Supplemental Information

Dynamic coupling and allosteric networks in the alpha subunit of heterotrimeric G proteins

Xin-Qiu Yao^{a,1}, Rabia Malik^{b,e,1}, Nicholas W. Griggs^c, Lars Skjærven^d, John R. Traynor^c, Sivaraj Sivaramakrishnan^e, and Barry J. Grant^{a,2}

^aDepartment of Computational Medicine and Bioinformatics, ^bDepartment of Cell and Developmental Biology, and ^cDepartment of Pharmacology, University of Michigan, Ann Arbor, Michigan, 48109 USA. ^dDepartment of Biomedicine, University of Bergen, Norway. ^eDepartment of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN

55455, USA.

¹Equal contributions

²Correspondence to B. J. Grant 100 Washtenaw Ave.
2017 Palmer Commons Bld.
Ann Arbor, MI 48109-2218 USA Tel: 734-647-3113
E-Mail: bjgrant@umich.edu

Table S1. Analyzed	crystallographic	structures of G	protein α subunit.
•			

PDB ID	Chain	Ligand	Source	Resolution	Reference
1FQJ	A, D	ALF, GDP, MG	Bos Taurus	2	Slep et al. (2001)
1FQK	A, C	ALF, GDP, Mg	Bos Taurus	2.3	Slep et al. (2001)
1GOT	А	MSE, GDP	Bos Taurus	2	Lambright et al. (1996)
1TAD	A, B,	ALF, CA, CAC_GDP	Bos Taurus	1.7	Sondek et al.
1TAG	A	GDP, MG	Bos Taurus	1.8	Lambright et al. (1994)
1TND	A, B, C	CAC, GSP, MG	Bos Taurus	2.2	Noel et al. (1993)
3V00	A, B, C	GDP	Bos Taurus	2.9	Singh et al. (2012)
1AGR	A, D	ALF, CIT, GDP, MG	Rattus Norvegicus	2.8	Tesmer et al. (1997)
1AS0	А	GSP. MG. SO4	Rattus Norvegicus	2	Raw et al. (1997)
1AS2	A	GDP PO4	Rattus Norvegicus	2.8	Raw et al. (1997)
1RH2	Δ	GSP MG	Rattus Norvegicus	2.0	Posner et al (1997)
1CIP	A	GNP, MG	Rattus Norvegicus Rattus Norvegicus	1.5	Coleman et al. (1999)
1GFI	А	ALF, GDP, MG	Rattus Norvegicus	2.2	Coleman et al. (1994)
1GG2	А	GDP	Rattus Norvegicus	2.4	Wall et al. Cell (1995)
1GIA	А	GSP, MG	Rattus Norvegicus	2	Coleman et al. (1994)
1GIL	А	GSP, MG	Rattus Norvegicus	2.3	Coleman et al. (1994)
1GIT	А	GDP, PO4	Rattus Norvegicus	2.6	Berghuis et al. (1996)
1GP2	А	GDP	Rattus Norvegicus	2.3	Wall et al. (1995)
1KJY	A, C	CS, GDP, MG	Homo Sapiens	2.7	Kimple et al. (2002)
1SVK	А	ALF, GDP, MG	Rattus Norvegicus	2	Thomas et al. (2004)
1SVS	А	GNP, MG	Rattus Norvegicus	1.5	Thomas et al. (2004)
2GTP	В	ALF, GDP, MG	Homo Sapiens	2.5	Soundararajan et al (2008)
2IHB	А	ALF, GDP, MG	Homo Sapiens	2.7	Soundararajan et al (2008)
20DE	A, C	ALF, GDP, MG	Homo Sapiens	1.9	Soundararajan et al (2008)
2OM2	A, C	GDP, MG	Homo Sapiens	2.2	Sammond et al. (2007)
2V4Z	А	ALF, GDP, MG	Homo Sapiens	2.8	Kimple et al. (2009)
2XNS	A.B	GDP. SRT	Homo Sapiens	3.4	Sammond et al

SO4(2011)2ZJYAALF, GDP, MGRattus Norvegicus2.8Morikawa et al. To be published3C7KCALF, GDP, MGMus Musculus2.9Slep et al. (2008)3C7KCALF, GDP, MGMus Musculus2.9Slep et al. (2008)
2ZJYAALF, GDP, MGRattus Norvegicus2.8Morikawa et al. To be published3C7KCALF, GDP, MGMus Musculus2.9Slep et al. (2008)
MGbe published3C7KCALF, GDP,Mus Musculus2.9Slep et al. (2008)MGMGCSP, MG, SO4Party and the state2.2Karacterial
3C7K C ALF, GDP, <i>Mus Musculus</i> 2.9 Slep et al. (2008) MG
MG
3FFA A GSP, MG, SO4 <i>Rattus Norvegicus</i> 2.3 Kapoor et al.
(2009)
30NW A, B GDP, SO4 <i>Homo Sapiens</i> 2.4 Bosch et al. (2011)
3QE0 B GDP, MG <i>Homo Sapiens</i> 3 Bosch et al. (2012)
3QI2 A, B GDP, GOL, <i>Homo Sapiens</i> 2.8 Bosch et al. (2012)
SO4
4G50 A, D CIT, GDP, SO4 <i>Homo Sapiens</i> 2.9 Jia et al. To be
Published
4G5Q A, D GDP, SO4, CIT <i>Homo Sapiens</i> 2.9 Jia et al. To be
Published
4G5RAGDP, SO4, CITHomo Sapiens3.5Jia et al. To be
Published

Table S2. Normalized node degeneracy from path analysis of correlation networks derived from MD simulations. For each network, 500 suboptimal paths were calculated. Nodes with degeneracy ≥ 0.1 in one or more networks are shown and corresponding degeneracy values are colored in red, green and blue, respectively, for GTP, GDP and GDI state networks. Source and sink nodes are highlighted in gray. *Paths from a5 to y-Pi binding site*

			-										
SSE ^a	β1				PL		α1	SI		β2	β3		
Residue	K31	L32	L33	L34	K42	S43	T44	T177	T178	I180	R193	M194	F195
GTP	0.51	0.70	0.36	0.11	0.00	0.01	0.00	0.25	0.18	0.17	0.21	0.31	0.64
GDP	0.00	0.00	0.00	0.00	0.89	0.47	0.94	0.00	0.00	0.00	0.00	0.00	0.00
GDI	0.00	0.00	0.00	0.00	0.02	0.70	0.99	0.00	0.00	0.00	0.00	0.00	0.00
Entropy ^b	0.66	0.89	0.90	0.84	0.83	0.85	0.86	0.82	0.48	0.80	0.42	0.81	0.55
SSE	SII	-	-	L10	-	α5	-	-	-	-	-		
Residue	D196	V197	G198	T323	D324	Q326	N327	V328	K329	F330	V331	F332	D333
GTP	0.58	0.54	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
GDP	0.09	0.07	1.00	0.91	0.95	0.39	0.69	0.10	0.57	0.37	0.23	0.67	0.22
GDI	0.85	0.94	1.00	0.95	0.83	0.31	0.78	0.05	0.17	0.52	0.44	0.50	0.17
Entropy	0.79	0.70	0.83	0.55	0.70	0.25	0.35	0.64	0.25	0.11	0.52	0.56	0.18
SSE	α5	-	-		-			-	-	-	-	-	
Residue	A334	V335	T336	D337	I338	1339							
GTP	0.00	0.00	0.00	0.00	0.00	1.00							
GDP	0.05	0.49	0.67	0.15	0.52	1.00							
GDI	0.20	0.34	0.60	0.05	0.15	1.00							
Entropy	0.18	0.69	0.24	0.49	0.34	0.74							

Paths from $\beta 1$ to RasD-HD interface

SSE	β1				PL		α1		LE			αF	
Residue	K31	L32	L33	L34	K42	S43	T44	K47	N145	D146	S147	L171	R172
GTP	1.00	0.37	0.31	0.06	0.02	0.19	0.00	0.00	0.00	1.00	0.00	0.00	0.02
GDP	1.00	0.38	0.40	0.44	0.43	0.86	0.33	0.15	0.04	1.00	0.67	0.16	0.63
GDI	1.00	0.10	0.14	0.11	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00
Entropy	0.66	0.89	0.90	0.84	0.83	0.85	0.86	0.80	0.07	0.83	0.27	0.82	0.48
SSE	SI	_	-	-	-	-	-	β2	-	-	-	-	β3
Residue	S173	R174	V175	K176	T177	T178	G179	I180	I181	E182	T183	Q184	N191
GTP	0.00	1.00	0.67	0.57	0.69	0.16	0.00	0.06	0.00	0.00	0.00	0.00	0.00
GDP	0.65	0.85	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.00	0.01
GDI	0.00	1.00	0.81	0.57	1.00	0.68	0.65	0.51	0.39	0.36	0.31	0.18	0.16
Entropy	0.24	0.63	0.35	0.31	0.82	0.48	0.84	0.80	0.21	0.55	0.24	0.20	0.11
SSE	β3				SII								

Residue	F192	R193	M194	F195	D196	V197	G198
GTP	0.00	0.25	0.33	0.68	0.68	0.44	0.10
GDP	0.08	0.34	0.29	0.40	0.46	0.01	0.00
GDI	0.46	0.59	0.30	0.48	0.30	0.35	0.13
Entropy	0.61	0.42	0.81	0.55	0.79	0.70	0.83

Paths from a5 to RasD-HD interface

SSE	β5	LG	αG	L10		α5							
Residue	N265	K266	K267	T320	C321	Q326	N327	V328	K329	F330	V331	F332	D333
GTP	0.11	1.00	0.13	0.34	0.63	0.03	0.96	0.21	0.36	0.40	0.49	0.41	0.50
GDP	0.12	1.00	0.19	0.53	0.46	0.10	0.85	0.23	0.46	0.33	0.31	0.65	0.20
GDI	0.19	1.00	0.06	0.26	0.74	0.08	0.95	0.10	0.18	0.48	0.46	0.48	0.21
Entropy	0.78	0.94	0.14	0.60	0.31	0.25	0.35	0.64	0.25	0.11	0.52	0.56	0.18
SSE	α5												
SSE Residue	α5 A334	V335	T336	D337	1338	1339							
SSE Residue GTP	α5 A334 0.36	V335 0.19	T336 0.37	D337 0.38	1338 0.79	1339 1.00							
SSE Residue GTP GDP	α5 A334 0.36 0.06	V335 0.19 0.50	T336 0.37 0.65	D337 0.38 0.18	I338 0.79 0.56	I339 1.00 1.00							
SSE Residue GTP GDP GDI	α5 A334 0.36 0.06 0.24	V335 0.19 0.50 0.39	T336 0.37 0.65 0.52	D337 0.38 0.18 0.14	I338 0.79 0.56 0.24	I339 1.00 1.00 1.00							

^aSSE, secondary structure element.

^bEntropy, sequence conservation (similar to the definition in (1)) derived from PFAM (2) "seed" alignment with accession number PF00503. Entries ≥0.7 are designated as highly conserved and are highlighted in yellow.

Supplemental References

- 1. Grant, B. J., McCammon, J. A., Caves, L. S. D., and Cross, R. A. (2007) Multivariate analysis of conserved sequence-structure relationships in kinesins: coupling of the active site and a tubulinbinding sub-domain. *J Mol Biol* **368**, 1231-1248
- 2. Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Heger, A., Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E. L. L., Tate, J., and Punta, M. (2014) Pfam: The protein families database. *Nucleic Acids Res* **42**, D222-D230