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Building and testing substitution probability framework in non-coding intergenic region 

Data Access 

Sourcing population samples 

Samples were obtained from phase 1 of the 1000 Genomes Project. Further details about sample 

collection, sequencing, and variant calling are available in the original publication1. We considered only 

the variants from African (n= 246 individuals), European (n = 379), and East Asian (n = 286) ancestries. 

Selection of intergenic non-coding sequences 

Intergenic sequences were defined as the full set of genomic sequences that are not annotated in 

ENSEMBL Biomart2 (Ensembl Genes 75 and Homo sapiens genes GRCh37.p13) and RefSeq Genes3. We 

initially removed centromeric, telomeric, and repetitive regions from these non-coding sequences by 

filtering out the contiguous sequences at the ends of the chromosomes and “gene deserts” of length 

greater than 2 MB. We also filtered away the sequences that were not present in the combined 

accessibility mask (version 20120824) of the 1000 genomes project. As a result, we were left with ~1100 

Mb of autosomal intergenic regions and ~90 Mb on the X chromosome. Within these intergenic regions, 

we found 10,809,273 variants in the African populations, 7,051,667 variants in the European populations, 

and 6,024,240 variants in the East Asian populations.  
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Selection of HapMap variants 

Single nucleotide polymorphic variants were obtained from 2010-8 phase 3 release of the HapMap 

project. We considered the variants from African ancestry only, belonging to populations YRI (Yoruba), 

LWK (Luhya), MKK (Maasai).  We also filtered for variants occurring in our intergenic non-coding 

sequences, resulting in a total of 1,659,929 variants. 

Basis of substitution probability framework 

Statistical framework to model substitution probabilities  

To explain our approach for modeling nucleotide substitution probabilities observed in a given 

population, we will first describe a simple model that does not take into account local sequence context, 

then build upon this simple framework by incorporating additional features to model nucleotide 

substitution probabilities in a way that considers the impact of local sequence contexts of varying 

lengths.  Suppose that we observe nC occurrences of nucleotide C in the reference genome. A subset of 

these nC sites will be polymorphic within the population of individuals. Let nCA represent the number of 

sites where a nucleotide change C-to-A has occurred. Similarly, nCG is the number of sites where a change 

C-to-G has occurred and nCT is the number of sites where a change C-to-T has occurred.  Then the 

probability of nucleotide substitution or polymorphism within the population genome-wide can be 

described at a given genomic site using a multinomial distribution: 

𝑛𝑛𝐶𝐶!
(𝑛𝑛𝐶𝐶−𝑛𝑛𝐶𝐶𝐶𝐶−𝑛𝑛𝐶𝐶𝐶𝐶−𝑛𝑛𝐶𝐶𝐶𝐶)!𝑛𝑛𝐶𝐶𝐶𝐶!𝑛𝑛𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶!

𝛼𝛼𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶𝛼𝛼𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶(1 − 𝛼𝛼𝐶𝐶𝐶𝐶 − 𝛼𝛼𝐶𝐶𝐶𝐶 − 𝛼𝛼𝐶𝐶𝐶𝐶)(𝑛𝑛𝐶𝐶−𝑛𝑛𝐶𝐶𝐶𝐶−𝑛𝑛𝐶𝐶𝐶𝐶−𝑛𝑛𝐶𝐶𝐶𝐶)                (1)           

where the probabilities of observing a substitution from C-to-A, C-to-G, and C-to-T are expressed as αCA, 

αCG, and αCT,  respectively. After iterating over all possible substitutions (i.e., A-to-C, A-to-G, A-to-T, C-

to-A, C-to-G, C-to-T, T-to-A, T-to-G, T-to-C, G-to-A, G-to-C, G-to-T), we merged the reverse-

complementary pairs (e.g., A-to-C was merged with T-to-G, etc.) to yield 6 “substitution classes” as 

parameters for the simple model, which we refer to as the “1-mer model”. This model can be naturally 

extended to consider the effects of local sequence context by replacing the count of nx occurrences of 

nucleotide X with the count of occurrences of a particular nucleotide sequence context. For example, if we 
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want to consider the local sequence context ACA, then we count the number times nACA that this 3-mer 

sequence occurs in the reference genome. A subset of nACA will be polymorphic at the middle position C 

within a given population. Thus, let nACA→AAA represent the number of sites where a nucleotide change C-

to-A has occurred at the middle position, nACA→AGA represent the number of sites where a nucleotide 

change C-to-G has occurred at the middle position, and nACA→ATA represent the number of sites where a 

nucleotide change C-to-T has occurred at the middle position.  All of these combinations represent a 3-

mer sequence context in which the polymorphic middle position is flanked by fixed nucleotides A on both 

sides. After merging reverse complementary sequences, there are 16 unique sequence contexts (e.g. four 

possibilities (A, C, G, or T) for the single fixed nucleotide located 5ʹ of the polymorphic site, and four 

possibilities for the single fixed nucleotide located 3ʹ of the polymorphic site) per substitution class. 

Across all six substitution classes, there are a total of 96 parameters estimated under this “3-mer model”. 

We analogously extend the size of the sequence context window to evaluate the “5-mer model” and the 

“7-mer model” by considering additional fixed nucleotides (2 and 3, respectively) on either side of the 

polymorphic site, thereby estimating a total of 1536 parameters for the 5-mer model and 24,576 

parameters for the 7-mer model. For sake of comparison, we also considered a very simplistic null model 

that completely ignores sequence context and merges substitution classes into a single group, such that 

Equation 1 simplifies to a binomial distribution with a single estimated parameter. 

Incorporating prior information into the nucleotide context models 

We may have some existing “prior” beliefs regarding probabilities of nucleotide substitution that can be 

incorporated into our framework using Bayesian statistics. For example, rates of nucleotide substitution in 

the coding genome should be proportional to, but not exactly the same as, the rates that are observed in 

the non-coding genome. This prior information can be incorporated into our model as follows. Because 

the likelihood of our framework is based on a multinomial distribution, we utilize its conjugate prior, i.e., 

the dirichlet distribution, for models that incorporate sequence context. For the null model, we can 

analogously utilize its conjugate prior, i.e., the beta distribution. For inference in the intergenic, non-
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coding genome, we selected the objective version of the prior for our analysis, with all concentration 

parameters (or shape parameters for the analogous beta prior) of the dirichlet prior as 1. 

Testing framework 

Log-likelihood ratio testing for model comparison 

To evaluate how increasing the length of the context sequence affects our competing models’ fit to 

empirical data, we utilized a log-likelihood ratio testing procedure. First, the likelihood of the observed 

distribution of polymorphic sites given a specific sequence context model (null, 1-mer, 3-mer, 5-mer, or 

7-mer) was calculated using the substitution rate parameters estimated using all of the data. We calculate 

the likelihood ratio test statistic as: 

−2 ln(𝐿𝐿[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 𝑆𝑆1) + 2 ln(𝐿𝐿[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 𝑆𝑆2)                                                    (2) 

where S1 and S2 represent parameters estimate from two competing sequence context models. The test is 

chi-squared distributed, with degrees of freedom equal to the difference in the number of parameters 

between the two models (e.g., comparing the 1-mer model versus the null model requires 5 degrees of 

freedom; comparing the 7-mer model versus the 3-mer model requires 24,480 degrees of freedom). 

Reported P-values are approximated analytically from the appropriate chi-square distribution using the R 

package (version 3.0.3). 

Bayes Factor analysis for model comparison 

We utilized the Bayes Factor approach, the Bayesian alternative to likelihood ratio testing, to contrast 

competing sequence context models against each other. We calculated the approximate posterior 

likelihood, using the Chib’s method, on the overall data using the maximum a posteriori (MAP) estimates 

of the substitution probabilities for a specific sequence context model (null, 1-mer, 3-mer, 5-mer, or 7-

mer) found before. We then calculate the approximate Bayes factor as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃ℎ𝑃𝑃𝑃𝑃𝑜𝑜 𝑢𝑢𝑛𝑛𝑜𝑜𝑃𝑃𝑃𝑃 𝑀𝑀𝑃𝑃𝑜𝑜𝑃𝑃𝑙𝑙2
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃ℎ𝑃𝑃𝑃𝑃𝑜𝑜 𝑢𝑢𝑛𝑛𝑜𝑜𝑃𝑃𝑃𝑃 𝑀𝑀𝑃𝑃𝑜𝑜𝑃𝑃𝑙𝑙1

=  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷|𝐶𝐶𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃 𝑆𝑆2) × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃 𝑆𝑆2)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷|𝐶𝐶𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃 𝑆𝑆1) × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃 𝑆𝑆1)

                                              (3) 

where S1 and S2 represent parameters estimate from two competing sequence context models. Since we 

use flat objective priors in the noncoding region and the MAP and MLE estimates are similar, the 
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approximate Bayes factor reduces to the ratio of likelihood estimates under the two models. We use the 

Jefferey’s scale for interpreting the approximate Bayes Factors, where the ratio if greater than 100 is 

considered to be decisive evidence against the Model1. 

Regression modeling and feature selection 

We hypothesized that, within a substitution class (described above), the probability of polymorphism 

could be predicted using a linear combination of features based on the nucleotides at flanking positions 

within the 7-mer context. For the analysis below, we considered the posterior probabilities generated 

using data from the African group (1KG). We considered each substitution class separately and created an 

additional substitution class for each of the three possible changes within a CpG context (i.e., where the 

polymorphic 4th position nucleotide may change C-to-A, C-to-G, or C-to-T, but the 5th position in the 7-

mer context sequence is fixed as nucleotide G), resulting in nine substitution classes that are taken into 

regression modeling. For each substitution class, we considered the initial regression model: 

𝑃𝑃𝑃𝑃[𝑋𝑋1 → 𝑋𝑋2|𝑆𝑆] = 𝛼𝛼 + 𝛽𝛽1𝑝𝑝1𝐶𝐶 + 𝛽𝛽2𝑝𝑝1𝐶𝐶 + 𝛽𝛽3𝑝𝑝1𝐶𝐶 +⋯+ 𝛽𝛽𝑛𝑛𝑝𝑝7𝐶𝐶 + 𝜀𝜀                                                                 (4) 

where the probability that a nucleotide changes from X1 to X2 is modeled using a position-base variable p, 

a set of bases (e.g., {C, G, or T} where A is the reference base) denoted by the superscript for p, each 

position (= 1, 2, 3, 5, 6, or 7) denoted by the subscript for p within sequence context S, intercept α, and 

error term ε. We assigned A as the reference nucleotide at each position and encoded the single nucleotide 

present at each position as the combination of three thermometer variables (e.g., 0,0,0 = A; 0,0,1 = C; 

0,1,0 = G; 1,0,0 = T).  Position 5 is fixed as G for substitution classes within a CpG context, enabling us 

to remove position 5 terms from those models. Similarly, models of non-CpG classes considered only C 

and T bases at position 5. Next, we examined non-additivity (i.e., interactions) between nucleotides at 

sequence context positions. Rather than including all possible interaction terms, we employed feature 

selection (i.e., model training and testing to select the most informative features) and incorporated these 

terms into the final model. We considered 2-way, 3-way, and 4-way interactions across positions within 

the 7-mer as: 
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 𝑃𝑃𝑃𝑃[𝑋𝑋1 → 𝑋𝑋2|𝑆𝑆] = 𝛼𝛼 + 𝛽𝛽1𝑝𝑝1𝐶𝐶 + 𝛽𝛽2𝑝𝑝1𝐶𝐶 + 𝛽𝛽3𝑝𝑝1𝐶𝐶 + ⋯+ 𝛽𝛽𝑛𝑛𝑝𝑝7𝐶𝐶 +   

𝛽𝛽𝐷𝐷𝑝𝑝𝑃𝑃𝑤𝑤 × 𝑝𝑝𝑗𝑗𝐶𝐶 + ⋯+ 𝛽𝛽𝑃𝑃𝑝𝑝𝑃𝑃𝑤𝑤 × 𝑝𝑝𝑗𝑗𝐶𝐶 × 𝑝𝑝𝑙𝑙
𝑦𝑦 +⋯+ 𝛽𝛽𝑐𝑐𝑝𝑝𝑃𝑃𝑤𝑤 × 𝑝𝑝𝑗𝑗𝐶𝐶 × 𝑝𝑝𝑙𝑙

𝑦𝑦 × 𝑝𝑝𝑙𝑙𝑧𝑧 + ⋯+ 𝜀𝜀            (5) 

where the probability that a nucleotide changes from X1 to X2 is modeled as described in Equation 4, and a 

set of additional terms related to interactions is also incorporated. Interaction terms are obtained from the 

product of thermometer variables p for bases w, x, y, or z (e.g., {C, G, or T} where A is the reference 

base) at positions i, j, k, or l (= 1, 2, 3, 5, 6, or 7). The effect of the interaction is represented by terms βa 

for 2-way interactions, βb for 3-way interactions, and βc for 4-way interactions. We only considered 

interaction terms that involved nucleotides located at different positions within the sequence context (i.e., 

i not equal to j, j not equal to k, and k not equal to l).  We divided the genome into two distinct sets for 

feature selection, using all even-numbered chromosomes for training and all odd-numbered chromosomes 

for model testing.  During training, we performed stepwise forward regression for each level of 

interaction in order of increasing complexity (i.e., first 2-way, then 3-way, and finally 4-way). For each 

level of interaction, we further trained the model by sequentially incorporating interaction terms, one at a 

time, and evaluating whether each term improved the model using the ANOVA F-test. The most 

informative interaction term was added to the model at each step. We repeated this process until no 

additional features further improved the model (i.e., all proposed features were P > 0.001 by the F-test). 

For higher-order (3-way and 4-way) interactions, we ensured that a proposed feature maintained the 

hierarchy constraint (i.e., a selected 4-way term must bring with it all of its associated 3-way and 2-way 

terms). As a result of this constraint, when considering higher-order terms, we simultaneously considered 

any associated lower-order terms that had not been selected during prior lower-order training, thereby 

adding degrees of freedom to our F-test assessment. As our final model, we selected the trained model 

with the lowest mean-squared error, calculated via 8-fold cross-validation within each substitution class. 

We report Akaike Information Criteria and adjusted-R2 values for the final model using the testing data 

set. Regression analysis was performed using R (version 3.0.3) using lm() for regression modeling, and 
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the packages: leaps (v2.9), DAAG (1.20), lattice (v0.20-29), grid (v3.0.3), latticeExtra (v0.6-26), and 

RColorBrewer (v1.0.5). 

Sourcing CpG methylation data 

We obtained CpG methylation data for our intergenic regions of interest from a published whole genome 

bisulphite sequencing study performed on germline (sperm, oocyte)4, blastocyst4, blood4 and brain5 

tissues. For each tissue, we divided the CpG sites into three bins: (i) sites that were methylated in all 

samples, (ii) sites that were methylated in some but unmethylated in other samples and (iii) sites that were 

unmethylated in all samples. Very few sites fell into the second bin, so we excluded sites where 

methylation signal was inconsistent among the samples. We performed our analysis on the 7,059,740 

intergenic CpG sites that were methylated and the 651,479 intergenic CpG sites that were unmethylated in 

all sperm samples. The same procedure was followed for samples from other tissues. We summarized the 

methylation signal across all samples for a tissue by calculating the mean intensity. 

Sequence Motif Identification 

We examined the top and bottom 10 sequences for each substitution class, and manually identified a total 

of 6 motifs that we tested in each substitution class, stratified by CpG context. This results in a total of (9 

substitution classes) * (2 tails, high and low) * (6 motifs) = 108 total tests. Note that we required a 

nominal P = 4.6 x 10-4 (Bonferroni correction for multiple testing). We used Fisher’s exact test to find the 

P-value associated with the enrichment of specific sequence motif using the fisher.test function in the R 

package (version 3.0.3). The contingency tables for the test were populated by considering the enrichment 

of sequence motifs in the top or bottom 1% of substitution probabilities for that specific class of change. 

We report in Table 1 those sequence motifs for each category of substitution that pass a Bonferroni 

corrected threshold.  

Sourcing recombination data 

We obtained recombination rate map of the YRI population from the phase 1 release of the 1000 

Genomes project 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rates/YRI_o

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rates/YRI_omni_recombination_20130507.tar
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mni_recombination_20130507.tar), and segregated our intergenic non-coding regions of interest into high 

(recombination rate >3 cM/Mb) and low recombination rate (rate < 0.05 cM/Mb) regions. As a result we 

considered ~203 Mb of intergenic non-coding sequence as belonging to high recombination rate region 

and ~494 Mb of intergenic non-coding sequence as belonging to low recombination rate region.  

Human and primate divergence 

We obtained human-chimpanzee and human-macaque chain and netted alignments from the golden path 

directories in the UCSC genome browser 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/vsPanTro4/axtNet/, 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/vsRheMac3/axtNet/) and found divergence between the 

human-primate pair by calculating fixed differences between the aligned intergenic non-coding sequences 

at each 7-mer sequence context. We were able to align 1.06 Gb of intergenic non-coding sequences 

between human-chimpanzee and 0.88 Gb between human-macaque. For each 7-mer sequence context, we 

calculated the divergence as the ratio of total number of fixed differences between the human-primate 

pair, and the total number of sequence context occurrences in the aligned region. 

Variants across the frequency spectrum 

 We defined the rare variants as those occurring only once or twice in the population, and low or high 

frequency variants as those with MAF greater than 1%. We only considered the variants present in 1000 

genomes project belonging to the African ancestry and occurring in the intergenic non-coding sequences, 

and found 2,789,383 rare and 8,019,893 low/high frequency variants.  

De novo mutations 

 We only considered the de novo mutations from the high quality pedigree sequencing dataset of 

DECODE Genetics6, that occurred in the accessible regions of the 1000 genomes project. This filtering 

was necessary because the original study did not describe the genome-wide regions that were 

“sequenceable”. We make an implicit assumption that atleast the accessible regions in the 1000 genomes 

project were sequenced in the original high quality pedigree sequencing study. We then found the 

observed de novo mutations for each motif class. The expected number of mutations occurring in each 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rates/YRI_omni_recombination_20130507.tar
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/vsPanTro4/axtNet/
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/vsRheMac3/axtNet/
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class was simulated under a normalized 1-mer sequence context model, such that the overall de novo 

mutation rate was fixed at 1.2 x 10-8 de novo mutations per generation and per sample. 

Building and testing substitution probability framework in the coding region 

Extension of the statistical framework for coding regions 

To model substitution probabilities for the coding genome, we utilized the statistical model developed for 

intergenic regions with the following modifications: First, we accounted for codon position-effects (i.e., a 

given sequence context around a polymorphic site may occur at three different positions on a codon), 

which can lead to amino acid changes that may be subject to different levels of selective constraint. To 

model this phenomenon, we considered the probabilities for each of the three possible codon positions 

separately, resulting in a total of 73,728 (3 * 24,576) parameters for the 7-mer context model. Second, we 

utilized probabilities learned from the intergenic non-coding region model as our Bayesian prior for the 

coding model. The parameters for this prior include the baseline probabilities from the intergenic 

noncoding region as shape parameters for the dirichlet distribution, multiplied by an additional 

normalizing weighted constant, per the following: 

�𝑝𝑝𝑆𝑆1→𝑆𝑆2 ∗
10

1 + 𝐶𝐶−𝑛𝑛
� , �𝑝𝑝𝑆𝑆1→𝑆𝑆3 ∗

10
1 + 𝐶𝐶−𝑛𝑛

� , �𝑝𝑝𝑆𝑆1→𝑆𝑆4 ∗
10

1 + 𝐶𝐶−𝑛𝑛
�,  

� 10
1+𝑃𝑃−𝑛𝑛

− �𝑝𝑝𝑆𝑆1→𝑆𝑆2 ∗
10

1+𝑃𝑃−𝑛𝑛
� −  �𝑝𝑝𝑆𝑆1→𝑆𝑆3 ∗

10
1+𝑃𝑃−𝑛𝑛

� −  �𝑝𝑝𝑆𝑆1→𝑆𝑆4 ∗
10

1+𝑃𝑃−𝑛𝑛
��                                 (6)                    

where p represents the intergenic noncoding substitution probability from sequence context S to each 

possible polymorphic change (1, 2, 3, or 4 represent each possible nucleotide base at the site), n is the 

number of occurrence of the context S in the coding region. This choice of shape parameter in the prior 

allowed for inference of coding substitution probabilities, while utilizing the intergenic substitution 

probabilities, and without the prior overwhelming the evidence observed in the coding region. 

Data Access 

Sourcing of coding sequences 

We selected exonic coordinates of the longest transcript for each gene annotated in ENSEMBL Biomart 

(Ensembl Genes 75 and Homo sapiens genes GRCh37.p13). We only considered those transcripts where 
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(i) the total exonic region length was a multiple of 3, and (ii) 90% or larger of it was present in the 

combined accessibility mask (version 20120824) filter of the 1000 Genomes project. For all genes of 

interest, we used phase information to map each genomic coordinate to a specific position on a codon, 

yielding 16,386 autosomal transcripts and 679 transcripts from the X chromosome.  

To test our model in a different data set, SNP sites for ~4300 individuals of European ancestry were 

obtained from large-scale independent exome sequencing studies generated by the NHLBI GO Exome 

Sequencing Project, from the Exome Variant Server (EVS7, http://evs.gs.washington.edu/EVS/, 

downloaded on August 26th 2013).  

Annotation of SNP variants in the autosomal coding genome 

For 1KG data, we manually annotated the type of codon change caused by each variant, yielding 92,893 

synonymous, 110,645 missense, and 1,639 nonsense variants (total n = 205,282) for the African group. 

We repeated the same strategy for the non-Africans, resulting 64,756 synonymous, 89,863 missense, and 

1,591 nonsense variants (total n = 156,298) within the European group and 58,304 synonymous, 80,689 

missense, and 1,378 nonsense variants (total n = 140,450) within the Asian group. For the EVS data 

(European ancestry), we also manually annotated the type of codon change, yielding a total of 226,833 

synonymous, 388,149 missense, and 15,287 nonsense variants (total n = 636,122) distributed over the 

coding regions of interest. To obtain a representative spectrum of allele frequencies (and impact of 

background selection) observed from the smaller set of individuals found in the 1KG data, we considered 

only EVS variants with frequency greater than 0.03% resulting in a total of 169,659 variants.  

Sourcing information about pathogenic variants 

We used the Human Gene Mutation Database8 (HGMD professional 2014.4) to identify pathogenic 

variants for our autosomal genes of interest, which supplied 60,504 variants distributed over 3,647 genes 

for 5,359 putative human disorders. 

http://evs.gs.washington.edu/EVS/
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Testing framework 

Scaling the model for use with a larger data sample  

As the number of individuals sequenced increases, the observed number of polymorphic sites segregating 

within the dataset will also increase. To calibrate our model (built using the 1KG dataset) for use with the 

larger EVS dataset, we rescaled the substitution probabilities estimated using 1KG data to make them 

proportional to the EVS dataset. We used a constant scaling factor defined as:  

𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐷𝐷𝑙𝑙𝑙𝑙 𝑆𝑆𝑢𝑢𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝑦𝑦 𝑃𝑃𝑛𝑛 𝑃𝑃ℎ𝑃𝑃 𝑛𝑛𝑃𝑃𝑤𝑤 𝑜𝑜𝐷𝐷𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃
𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐷𝐷𝑙𝑙𝑙𝑙 𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝑦𝑦 𝑃𝑃𝑛𝑛 𝑃𝑃ℎ𝑃𝑃 1000 𝑔𝑔𝑃𝑃𝑛𝑛𝑃𝑃𝑔𝑔𝑃𝑃𝑃𝑃 𝑜𝑜𝐷𝐷𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃

                                                   (7) 

on all substitution probabilities in the new dataset. 

Bayes Factor analysis for model comparison in the coding region 

We utilized the Bayes Factor approach, the Bayesian alternative to likelihood ratio testing, to contrast 

competing coding sequence context models against each other. We compared the 7-mer model with 

codon position effects and priors from noncoding region as described before, against the basic 3-mer 

model with no codon position effects and with a flat objective prior. The approximate posterior 

likelihood, using the Chib’s method, on the overall coding data was then calculated using the maximum a 

posteriori (MAP) estimates of the substitution probabilities for the two coding sequence context models 

as found before. We then calculate the approximate Bayes factor using Equation 3, above. For the 7-mer 

model the probability of parameters is found using the dirichlet distribution function in the gtools (v3.4.1) 

package in R (v3.0.3). Since we use flat objective priors in for the 3-mer model so the probability of 

parameters reduces to calculating the normalizing beta function in the dirichlet distributions. We use the 

Jefferey’s scale for interpreting the approximate Bayes Factors, where the ratio if greater than 100 is 

considered to be decisive evidence against the Model1. 

Simulating variability in substitution probabilities within all types of amino acid replacement 

To simulate the distribution in variability for substitution probabilities within different amino acid 

substitution type, we randomly distributed the number of observed substitutions within the type using a 

fixed rate model. We then calculate the respective 7-mer probabilities using our multinomial distribution 
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model for the randomization, and use those to tabulate the variance across different amino acid 

substitution types. 106 simulations are used to generate the distribution of substitution probabilities. 

Measuring the effects of selection on the probability of polymorphism  

To minimize the effects of selection on initial estimates of substitution probabilities, we selected 

intergenic non-coding intervals for model development. Assuming that the mechanisms that introduce 

new mutations into coding regions are similar to those at work in the non-coding genome, we inferred that 

the relative ratio of coding-to-non-coding substitution probabilities could indicate natural selection 

occurring in the coding genome. Furthermore, we expected that the rates of certain types of amino acid 

change should be less frequent than others (e.g., on average, we expect to observe non-synonymous 

changes less frequently than synonymous changes) as a result of background selection. To quantify the 

effect of selection on substitution probabilities, we measured the log10 ratio of coding-to-non-coding 

substitution probabilities using all coding variants (n = 205,282) observed in the 1KG African 

group.  Estimates for coding substitution probabilities were uncertain under certain conditions, owing to a 

limited number of a given variant type for a particular 7-mer context. Thus, rather than use our MAP 

estimates for these sequences contexts, we simulated the substitution probabilities from the beta 

distribution using a 3-mer context model extended to the coding region. We then calculated the log-ratio 

of the intergenic non-coding substitution probability to the mean obtained from simulation. 

Gene Scores 

Calculating tolerance scores for genes 

Using our estimates for substitution probabilities in the coding genome, we performed simulations using 

the standard multinomial distribution for each sequence context to define the distribution of 

polymorphism levels expected for each gene based on our model. We then normalized the difference 

between the observed levels of polymorphism and those generated from our simulations, to obtain gene 

tolerance score defined as: 

(𝜇𝜇𝑁𝑁𝑁𝑁− 𝑛𝑛𝑁𝑁𝑁𝑁) 
σ𝑁𝑁𝑁𝑁 

                      (8) 
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where µNS and σNS represent the mean and standard deviation of nonsynonymous polymorphisms 

generated from simulations based on our model, and nNS is the empirical number of nonsynonymous 

polymorphism observed in the data. A positive gene score in Equation 8 indicates that the number of 

observed substitutions is fewer than expected, and serves to identify genes experiencing stronger than 

average purifying selection. In our analysis, we determined gene scores for the African, European, and 

EVS populations.  

Categorizing genes 

We subdivided genes into various categories – i.e., essential genes (where the mouse homolog knock-out 

is lethal), ubiquitously expressed genes, genes with known phenotypes described in OMIM, immune-

related genes, keratin genes, olfactory genes and those belonging to several neuropsychiatric diseases. 

The dataset from9 was used to find the first two categories, while10 was used to classify OMIM genes. 

OMIM sub-categorizes genes according to mutational models, including de novo, dominant, 

haploinsufficient, or recessive. In our analysis, we merged OMIM’s de novo, dominant, and 

haploinsufficient categories, treating them as a single category. We used the DAVID ontology database11 

(version 6.7) to classify immune-related, keratin, and olfactory genes. We considered the gene list 

published in the latest de novo sequencing analysis papers of Autism12, Epilepsy13, Intellectual 

disability14–16 and Developmental disorder17, as the gene set belonging to these diseases. We merged the 

gene lists of the aforementioned diseases, treating them as single category belonging to “All 

Neuropsychiatric disease”.    

AUC comparison between competing gene scores on different gene sets 

We used the receiver operating characteristic (ROC) curve to compare the performance of our gene scores 

against previously annotated scores10,18 for classifying genes into the gene sets we described above. Since, 

the Petrovski et. al. scores10 were originally released for HGNC gene ids, we were only able to convert 

16,910 genes out of a total of 16,957 to corresponding ids in ENSEMBL format. Similarly the Samocha 

et. al. approach18, only identified 1,003 genes to be intolerant and released their scores for Refseq gene 

ids, so we were able to map 997 genes only to corresponding ids in ENSEMBL format. Moreover, for a 
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uniform comparison between different approaches, we only considered the previously annotated scores 

for autosomal genes that we identified before (i.e., which passed the stringent quality criteria of 

sequencing in the 1000 genomes project). We fitted a linear classifier using the three different gene 

scores, on each gene set and found the area under the curve (AUC) for each. The linear model was fitted 

using the glm function (with binomial family parameter) in R (v3.0.3). The performance of the models on 

different gene sets was evaluated using the pred and performance functions (with auc as a parameter) 

using the ROCR (v1.0-5) package. 

Amino Acid Scores 

Calculating tolerance scores for amino acids 

Using our estimates for substitution probabilities in the coding genome, we performed simulations using 

the standard multinomial distribution for each sequence context to determine the expected number of 

changes for a specific amino acid within a given gene. Within a given gene, we normalized the difference 

between the observed numbers of amino acid changes at a specific codon versus the number of changes 

expected from simulation using the equation:  

(𝜇𝜇𝐶𝐶𝐶𝐶− 𝑛𝑛𝐶𝐶𝐶𝐶) 
σ𝐶𝐶𝐶𝐶 

                  (9) 

where µAA and σAA represent the mean and standard deviation of the specific amino acid replacement 

polymorphisms generated from simulations based on our model, and nAA is the empirical number of 

amino acid replacement polymorphisms observed in the data. We consider the normalized value in 

Equation 9 as the final tolerance score for that amino acid within the given gene. We interpret a positive 

amino acid (AA) tolerance score to indicate that the observed number of changes for that specific amino 

acid within the given gene was even fewer than expected. Thus, the AA tolerance score serves to identify 

amino acids experiencing stronger than average purifying selection. Moreover, since the AA scores 

measure the tolerance of a gene at an amino acid level, they further improve the resolution of the gene 

scores, which measure the overall tolerance in a gene. In our analysis, we determined AA tolerance scores 

for the African population. 
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Application of Gene and Amino acid scores on Autism spectrum disorder de novo sequencing data 

We used the de novo sequencing data for Autism spectrum disorder19, to test the efficacy of our gene and 

amino acid score approach in identifying and prioritizing novel genes and variants associated with 

Autism. We found the de novo mutations belonging to cases and controls separately for each of our genic 

sequences of interest and further classified them into synonymous, missense, nonsense, splice and indel 

categories only. As a result, we considered a total of 2,171 mutations in 2,508 cases and 1,421 mutations 

in 1,911 controls, belonging to our genic sequences of interest.  

For a uniform comparison of gene scores across different approaches10,18, we only considered the top 752 

intolerant genes identified from each approach. We choose 752 genes because this was the number of 

intolerant genes identified in18, which mapped to our autosomal genic sequences of interest (i.e., which 

pass the stringent criteria of sequencing quality in the 1000 genomes project). We used the Odds ratio to 

find the burden of de novo mutations in cases as opposed to controls, in the set of intolerant genes. 

Fisher’s exact test was used to compare the significance of burden.  

The amino acid scores were found on known Autism genes identified in the latest de novo sequencing 

paper12, and compared with (a) all mutations in controls or with (b) all mutations in cases belonging to 

non-Autism genes. All statistical comparisons were performed using the Wilcoxon sum ranked test.  

Similar analysis was also performed on genes with a higher burden of functional (missense, nonsense 

changes for which amino acid scores are generated) de novo mutations in cases as opposed to controls. 

Supplementary Table Legends 

Supplementary Table 1: Summary statistics evaluating proposed framework and model for sequence 

context.  (A) Pearson’s correlation and Root Mean-Squared Error (RMSE) for substitution probabilities 

estimated from the training (all but the two listed chromosomes) and testing (the two listed chromosomes) 

sets from the intergenic non-coding genome. We present measurement for null (i.e., fixed rate), 1-mer, 3-

mer, 5-mer and 7-mer models. (B) P-values for the each likelihood ratio test comparing competing 

sequence context models (null, 1-mer, 3-mer, 5-mer and 7-mer), using all data from the intergenic non-

coding genome. The matrix is symmetric, so “-” is presented where appropriate. (C) Natural logarithm of 
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the approximate Bayes Factor comparing competing sequence context models (null, 1-mer, 3-mer, 5-mer 

and 7-mer), using all data from the intergenic non-coding genome. The matrix is symmetric, so “-” is 

presented where appropriate. 

Supplementary Table 2: R2 and correlation between the substitution probabilities estimated using 

HapMap and 1000 Genomes variant data from the intergenic non-coding genome, for different sequence 

context models (3-mer model with randomized sequence context beyond adjacent nucleotides, 7-mer 

model). Also shown is the comparison specific for CpG and nonCpG sequence contexts. 

Supplementary Table 3: P-values and Bayes factor comparing sequence context models (1-mer, 3-mer, 

5-mer and 7-mer) using all HapMap variant data from the intergenic non-coding genome. 

Supplementary Table 4: Average nucleotide substitution probabilities for different population groups 

(African, European, and Asian) on different types of regions (coding versus intergenic non-coding) and 

on different chromosomes (All autosomal versus X chromosome). 

 Supplementary Table 5: Stepwise regression model analysis for each substitution class various models 

consider for in the intergenic non-coding region. Data for the training phase was based on the collection 

even numbered chromosomes; data for the testing phase was based on odd numbered chromosomes. “# 

Features” denotes the features selected for that model. “AIC” is the Akaike Information Criterion, “MSE” 

represents Mean-squared Error; “adj-R2” is the adjusted R2 from the model. The best performing model 

(lowest MSE after 8-fold cross validation) are highlighted in red, and reflect the models presented in 

Table 1. 

Supplementary Table 6: Aggregated sequence context features and their effect on the substitution 

probabilities for all classes of substitutions in the intergenic non-coding region. Order denotes the number 

of interacting nucleotides in the context. “BETA” indicates the regression coefficient for the sequence 

context for the given substitution class (i.e., A-to-C, A-to-G, etc.). “All_DIRXN” denotes the direction of 

effect for the feature on the substitution probability (+ indicates increase higher substitution probability, – 

indicates lower substitution probability). We present estimated values using (I) all data from 1KG, (II) 

data used in the training phase (all even-numbered chromosomes), and (III) data used for the testing phase 
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(all odd-numbered chromosomes). (A) Substitution classes for sequence contexts outside of CpG sites (B) 

Substitution classes for sequences context including CpG sites (polymorphic 4th position is C and 5th 

position fixed at G). 

Supplementary Table 7: Posterior probabilities of nucleotide substitution for all substitution classes 

within all 7-mer sequence contexts in the intergenic non-coding region for African, European and Asian 

populations groups (1KG project). The forward and reverse complementary sequences are presented for 

each probability. 

Supplementary Table 8: Enrichment of motifs identified in nucleotide substitution probabilities inferred 

from HapMap variant data in the intergenic non-coding genome. CpG+ indicates the distribution of 

sequence contexts which include a CpG site (4th position polymorphic site is C, 5th position fixed as G). 

Enrichment P-value is based on the enrichment of the motif in the 1% tail of the given substitution class: 

“Higher” implies enrichment in the upper 1% tail of the sequence context probability distribution, 

“Lower” implies enrichment in the lower 1% tail. Odds ratio and [95% CI] denotes the odds ratio (and 

95% confidence interval) of enrichment of motif in the upper or lower 1% tail of the sequence context 

probability distribution. Fold change in substitution rate denotes the fold increase or decrease in 

substitution rates for the motif relative to its substitution class. 

Supplementary Table 9: R2 and correlation between the substitution probabilities in intergenic non-

coding genome and human primate divergence at a context, for different sequence models (3-mer model 

with randomized sequence context beyond adjacent nucleotides, 7-mer model). Also shown is the 

comparison specific for CpG and nonCpG sequence contexts. 

Supplementary Table 10: P-values and Bayes factor comparing sequence context models (1-mer, 3-mer, 

5-mer and 7-mer) using all data from the intergenic non-coding genome. (A) Sequence context rates 

inferred from low frequency (1% and above MAF) variants from the 1000 genomes project (B) Sequence 

context rates inferred from rare (singletons and doubletons) variants from the 1000 genomes project. 
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Supplementary Table 11: Expected (95% CI) and observed de novo mutations for each class of change 

calculated on high quality pedigree sequencing data from 78 trios6. If number of observed mutations fall 

in the expected confidence interval then we denote it “As expected” otherwise as “Higher than expected”. 

Supplementary Table 12: Natural logarithm of the approximate Bayes Factor comparing the posterior 

likelihoods of the 3-mer context model with and without accounting for codon context, and our proposed 

7-mer context model which does include codon context on multiple data sets. We present data from the 

African and European groups (1KG) and an analysis of the EVS dataset (individuals of European 

ancestry) after filtering out variants with minor allele frequencies less than 0.03%.  

Supplementary Table 13: Posterior probabilities of nucleotide substitution for all substitution classes 

within all 7-mer sequence contexts in coding region for African, European and Asian populations groups 

(1KG project). The forward and reverse complementary sequences are presented for each probability. The 

corresponding amino acid changes associated with each substitution class within the 7-mer sequence 

context, as well as their reverse complements, are also listed in the table. 

Supplementary Table 14: Estimates of the variability in amino acid substitution probabilities. (A) 

Simulated and observed variance in nucleotide substitution probabilities grouped by type of amino acid 

replacement class. (B) Simulated and observed variance in nucleotide substitution probabilities, stratified 

for each possible types of amino acid replacement. Reported simulated values are based on 1,000,000 

repetitions, based on a fixed rate model for each class of substitution. 

Supplementary Table 15: Gene scores and annotations for >16,000 transcripts in humans. We annotate 

each gene using Ensembl, attached to a specific transcript identifier. Columns 3 through 14 refer to the 

annotation attached to set membership (Essential, Ubiquitous, Immune, Olfactory, Keratin, Omim de 

novo, dominant, and haploinsufficient). Details and citations describing how each gene set was identified 

are presented in the Methods. The last three columns are gene scores calculated by our approach (for the 

African population), and various published methods10,18.  
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Supplementary Table 16: Prediction accuracy of gene tolerance scores to classify membership in 

various gene sets analyzed in our study. Area under the curve (AUC) calculations for gene scores of 10,18 

and our 7-mer codon context gene scores. 

Supplementary Table 17: Amino acid tolerance scores for >16,000 transcripts in humans. These scores 

quantify the number of excess substitutions for each type of amino acid change relative to expected, with 

larger scores indicating fewer substitutions (intolerance) for that specific amino acid. Scores were 

developed using 1KG project data using the African group. 
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