After 3h at 0 °C, the reaction mixture was quenched with water (5 mL). After vigorously stirring for 16h, the aqueous layer was separated and extracted with  $CH_2Cl_2$  (3x20 mL). The combined organic layers were dried

over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by pH 7.0 buffered silica gel flash column chromatography (1-5% EtOAc/Hex) affording aldehyde **35** (73 mg, 70% yield). **TLC**  $R_f = 0.61$  (10% EtOAc/Hex);  $[\alpha]^{21}{}_{D}$  -8.2 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>); **IR** (thin film) 2931, 2865, 2096, 1721, 1462, 1255, 1095, 836, 775, 676 cm<sup>-1</sup>; <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.72 (d, J = 3.2 Hz, 1H, C<sub>11</sub>H), 6.55 (dt, J = 16.8, 10.6 Hz, 1H, C<sub>25</sub>H), 5.99 (t, J = 11.0 Hz, 1H, C<sub>24</sub>H), 5.55 (t, J = 10.6 Hz, 1H, C<sub>23</sub>H), 5.15 (dd, J = 16.8, 2.0 Hz, 1H, C<sub>26</sub>H<sub>a</sub>), 5.06 (d, J = 10.1 Hz, 1H, C<sub>26</sub>H<sub>b</sub>), 3.84 (dd, J = 6.4, 3.4 Hz, 1H, C<sub>19</sub>H), 3.76 – 3.67 (m, 2H, C<sub>13</sub>H, C<sub>21</sub>H), 3.26 (t, J = 6.9 Hz, 2H, α-N<sub>3</sub>), 3.01 – 2.90 (m, 1H, C<sub>22</sub>H), 2.40- 2.31 (m, 1H, C<sub>12</sub>H); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  204.7, 134.4, 132.7, 128.8, 117.1, 78.6, 77.6, 73.0, 55.8, 51.3, 41.1, 40.6, 35.6, 34.8, 33.0, 31.1, 30.7, 29.1, 27.2, 26.1, 24.9, 20.5, 19.5, 18.5, 18.5, 15.4, 13.4, 9.6, 1.2, -3.7, -4.0; **HRMS:** Exact mass calcd for C<sub>42</sub>H<sub>85</sub>N<sub>3</sub>NaO<sub>4</sub>Si<sub>3</sub> [M+Na]<sup>+</sup>: 802.5746; found 802.5753 (TOF MS ES+).



To a cooled (-78 °C) solution of phosphonate 36 (100 mg, 0.15 mmol, 4 equiv) in dry THF (300 µL) was added NaHMDS (1M THF, 146 µL, 0.15 mmol, 3.8 equiv). After 20 min, a solution of aldehyde 35 (30 mg, 38 µmol, 1 equiv) in THF (200 µL) was added, and the dark red reaction mixture was allowed to warm to room temperature. After 5 days, the reaction mixture was quenched at 0 °C with a solution of PPTS (5 mg) in MeOH (2 mL) in order to deprotect the C21 TMS ether. After 4h, the reaction mixture was diluted with pH 7.0 buffer solution (10 mL). The aqueous layer was separated and extracted with EtOAc (5x10 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by silica gel flash column chromatography (4-10% EtOAc/Hex) affording 20 mg of (Z)-enone 37 (47% yield) and an inseparable 23 mg mixture of (E)-enone 37 and unreacted aldehyde 35 (without its C21 TMS ether). The Z:E ratio was calculated to be *ca*. 3:1 based on analysis of the crude <sup>1</sup>H NMR. TLC  $R_f = 0.56$  (10% EtOAc/Hex); <sup>1</sup>H NMR  $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.38 \text{ (dd}, J = 15.5, 11.3 \text{ Hz}, 1\text{H}, \text{C}_4\text{H}), 6.64 \text{ (dt}, J = 16.8, 10.6 \text{ Hz}, 1\text{H}, \text{C}_{25}\text{H}), 6.54 \text{ (t}, J = 16.8, 10.6 \text{ Hz}, 10.6$ 11.3 Hz, 1H, C<sub>3</sub>H), 6.21 (dd, J = 11.6, 9.9 Hz, 1H, C<sub>11</sub>H), 6.15 – 6.05 (m, 2H, C<sub>10</sub>H, C<sub>24</sub>H), 6.02 (dd, J = 15.5, 8.0 Hz, 1H, C<sub>5</sub>H), 5.58 (d, J = 11.3 Hz, 1H, C<sub>2</sub>H), 5.46 (t, J = 10.3 Hz, 1H, C<sub>23</sub>H), 5.19 (d, J = 16.8 Hz, 1H,  $C_{26}H_a$ ), 5.10 (d, J = 10.1 Hz, 1H,  $C_{26}H_b$ ), 4.28 – 4.17 (m, 3H,  $C_7H$ , TMSE), 3.98 – 3.90 (m, 1H,  $C_{19}H$ ), 3.67 – 3.58 (m, 2H, C<sub>12</sub>H, C<sub>13</sub>H), 3.55 (m, 1H, C<sub>21</sub>H), 3.23 (t, J = 6.9 Hz, 2H,  $\alpha$ -N<sub>3</sub>), 2.86 – 2.73 (m, 2H, C<sub>22</sub>H, OH), 2.59 - 2.41 (m, 3H, C<sub>8</sub>H<sub>2</sub>, C<sub>6</sub>H); **HRMS**: Exact mass calcd for C<sub>61</sub>H<sub>117</sub>N<sub>3</sub>NaO<sub>7</sub>Si<sub>4</sub> [M+Na]<sup>+</sup>: 1138.7866; found 1138.7848 (TOF MS ES+).



*C1 Deprotection*: To a cooled (0 °C) solution of TMSE ester **37** (20 mg, 0.018 mmol, 1 equiv) in DMF (1.3 mL) was added a solution of TAS-F (5 mg, 0.019, 1.05 equiv) in DMF (0.5 mL; final concentration 0.01 M) dropwise. The reaction mixture was allowed to warm to room temperature. After 24h, the reaction mixture was diluted with  $Et_2O$  (20 mL) and quenched at 0 °C with 1M NaHSO<sub>4</sub> (10 mL). The reaction mixture was further diluted with saturated aqueous NaCl (20 mL) and extracted with  $Et_2O$  (3x20 mL). The combined organic layers

were dried over MgSO<sub>4</sub>, filtered, and concentrated to afford acid **38**, which was used immediately without purification.

*Macrolactonization*: To a solution of crude acid **38** in Toluene (18 mL, 0.001M) was added 2-methyl-6nitrobenzoic anhydride (19 mg, 0.054 mmol, 3 equiv), DMAP (2 mg, 0.018 mmol, 1 equiv), and NEt<sub>3</sub> (25 µL, 0.18 mmol, 10 equiv). After 24h, the reaction mixture was quenched with saturated aqueous NaHCO<sub>3</sub> (20 mL) The aqueous layer was separated and extracted with EtOAc (3x20 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by pH 7.0 buffered silica gel flash column chromatography (1-5% EtOAc/Hex) affording macrocycle **39** (10 mg, 56% yield over 2 steps). **TLC** R<sub>f</sub> = 0.67 (10% EtOAc/Hex); <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.15 (dd, *J* = 15.4, 11.0 Hz, 1H, C<sub>4</sub>H), 6.62 – 6.49 (m, 2H, C<sub>25</sub>H, C<sub>3</sub>H), 6.34 – 6.25 (m, 1H, C<sub>11</sub>H), 6.22 – 6.13 (m, 1H, C<sub>10</sub>H), 6.07 – 5.95 (m, 2H, C<sub>24</sub>H, C<sub>5</sub>H), 5.60 (d, *J* = 11.6 Hz, 1H, C<sub>2</sub>H), 5.48 (t, *J* = 10.5 Hz, 1H, C<sub>23</sub>H), 5.34 (dd, *J* = 9.0, 3.2 Hz, 1H, C<sub>21</sub>H), 5.20 (d, *J* = 17.0 Hz, 1H, C<sub>26</sub>H<sub>a</sub>), 5.12 (d, *J* = 10.3 Hz, 1H, C<sub>26</sub>H<sub>b</sub>), 4.15 – 4.05 (m, 1H, C<sub>7</sub>H), 3.83 (bs, 1H, C<sub>19</sub>H), 3.64 (bs, 1H, C<sub>12</sub>H), 3.42 (app. d, *J* = 4.1 Hz, 1H, C<sub>13</sub>H), 3.23 (t, *J* = 6.9 Hz, 2H,  $\alpha$ -N<sub>3</sub>), 3.14 (bs, 1H, C<sub>22</sub>H), 2.60 – 2.47 (m, 2H, C<sub>8</sub>H<sub>2</sub>), 2.45 – 2.36 (m, 1H, C<sub>6</sub>H); <sup>13</sup>C NMR not included due to rotamers causing substantial line broadening.



To a cooled (-78 °C) solution of enone **39** (10 mg, 10 µmol, 1 equiv) in Toluene (400 µL, 0.025M) was added (*R*)-2-Methyl-CBS oxazaborolidine (1M Tol, 40 µL, 40 µmol, 4 equiv) and catecholborane (50% w/w Toluene, 22 µL, 80 µmol, 8 equiv). After 20h at -78 °C, the reaction mixture was quenched with MeOH (2 mL), followed by saturated aqueous NaHCO<sub>3</sub> (2 mL). The aqueous layer was separated and extracted with EtOAc (3x10 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by silica gel flash column chromatography (5-10% EtOAc/Hex) affording **40** (8.0 mg, 80% yield). **TLC**  $R_f = 0.29$  (10% EtOAc/Hex); <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.10 – 7.01 (m, 1H, C<sub>4</sub>H), 6.62 – 6.48 (m, 2H, C<sub>25</sub>H, C<sub>3</sub>H), 6.10 – 5.99 (m, 2H, C<sub>24</sub>H, C<sub>5</sub>H), 5.60 (d, J = 11.5 Hz, 1H, C<sub>2</sub>H), 5.58 – 5.43 (m, 2H, C<sub>11</sub>H, C<sub>10</sub>H), 5.38 (t, J = 10.4 Hz, 1H, C<sub>23</sub>H), 5.25 – 5.14 (m, 2H, C<sub>26</sub>H<sub>a</sub>, C<sub>21</sub>H), 5.09 (d, J = 10.3 Hz, 1H, C<sub>26</sub>H<sub>b</sub>), 4.56 – 4.48 (m, 1H, C<sub>9</sub>H), 4.15 – 4.07 (m, 1H, C<sub>7</sub>H), 3.73 (bs, 1H, C<sub>19</sub>H), 3.33 (bs, 1H, C<sub>13</sub>H), 3.27 (t, J = 6.9 Hz, 1H,  $\alpha$ -N<sub>3</sub>), 3.06 (bs, 1H, C<sub>22</sub>H), 2.59 (bs, 1H, C<sub>12</sub>H), 2.48 (bs, 1H, C<sub>6</sub>H), 1.86 (bs, 1H, C<sub>20</sub>H); <sup>13</sup>C NMR not included due to rotamers causing substantial line broadening.



To a cooled (0 °C) solution of **40** (6.0 mg) in THF (1 mL) in a Nalgene tube was added HF-pyridine (100  $\mu$ L). The reaction mixture was allowed to warm to room temperature. At t = 12h and 24h, additional HF-pyridine (50  $\mu$ L; total of 200  $\mu$ L) was added. After a total reaction time of 72h, the reaction mixture was slowly quenched at 0 °C with saturated aqueous NaHCO<sub>3</sub> (10 mL) and then diluted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL). The aqueous layer was separated and extracted with CH<sub>2</sub>Cl<sub>2</sub> (5x20 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered, and concentrated. Purification was accomplished by silica gel flash column chromatography (20-50%)

EtOAc/Hex) affording **4** (2.0 mg, 54% yield). **TLC**  $R_f = 0.53$  (80% EtOAc/Hex);  $[\alpha]^{23}{}_{D}$  62.1 (c = 0.1, CH<sub>2</sub>Cl<sub>2</sub>); **IR** (thin film) 3436 (bs), 2927, 2096, 1694, 1404, 1278, 1182, 1062, 963 cm<sup>-1</sup>; <sup>1</sup>H **NMR** (500 MHz, MeOD)  $\delta$  7.17 (dd, J = 15.6, 11.2 Hz, 1H, C<sub>4</sub>H), 6.73 – 6.59 (m, 2H, C<sub>25</sub>H, C<sub>3</sub>H), 6.14 (dd, J = 15.6, 6.9 Hz, 1H, C<sub>5</sub>H), 6.03 (t, J = 11.1 Hz, 1H, C<sub>24</sub>H), 5.53 (d, J = 11.4 Hz, 1H, C<sub>2</sub>H), 5.51 – 5.41 (m, 2H, C<sub>11</sub>H, C<sub>10</sub>H), 5.32 (t, J = 10.6 Hz, 1H, C<sub>23</sub>H), 5.22 (d, J = 16.6 Hz, 1H, C<sub>26</sub>H<sub>a</sub>), 5.15 – 5.08 (m, 2H,C<sub>26</sub>H<sub>b</sub>, C<sub>21</sub>H), 4.63 – 4.56 (m, 1H, C<sub>9</sub>H), 4.04 – 3.99 (m, 1H, C<sub>7</sub>H), 3.23 (dd, J = 7.5, 3.0 Hz, 1H, C<sub>13</sub>H), 3.16 – 3.11 (m, 1H, C<sub>22</sub>H), 2.55 (m, 2H, C<sub>12</sub>H, C<sub>6</sub>H), 1.12 (d, J = 6.9 Hz, 3H, C<sub>6</sub>CH<sub>3</sub>), 1.03 (d, J = 6.8 Hz, 3H, C<sub>20</sub>CH<sub>3</sub>), 0.99 (d, J = 6.7 Hz, 3H, C<sub>22</sub>CH<sub>3</sub>); **HRMS**: Exact mass calcd for C<sub>35</sub>H<sub>57</sub>N<sub>3</sub>NaO<sub>6</sub> [M+Na]<sup>+</sup>: 638.4145; found 638.4146 (TOF MS ES+).



To a solution of **3** (1.0 mg, 1.6 µmol, 1 equiv) in 1:2 CD<sub>3</sub>CN/D<sub>2</sub>O (0.5 mL) was added cyclo-octyne **24** (2.0 mg, 13 µmol, 8 equiv). After 72h, the reaction was directly purified by silica gel flash column chromatography (100% EtOAc to elute cyclooctyne, then 10-15% MeOH/CH<sub>2</sub>Cl<sub>2</sub> to elute product) affording triazole **25** (1.0 mg, 1:1 dr, 83% yield). **TLC**  $R_f = 0.42$  (10% MeOH/CH<sub>2</sub>Cl<sub>2</sub>); **IR** (thin film) 3385 (bs), 2925, 1699, 1638, 1458, 1383, 1066, 732 cm<sup>-1</sup>; <sup>1</sup>**H NMR** <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.31 (dd, J = 16.0, 11.4 Hz, 1H, C<sub>4</sub>H), 6.59 (dt, J = 16.9, 10.7 Hz, 1H, C<sub>25</sub>H), 6.50 – 6.44 (m, 1H, C<sub>3</sub>H), 6.02 – 5.94 (m, 2H, C<sub>5</sub>H, C<sub>24</sub>H), 5.56 (t, J = 10.3 Hz, 1H, C<sub>10</sub>H), 5.49 (d, J = 11.3 Hz, 1H, C<sub>2</sub>H), 5.32 (t, J = 10.5 Hz, 1H, C<sub>11</sub>H), 5.26 (t, J = 10.5 Hz, 1H, C<sub>23</sub>H), 5.17 (dd, J = 16.8, 2.0 Hz, 1H, C<sub>26</sub>H<sub>a</sub>), 5.09 (d, J = 10.2 Hz, 1H, C<sub>26</sub>H<sub>b</sub>), 4.93 (dd, J = 8.4, 2.5 Hz, 1H, C<sub>21</sub>H), 4.79 (dt, J = 10.0, 5.4 Hz, 1H, C<sub>9</sub>H), 4.26 – 4.17 (m, 2H, α-triazole), 3.99 – 3.90 (m, 1H, C<sub>7</sub>H), 3.60 – 3.53 (m, 1H), 3.51 – 3.42 (m, 2H, C<sub>19</sub>H), 3.27 (d, J = 7.9 Hz, 1H, C<sub>13</sub>H), 3.09 (m, 1H), 3.04 – 2.94 (m, 1H, C<sub>22</sub>H), 2.90 – 2.80 (m, 2H), 2.79 – 2.71 (m, 1H, C<sub>12</sub>H), 2.69 – 2.61 (m, 1H), 2.48 – 2.36 (m, 2H), 2.25 – 2.18 (m, 1H, C<sub>6</sub>H), 1.90 – 1.85 (m, 1H, C<sub>20</sub>H); **HRMS**: Exact mass calcd for C<sub>45</sub>H<sub>72</sub>N<sub>3</sub>O<sub>7</sub> [M+H]<sup>+</sup>: 766.5370; found 766.5392 (FAB+).



To a solution of **3** (3.4 mg, 5.5 μmol, 1 equiv) in 1:1 THF/H<sub>2</sub>O (0.5 mL, degassed) was added the Raines ligation reagent (15 mg, 55 μmol, 10 equiv) under Argon. After 48h, the reaction was directly purified by silica gel flash column chromatography (100% EtOAc, then 10-20% MeOH/CH<sub>2</sub>Cl<sub>2</sub>) affording amide **26** (1.2 mg, 35% yield). **TLC** R<sub>*f*</sub> = 0.5 (10% MeOH/CH<sub>2</sub>Cl<sub>2</sub>);  $[\alpha]^{19}_{\ \ D}$  26.2 (*c* = 0.1, CH<sub>2</sub>Cl<sub>2</sub>); **IR** (thin film) 3358, 2923, 2854, 1696, 1638, 1460, 1440, 1274, 1174, 1120, 1064 cm<sup>-1</sup>; <sup>1</sup>**H** NMR <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 6.64 – 6.55 (m, 1H, C<sub>25</sub>H), 6.49 (t, *J* = 11.2 Hz, 1H, C<sub>3</sub>H), 6.06 – 5.95 (m, 2H, C<sub>5</sub>H, C<sub>24</sub>H), 5.57 (t, *J* = 10.2 Hz, 1H, C<sub>10</sub>H), 5.49 (d, *J* = 11.3 Hz, 1H, C<sub>2</sub>H), 5.34 (t, *J* = 10.5 Hz, 1H, C<sub>11</sub>H), 5.26 (t, *J* = 10.5 Hz, 1H, C<sub>23</sub>H), 5.18 (d, *J* = 17.1 Hz, 1H, C<sub>26</sub>H<sub>a</sub>), 5.10 (d, *J* = 10.9 Hz, 1H, C<sub>26</sub>H<sub>b</sub>), 4.94 (dd, *J* = 8.4, 2.7 Hz, 1H, C<sub>21</sub>H), 4.84 – 4.76 (m, 1H, C<sub>9</sub>H), 4.03 – 3.96 (m, 1H, C<sub>7</sub>H), 3.51 – 3.44 (m, 1H, C<sub>19</sub>H), 3.33 – 3.18 (m, 3H, C<sub>13</sub>H, α-amide), 3.04 – 2.95 (m, 1H, C<sub>22</sub>H), 2.80 – 2.71 (m, 1H, C<sub>12</sub>H), 1.97 (s, 3H, NHMe); **LRMS**: Exact mass calcd for C<sub>37</sub>H<sub>62</sub>NO<sub>7</sub> [M+H]<sup>+</sup>: 632.45; found 632.40 (FAB+).













<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) mixture of C6 diastereomers (9:1 dr)





S 18







f1 (ppm)







COSY (500 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)





aliquot <sup>1</sup>H NMR (400 MHz, CDCl3) of the crude silylformylation reaction mixture









210

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) mixture of C12 diastereomers (10:1 dr)



ł



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) mixture of C12 diastereomers (10:1 dr)







<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)









<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)













