Quantitative Mass Spectrometry Reveals that Intact Histone H1 Phosphorylations are Variant Specific and Exhibit Single Molecule Hierarchical Dependence

Yu Chen§II, Michael E. Hoover‡II, Xibei Dang¶, Alan A. Shomo¶, Xiaoyan Guan§, Alan G. Marshall§¶,Michael A. Freitas‡*,and Nicolas L. Young§*

	MDA-MB-231			MCF-10A		
Proteoforms	Asyn	S phase	M phase	Asyn	S phase	M phase
H12ac	16.9 ± 0.9	13.7 ± 1.0	10.5 ± 1.1	4.9 ± 0.6	4.5 ± 0.2	1.2 ± 0.2
H12acph	8.1 ± 1.2	4.3 ± 0.4	6.3 ± 0.6	7.9 ± 1.1	2.3 ± 0.3	2.6 ± 0.5
H12SNPac	0	0	0	4.4 ± 0.3	4.1 ± 0.3	2.2 ± 0.5
H12SNPacph	0	0	0	6.1 ± 0.7	1.8 ± 0.2	2.6 ± 0.8
H12SNPacph2	0	0	0	0	0	2.1 ± 0.2
H13ac	0	0	0	4.6 ± 0.4	2.2 ± 0.2	2.4 ± 0.3
H13acph	0	0	0	1.7 ± 0.5	1.2 ± 0.2	1.1 ± 0.1
H14ac	35.6 ± 0.8	48.2 ± 1.8	27.5 ± 2.8	11.8 ± 2.4	38.9 ± 1.4	10.2 ± 2.2
H14ph	2.3 ± 0.2	2.2 ± 0.1	1.6 ± 0.2	1.8 ± 0.4	3.8 ± 0.4	1.5 ± 0.4
H14acph	24.5 ± 1.4	22.2 ± 1.0	20.1 ± 0.5	26.5 ± 2.1	24.7 ± 1.7	25.6 ± 2.1
H14acph2	11.5 ± 0.8	8.7 ± 0.9	14.7 ± 2.0	22.3 ± 1.2	13.7 ± 0.7	26.6 ± 3.5
H14acph3	1.0 ± 0.5	0.7 ± 0.2	11.3 ± 2.4	8.2 ± 1.9	2.8 ± 0.5	15.3 ± 3.7
H14acph4	0	0	5.8 ± 0.7	0	0	5.4 ± 3.4
H14acph5	0	0	2.1 ± 0.2	0	0	1.3 ± 0.2

Table S1. Relative abundance of proteoforms at different cell cycle stages of two cell lines(%)

	H12ac (<i>m/z</i>)	H12SNPac (m/z	$\Delta m/z$	Δ mass (Da)
Asyn 1-1	608.86689	609.66750	0.80061	28.02135
Asyn 1-2	608.86739	609.66838	0.80099	28.03465
Asyn 1-3	608.86733	609.66820	0.80087	28.03045
Asyn 2-1	608.86640	609.66762	0.80122	28.04270
Asyn 2-2	608.86673	609.66782	0.80109	28.03815
Asyn 2-3	608.86734	609.66785	0.80051	28.01785
S phase 1-1	608.86597	609.66711	0.80114	28.03990
S phase 1-2	608.86624	609.66726	0.80102	28.03570
S phase 1-3	608.86637	609.66762	0.80125	28.04375
S phase 2-1	608.86607	609.66784	0.80177	28.06195
S phase 2-2	608.86656	609.66796	0.80140	28.04900
S phase 2-3	608.86678	609.66774	0.80096	28.03360
	1 1 2 5 +	1 / . 00.00740	0.01170 0.500	C 1110(1)10 1

Table S2. PTM identification on histone H1.2SNPA18VNα-ac

Note, charge state 35^+ , average $\Delta m/z$ is 28.03742 ± 0.01178 , 0.528 σ for H12SNP and dimethylation, and 3.611 σ for formylation, given the theoretical mass of H12SNP and dimethylation 28.03132, whereas formylation is 27.9949.

	MDA-MB231		MCF10A	
Proteoforms	ANOVA-test	t-test	ANOVA-test	t-test
H12ac	4.95×10 ⁻⁸	3.72×10 ⁻⁴	8.15×10 ⁻¹¹	1.78×10 ⁻¹⁰
H12acph	3.71×10 ⁻⁶	7.64×10 ⁻⁵	4.64×10 ⁻¹⁰	0.13
H12SNPac	N/A	N/A	3.70×10 ⁻⁸	6.64×10 ⁻⁶
H12SNPacph	N/A	N/A	1.15×10 ⁻⁸	0.05
H12SNPacph2	N/A	N/A	6.28×10 ⁻¹⁵	3.48×10 ⁻¹⁰
H13ac	N/A	N/A	8.30×10 ⁻¹⁰	0.18
H13acph	N/A	N/A	0.01	0.25
H14ph	8.9×10 ⁻⁶	4.97×10 ⁻⁵	2.03×10 ⁻⁷	2.71×10 ⁻⁶
H14ac	5.92×10 ⁻¹¹	3.04×10 ⁻⁸	1.57×10 ⁻¹³	1.22×10 ⁻¹⁰
H14acph	1.3×10 ⁻⁵	1.15×10 ⁻³	0.32	0.47
H14acph2	6.8×10 ⁻⁶	5.92×10 ⁻⁵	1.23×10 ⁻⁷	4.52×10 ⁻⁶
H14acph3	1.5×10 ⁻⁹	9.39×10 ⁻⁷	8.96×10 ⁻⁷	8.86×10 ⁻⁶
H14acph4	1.33×10 ⁻¹³	2.65×10 ⁻⁹	2.92×10 ⁻⁴	3.29×10 ⁻³
H14acph5	1.02×10 ⁻¹⁴	4.81×10 ⁻¹⁰	1.48×10 ⁻¹²	1.31×10 ⁻⁸

Table S3. P-values of ANOVA and t-tests for proteoforms relative abundance at different cell cycle stages

	MDA-MB231		MCF10A	
Proteoforms	ANOVA-test	t-test	ANOVA-test	t-test
H12	2.31×10 ⁻⁶	7.79×10 ⁻⁶	2.26×10 ⁻¹⁵	1.41×10 ⁻¹²
H13	N/A	N/A	0.02	0.17
H14	7.07×10 ⁻¹¹	2.12×10 ⁻⁸	1.49×10 ⁻¹³	5.23×10 ⁻¹¹

Table S4. P-values of ANOVA and t-tests for histone variants total phosphorylations at different cell cycle stages

Table S5. P-values of ANOVA and t-tests for total phosphorylations on different sites at different cell cycle stages

	MDA-MB231		MCF10A	
Proteoforms	ANOVA-test	t-test	ANOVA-test	t-test
H12S173	2.31×10 ⁻⁶	7.79×10 ⁻⁶	2.26×10 ⁻¹⁵	1.41×10 ⁻¹²
H14S2	1.25×10 ⁻⁶	6.13×10 ⁻⁵	1.94×10 ⁻⁶	2.80×10 ⁻⁶
H14S172	9.10×10 ⁻¹¹	2.45×10 ⁻⁸	1.62×10 ⁻¹⁴	3.72×10 ⁻¹¹
H14S187	7.74×10 ⁻¹²	1.03×10 ⁻⁸	7.20×10 ⁻¹¹	6.99×10 ⁻⁹
H14T18	1.08×10 ⁻¹⁵	5.94×10 ⁻¹¹	9.01×10 ⁻⁶	7.64×10 ⁻⁵
H14T146	6.48×10 ⁻¹⁴	1.64×10 ⁻⁹	5.35×10 ⁻⁵	1.13×10 ⁻³
H14T153	8.51×10 ⁻¹⁵	4.26×10 ⁻¹⁰	2.67×10 ⁻¹²	1.93×10 ⁻⁸

Proteoforms	Asynchronous	S phase	M phase
H12ac	8.01×10 ⁻¹¹	5.14×10 ⁻¹⁰	2.42×10 ⁻⁹
H12acph	0.71	2.58×10 ⁻⁶	5.87×10 ⁻⁷
H12SNPac	5.06×10 ⁻¹²	5.66×10 ⁻¹²	3.49×10 ⁻⁷
H12SNPacph	1.05×10 ⁻⁹	1.80×10 ⁻⁹	1.48×10 ⁻⁵
H12SNPacph2	N/A	N/A	3.48×10 ⁻¹⁰
H13ac	3.24×10 ⁻¹¹	5.18×10 ⁻¹¹	6.55×10 ⁻⁹
H13acph	6.48×10 ⁻⁶	4.75×10 ⁻⁹	1.96×10 ⁻¹¹
H14ph	0.04	3.23×10 ⁻⁶	0.67
H14ac	5.02×10 ⁻¹⁰	1.31×10 ⁻⁶	3.39×10 ⁻⁷
H14acph	0.08	0.01	1.14×10 ⁻⁴
H14acph2	6.07×10 ⁻⁹	9.62×10 ⁻⁷	2.84×10 ⁻⁵
H14acph3	4.69×10 ⁻⁶	1.58×10 ⁻⁶	0.05
H14acph4	N/A	N/A	0.77
H14acph5	N/A	N/A	5.99×10 ⁻⁵

Table S6. P-values of t-tests for proteoformrelative abundance between two cell lines

Histone Variants	Asynchronous	S phase	M phase
H12	5.70×10 ⁻⁹	8.35×10 ⁻⁸	7.89×10 ⁻⁹
H13	1.59×10 ⁻⁶	4.70×10 ⁻⁹	1.61×10 ⁻⁹
H14	5.43×10 ⁻¹⁰	5.99×10 ⁻⁸	3.40×10 ⁻⁷

Table S7. P-values for histone variants total phosphorylations between two cell lines

Table S8. P-values for total phosphorylations on different sites between two cell lines

Proteoforms	Asynchronous	S phase	M phase
H12S173	5.7×10 ⁻⁹	8.35×10 ⁻⁸	7.89×10 ⁻⁹
H14S2	0.19	6.89×10 ⁻⁶	0.51
H14S172	1.15×10 ⁻¹⁰	8.79×10 ⁻⁸	6.58×10 ⁻⁷
H14S187	1.26×10 ⁻⁸	3.89×10 ⁻⁷	1.21×10^{-4}
H14T18	1.22×10 ⁻⁵	1.40×10 ⁻⁶	0.49
H14T146	N/A	N/A	0.29
H14T154	N/A	N/A	3.94×10 ⁻⁵

Legends for Supporting Information Figures

Figure S1. Broadband ESI positive ion 9.4 T FT-ICR mass spectra of histone H1 from asynchronous, s phase, and m phase cells from cell lines MDA-MB-231 and MCF-10A.

Figure S2. ECD fragmentation maps for different histone proteoforms from cell line MDA-MB-231.

Figure S3. ECD fragmentation maps for different proteoforms from cell line MCF-10A.

Figure S4. Mass scale-expanded segment of ECD product ion mass spectra of histone H1.2 SNP A18V from asynchronous cells from cell line MCF-10A, showing identification of c_{16}^{2+} , c_{18}^{2+} , c_{19}^{2+} , c_{20}^{2+} , c_{21}^{2+} , c_{22}^{2+} , and c_{22}^{3+} ions.

Figure S5. Peak annotations for the ECD product ion mass spectrum of asynchronous histone H1.2 SNP A18V from cell line MCF-10A.

Figure S6. Peak annotations for the ECD product ion mass spectrum of S phase histone H1.2 SNP A18V from cell line MCF-10A.

Figure S7. Peak annotations for the ECD product ion mass spectrum of asynchronous phosphorylated histone H1.2 SNP A18V from cell line MCF-10A.

Figure S2

H12ac_asyn

ac-S E TÌA P A A P AÌA A P P A E KÌA P V KÌKÌKÌAÌAÌKÌKÌ A GÌGÌT P RÌKÌA SÌG P P VÌSÌEÌL I T KÌAÌVÌAÌAÌSÌK EÌ RÌSÌG V S LÌAÌAÌL KÌKÌAÌL A A A G YÌD VÌEÌKÌNÌNÌS R I KÌL GÌL K S L V S K G T L V QÌT K G T G A S G S F K L N K K A A S GÌE ALK P K V K K A G G TLK P KLK P V G A A KLK P KLKLĂ A G G A T P K K SLĂ K KLT P KLK A K K P A A A TLVLTLKLK V A KLS P KLKLĂLK V ALK PLKL KLĂLĂ KLSLĂLĂLK A VLK P K A ALK PLK V VLK PLKLK ALĂ PLK K K

H14ph_asyn

^{ph} S E T A P A A P A¹A P A P A E K¹T P V K K K A R K S A G A¹A K R K A S G P P V S¹E L I T K A V A A S¹K E¹ R S G V S L¹A A L K K A L A A A G Y¹D V E K N N S R I K L G L K S L V S K G T L V Q T K G T G A S G S F K L N K K A A S G E A K P K A K K A G A A K A K K P A G A A K K P K K A T G A A T P K K S A K K T P K K A K K P A A A G A K K K A K S P K K A K A A K P K K A P K S P A K K A K S

H12acph asyn

ac-S E TÌA P A A P AÌA A P P A E KÌA P VÌKÌKÌKÌAÌAÌKÌKÌ
AÌGÌGÌT PÌRÌKÌA SÌG P P VÌSÌEÌL I TÌK AÌVÌAÌAÌSÌK EÌ
RÌSÌG VÌSÌLÌAÌAÌL KÌKÌA L A A A G YÌD VÌEÌKÌNÌNÌS R
I KÌL GÌL K SÌL V S K G T L V QÌT K G T G A S G S F
K L N K K A A S GLE ALK P K V K K A G G TLK P KLK P
V GLA A K K P KLKLA A G G ALT P KLKLSLA K K T P KLKL
A KLK P A A ALT VLTLKLK VLA KLS P KLKLALK V ALK PLKL
KLALALKLSLALALK A VLK P K A ALK PLK V VLK PLKLK ALA
PLK K K

H14ac_asyn

**-S E T A P^JA A P A A P A P A E K^JT P V K^JK K^JA R^JK S A^JG^JA A K R^JK^JA S^JG P P V^JS^JE^JL I T K^JA^JV A^JA^JS^JK E^J R^JS^JG^JV^JS L^JA^JL^JK^JK^JL^JA A^JA G^JY^JD V^JE^JK^JN^JN^JS^JR I K^JL^JG^JL K^JS^JL^JV^JS^JK G^JT^JL V^JQ^JT^JK G T G^JA S G_LS^JF^J K L N^JK K A A S G^JE A_LK P K^JA K K A_LG_LA A_LK A K_LK P A G A_LA K_LK P K_LK_LA T G A A_LT P K_LK_LS_LA_LK_LK T P_LK_LK_L A K_LK P A A A_LA_LG_LA_LK K K K K A_LK P K T A_LK P_LK A A_L K P_LK_LK A_LA_LA_LK K K

H120acT146ph asyn

ac-S E T¹A P A A P A¹A A P P A E K¹A P V¹K¹K¹K¹A¹A¹K¹K¹
A¹G¹G¹T P¹R¹K¹A S¹G P P V¹S¹E¹L I T¹K A¹V¹A¹A¹S¹K E¹
R¹S¹G V¹S¹L¹A¹A¹L K¹K¹A L A A A G Y¹D V¹E¹K¹N¹N¹S R
I K¹L G¹L K S¹L V S K G T L V Q¹T K G T G A S G S F
K L N K K A A S GLE ALK P K V K K A G G TLK P KLK P
V GLA A K K P KLKLA A G G ALT^{P¹} P K K S A K K T P K K
A K K P A A A T V T K K V A K S P KLKLALK V ALK PLKL
KLALALKLSLALK A VLK P K A ALK PLK V VLK PLKLK ALA
PLK K K

H14acph_asyn

ac-S E^IT^IA P A A P A A P A P A P A E K T P V K K K^IA^IR K S A G A^IA K^IR^IK^IA S G P P V S^IE L I T K A V A^IA^IS^IK E^I R S G^IV S_L A^IA^IL K K^IA^IL^IA A A G Y^ID V E^IK N^IN S R I K^IL^IG^IL K S^IL^IV S K G T L V^IQ_LT^IK G T G A S G^IS^IF^I K L N_LK K A A S G^IE A_LK P_LK^IA K K A_LG^IA A_LK K K P A G_LA A_LK_LK P K^IK_LA T_LG A A_LT P K_LK_SA_LK K T P K_LK^I A K_LK P_LA A_LA_LG_LA_LK K_LA K^IS P_LK_LK_LA_LK_LA_LK P K_LK A A P K S P_LA_LK_LA_LK A V_LK P K_LA A_LK P K T A_LK P_LK A A_L K P_LK_LK A_LA_LA_LK K K

H14acphx2_asyn

ac-S E T^IA P A A P A^IA P A P A E K^IT P V K^IK^IK R^IK^IS
A^IG^IA^IK^IR^IK^IA^IS^IG P P V^IS^IE^IL I T^IK^IA V^IA^IA^IS^IK^IE^I
R^IS G V^IS^IL^IA^IA^IL^IK^IK^IA^IL^IA A A G Y^ID V^IE^IK^IN^IN^IS R
I K^IL^IG^IL K S^IL^IV^IS^IK G T L V^IQ^IT^IK G T_IG A S G^IS F^I
K L N K K A A S G^IE A^IK P_IK^IA K K A G_IA A_IK A K_IK P
A G A A K K P K^IK_IA T G A A T P K K_IS A K K T P K_IK_I
A K K P A A A_IA_IG_IA_IK_IK K K^IS^I P_IK_IK_IA_IK A A_IK P K K
A P K_IS^I P_IA_IK_IK_IA K V_IK P_IK A A_IK P K T A_IK P_IK A A_I
K P_IK_IK A_IA_IA_IK K K

H12ac_s phase

ac-S E TÌA P A A P AÌA A P P A E KÌA P VÌKÌKÌKÌAÌAÌKÌKÌ A GÌGÌT PÌRÌKÌAÌSÌG P P VÌSÌEÌL I T KÌAÌVÌAÌAÌSÌK EÌ RÌSÌG VÌSÌLÌAÌAÌLÌKÌKÌAÌL A A A GÌYÌD VÌEÌKÌNÌNÌS R I KÌL GÌL K SÌL V S K G T L VÌQÌTÌK G T G A S GÌS F K L N K K A A S GÌE ALK P K V K K A G G TLK P KLK P V G ALA KLK P KLKLA A G G ALT P K KLSLA K KLT P KLK A KLK P A A A TLVLTLKLK V A KLS P KLKLA K V ALK PLKL KLALA KLSLALALK A VLK P K A ALK PLK V VLK PLKLK ALA PLK K K

H12acph_s phase

*** S E T A P A A P A A A P P A E K¹A P V K¹K¹A¹A¹K¹K¹ A¹G¹G¹T P R¹K A S¹G P P V¹S¹E¹L I T¹K A V¹A A¹S¹K E¹ R¹S¹G V¹S L¹A¹A¹L K¹K¹A L A A A G Y¹D V¹E¹K¹N¹N¹S R I K¹L G L K S L V S K G T L V¹Q T K G T G A S G S F K L N K K A A S G₁E A₁K P K V K K A G G T₁K P K₁K P V G A A K K P K₁K₁A A G G A T P K K₁S₁A K K T P K₁K A K₁K P A A A T₁V₁T₁K₁K V₁A K₁^{S¹} P K₁K₁A₁K V A₁K P₁K₁K K₁A₁A K₁S₁A₁A₁K A V₁K P K A A₁K P₁K V V₁K P₁K₁K A₁A P₁K K K

H12acT146ph s phase

Figure S2

Figure S2 H14acph s phase

ac-S ETA PA A PA A PA PA E KT P V K K KA R K S A G A¹A K¹R¹K¹A S¹G P P V¹S¹E L I T¹K A V¹A¹A¹S¹K E¹ RISIGIV S LIAIA L KIKIAILIA A AIG YID VIEIKININISIR I K¹L¹G¹L K S¹L¹V³S¹K G T¹L V¹Q¹T¹K G T G A S G³F¹ K L'N K K A A S G E A K P K A K K A G A A K A K K P ALGIALALKIK P KIKLA TIG A ALT P KIKLSIALK K T PIKIKI Α ΚΙΚ Ρ Α Α ΑΙΑΙGΙΑΙΚΙΚΙΑ ΚΙ^S Ρ ΚΙΚΙΑΙΚΙΑΙΚ Ρ ΚΙΚ ΑΡΚ ΣΡΙΑΙΚΙΑΙΚΑ VΙΚΡΙΚΙΑΑΙΚΡΚΤΑΙΚΡΙΚΑΑΙ Κ Ρ**ι**κ**ι**κ Α**ι**Α**ι**Α κ κ κ

H14ph s phase

H14ac s phase

ac-SETAPAAPAAPAEKTPVKKKARKS

Alglalalkirikia sig p p visiel I T kiaivialaisikiei

RISIG VISILIAIAILIKIKIAILIA AIA GIYID VIEIKININIS R

I KILIGIL KISILIVISIK G TIL VIQITIK G TIG A S GIS FI

K L N K K A A S G E A K P K A K K A G A A K A K K P

Α G Α Α ΚΙΚ Ρ ΚΙΚΙΑ Τ G ΑΙΑΙΤ Ρ Κ ΚΙ SΙΑΙΚ Κ Τ ΡΙΚΙΚΙ

A KLK P A A ALALGLALKLK ALKLS PLKLKLALKLA ALK P KLK

ΑΡΚSΡΙΑΙΚΑΙΚΑΥΙΚΡΚΑΑΚΡΚΤΑΙΚΡΙΚΑΑΙ

Κ Ρ**ι**κ**ι**κ Α**ι**Α**ι**Ακ κ κ

setapaapaapapaek¹tpvkkkarks AGAAKIRIKASGPPVISIEILITKAVIAASKEI RSGVSL¹A¹A¹LKKALAAAGY¹DVE¹KN¹N¹SR I K¹LGLKS¹LVS¹KGTLVO¹TKGTGASG¹SF K L N K K A A S G E A K P K A K K A G A A K A K K P A G A A KIK P KIK A TIG A A T P KIKISIA K KIT P KIK Α ΚΙΚ ΡΑΑΑΑ GLA ΚΙΚΑΚΙ ΣΡΙΚΙΚΙΑΙΚΑΑΙΚ ΡΚΙΚ ΑΡΚΙ ΥΡΑΙΚΙΑΙΚΙΑΙ ΥΙΚΡΙΚΑΑΙΚΡΚΤΑΙΚΡΙΚΑΑΙ KPKKAAKKK

MDA-MB-231

H14acph2 s phase

ac-SETAPAAPA ΑΡΑΑΡΑΕΚΊΤΡΥΚΙΚΙΑΙΡΙΚΙSΙ Alglalalklalslg p p visiell i t kla vlalalsikiel RISIG VISILIAIAILIKIKIAILIA A A GIYID VIEIKININIS R I K¹L¹G¹L K S¹L V¹S¹K G T L V¹Q¹T¹K G T₁G A S G¹S F¹ KLNKKAASGEAKPKAKKAGAAKAKKP А G A A KIK P KIKIA T G A A T P K KISIAIK KITIPIK K аккрааајај аккјакј ^{вр} аркі ракачк ркаакритакриаа

H12ac m phase

ac-S Ε ΤΑ Ρ Α Α Ρ ΑΑ Α Ρ ΡΑ Ε ΚΑ Ρ ΥΚΙΚΙΚΙΑΑΚΙ Alglglt plrklalslg p p vlslell i tlk Alvlalalslk el RISIG VIS LIAIAILIKIKIAIL A A A G YID VIEIKININIS R I K¹L G¹L K S L V S K G T L V O¹T¹K G T G A S G S F K L N K K A A S G E A K P K V K K A G G T K P K K P VGALA KLK PKLKLA AGGALT PKKLSLALKKT PKLK A KLK P A A T VLT KLK V A KLS P KLKLA K V ALK PLKL KLALA KLSLALK A VLK P K A ALK PLK V VLK PLKLK ALA ΡͺΚΚΚ

H14ph m phase

setapaapa¹apapaek¹tpvk¹kkarks AGAAKR¹KASGPPVS¹ELITKAV¹AAS¹KE¹ RSGVSL¹AALKKALAAAGY¹DVEKNNSR I KLGLKSLVSKGTLVOTKGTGASGSF K L N K K A A S G E A K P K A K K A G A A K A K K P A G A A K K P K K A T G A A T P K K S A K K T P K K A KLK P A A A GLA K K A KLS PLKLKLALKLA ALK P KLK A P KLS PLALKLALKLA VLK PLKLA ALK P K T ALK PLK A AL К Р К К А А А А К К К

H12acph m phase

ac-SETAPAAPAAAPPAEKAPVKKKAAAAKA Algigit pirikia sig p p visieil iit k aiviaiaisik ei RISIG VIS LIAIAILIKIKIAIL A A A G YID VIEIK NINIS R I K¹L G¹L K S L V S K G T L V O¹T K G T G A S G S F K L N K K A A S G E A K P K V K K A G G T K P K K P ν σ Α Α Κ<u>Ι</u>Κ Ρ ΚΙ<mark>ΚΙ</mark>Α Α G G ΑΙΤ Ρ Κ ΚΙ<mark></mark> SΙΑ Κ Κ Τ Ρ Κ Κ Α ΚΙΚ Ρ Α Α Α ΤΙVΙΤΙΚΙΚ VΙΑ ΚΙ^S ΡΙΚΙΚΙΑΙΚ V ΑΙΚ ΡΙΚΙ KLALALKISLALALK A VLK P K A ALK PLK V VLK PLKLK ALA РККК

H14ac m phase

ac-SETAPAAPAAPAPAEKTPVKKKARKS AIGIA A K RIKIA SIG P P VISIEIL T TIKIA VIAIAISIKIEI RISIGIVISILIAIAILIKIKIAILIA AIA G YID VIEIKININISIR I K^JL G^JL K^JS^JL^JV^JS^JK^JG T^JL V^JQ^JT^JK G T G^JA S G^JS^JF K L N K K A A S G E A K P K A K K A G A A K A K K P ALG A A KLK P KLKLA TLG A ALT P KLKLSLALK K T PLKLK A KLK P ALA ALALGLALKLK ALKLS PLKLKLALKLA ALK P KLK APKSPLALKAVLKPKAAKPKTALKPLKAAL

H12acT146ph m phase

Figure S2

ас-ЅЕТЪРААРААРРАЕКЪРУЖЖЪЪЪЖЖ Algigit pirikia sig p p visieil iit k aiviaiaisik ei RISIG VIS LIAIAILIKIKIAIL A A A G YID VIEIK NINIS R I K¹LG¹LKSLVSKGTLVQ¹TKGTGASGSF K L N K K A A S G E A K P K V K K A G G T K P K K P VGAAKLKPKLAAGGALTPKKSAKKTPKK ΑΚΚΡΑΑΑΤΥΤΚΚΥΑΚΣΡΙΚΙΑΙΚΥΑΙΚΡΙΚΙ KIAIAIKISIAIAIKA VIK P KA AIK PIK V VIK PIKIKAIA Р∎ККК

H14acph m phase

ac-SETAPAAPAAPAPAEKTPVKKKARKA A GIAIAIKIRIKIA SIG P P VISIEIL I TIKIAIVIAIAISIK EI RISIGIVISILIAIAILIKIKIAILIA AIAIGIYID VIEIKININIS R I K¹L¹G¹L K S¹L¹V¹S¹K G T L V¹Q¹T K G T G A S G³F¹ K L'N K K A A S G E A K P K A K K A G A A K A K K P A GLA A KLK P K KLA TLG A ALT P KLKLSLALK K T P KLK Α Κ Κ ΡΙΑ Α ΑΙΑΙGΙΑΙΚΙΚΙΑ ΚΙ^S ΡΙΚΙΚΙΑΙΚΙΑΙΚ ΡΙΚΙΚ A P K S PLALKLALKLA VLK PLKLA ALK P K T ALK PLK A AL K PLKLK ALALAK K K

K PLKLK ALALAK K K

Figure S2

H14acph2_m phase

ac-S E TÎA P A A P AÎA PÎA P A EÎKÎT P V KÎKÎKÎAÎRÎKÎSÎ AÎGÎAÎAÎKÎRÎKÎAÎSÎG P P VÎSÎEÎL I TÎKÎAÎVÎAÎAÎSÎK EÎ RÎSÎG VÎSÎLÎAÎAÎLÎKÎKÎAÎLÎA A A GÎYÎD VÎEÎKÎNÎNÎS R I KÎLÎGÎL KÎSÎLÎVÎSÎK G T L VÎQÎTÎK G TLG A S GÎSÎFÎ K LÎNÎK K A A S GÎE AÎK PLKLA K K ALGLA ALK A KLK P A G A A KLK P KÎKLA T G A A T P K KLS A K K T P KLKL A K K P A A ALALGLALK KLA KLÎSÎ P KLKLALK A ALK P K K A P KLÎS PLALKLALK A VLK PLK A ALK P K T ALK PLK A AL K PLKLK ALALALK K K

H14acph3_m phase

**-S E TJA P A A P A A P A P A P A E KJT PJV KJKJKJRJKJSJ AJGJAJA KJRJKJA SJG P P VJSJEJL I TJKJA VJAJAJSJK EJ RJSJGJVJSJLJAJAJLJKJKJAJLJA A A G YJD VJEJKJNJNJS R I KJLJGJL K SJLJVJSJK G T L VJQJTJK G T G A S GJSJFJ K L NJK K A A S GJE AJK PJKJA K K A GLA AJK A K K P A G A A KLK P KJKLA T G A A T P KLKJSLALKLKLT P KLKL A K K P ALALAJAJGJALKLKLA KLS PLKLKLALK A AJK PLKLK A P KLS PLAJKLALK A VLK PLK A AJK P K T ALK PLK A AL K PLKLKLALALK K K

H14acph4 m phase

ac-S E TÌA P A A P A A P A P A P A P A P A'E KIT PÌV KÌKÌKÌAÌRÌKÌSÌ AÌGÌAÌAÌKÌRÌKÌAÌSÌG P P VÌSÌEÌL IÌTÌKÌAÌVÌAÌAÌSÌK EÌ RÌS G VÌSÌLÌAÌAÌLÌKÌKÌAÌLÌA A A G YÌD VÌEÌKÌNÌNÌS R I KÌLÌGÌL K SÌLÌVÌSÌK G T L VÌQÌTÌK G T GÌA S GÌSÌFÌ K L N K K A A S GÌE AÌK P KÌA K K ALGLA ALK A KLK P A G A A KLK P KLKLA T GLA A T P K KLS A K K T P KLKL A KLK P ALALALGLALKLA KLS PLKLKLALKLA ALK PLKL A P KLS PLALKLALKLA VLK PLK A ALK PLK T ALK PLK A AL K PLKLKLALKLA K

H14acph5_m phase

Figure S3

MCF-10A

H12 ac_asyn

ac-s e t a p a a p a a a p p a e k¹a p v k k¹k¹a a¹k¹k A¹G¹G¹T p R¹k a S¹G p p v¹S¹E¹L I t k a v¹a¹S¹K²I R¹S¹G v¹S¹L¹A¹A¹L k¹k a L a a a G y¹D v¹E¹k¹N¹N¹S R I k¹L G L K S L V S K G T L v¹Q¹T K G T G A S G S F K L N K K A A S G¹E A K P K V K K A G G T¹K P K K P V G A A K¹K P K K¹A A G G A¹T P K K S A K K T P K K A K¹K P A A T V¹T¹K¹K V A K¹S P K¹K¹A K V A¹K P K K A A K¹S¹A¹A¹K A V¹K P K A A¹K P K V V K P K K A¹A

H12 acph_asyn

ac-s e tîa p a a p a a a p p a e kîa p vîkîkîkîaîaîkîkî Algîgît pîrîkîa sîg p p vîsîell i tîkîa vîaîaîsîk eî Rîsîg v s lîaîa l kîkîa l a a a g yîd v eîk nîn s r I kîl gîl k s l v s k g t l v qît k g t g a s g s f K l n k k a a s gle alk p k v k k a g g t k p k k k V g a a k k p klkîa a g g a t p k kisîa k kit p kiki a kik p a a alt vitikîk via ki^{şî} pikikîaîk v alk p k K la a kisîaîka vik p k a alk pik v vik pikîk ala

H12SNPac_asyn

ac-S E TÌA P A A P A A A P P A E KÌV PÌVÌKÌKÌKÌAÌAÌKÌKÌ A GÌGÌT P RÌK AÌSÌG P P VÌSÌEÌL I TÌK A VÌA AÌSÌKÌEÌ RÌSÌG VÌSÌLÌAÌAÌLÌKÌKÌAÌL A A A G YÌD VÌEÌKÌNÌNÌS R I KÌLÌGÌL KÌSÌL VÌSÌK G T L VÌQÌT K G T G A S GÌS FÌ K L N K K A A S GLE ALK PÌK V K K A G G TLK P KLK P V G A A KLK P KLKLA A G G ALT P K KLS A K K T P K K A K K P A A A TLVLTLKLK V A KLS P KLK A K V A K PLK K A A KLSLALALK A VLK P K A ALK PLK V VLK P K K ALA PLK K K

H12SNPacph_asyn

H13 ac_asyn

H14ac asyn

ac-S E T A P A A P A A P A P A P A E K¹T P V K¹K¹K¹A¹R¹K¹S¹ A¹G¹A¹K¹R¹K¹A¹S¹G P P V¹S¹E¹L I T K¹A V¹A¹S¹K²I¹ R¹S¹G¹V¹S¹L¹A¹A¹L¹K¹K¹A¹L¹A A¹A G¹Y¹D V¹E¹K¹N¹N¹S R I K¹L¹G¹L K S¹L¹V¹S¹K G T L V¹Q¹T¹K G T G A S G¹S¹F K L N K K A A S G¹E A K P KLA K K ALGLA ALK A KLK P A G A A KLK P KLKLA T G A ALT P KLKLSLA K K T P KLK A KLK P A A ALALGLALK K A KLS PLKLKLAKLA ALK P KLK A P KLS PLALKLALK A VLK P K A ALK P K T ALK PLK A AL K PLKLK ALALK K K

MCF-10A

H14acph_asyn

ac-s e tîa p a a p aîa pîa pîaîe kît p v kîkîkîaîrîkîsî Algîaîaîkîrîkîaîsîg p p vîsîell lîtîkîaîvîaîaîsîkê Rîsîgîvîsîlîaîaîlîkîkîaîlîa a a gîyîd vîeîkînînîs r I kîlîgîl k sîlîvîsîk g t l vîqîtîk g t g a s gîs fî K l n k k a a s gîe aîk pikia k k aigîa aik a kik p A g a a kik p kikia t g a alt p kikisia k k t p kiki A k k p ala alagîalk kia ki^s p kikiaikala k p k k A p k s piaikîaîk a vik p k a alk p k t alk pik a al K pikik alaşîk k k

H14acph2_asyn

ac-S E TÌA P A A P AÌA P A PÌA E KÌT P V KÌKÌKÌAÌRÌKÌSÌ AÌGÌAÌAÌKÌRÌKÌAÌSÌG P P VÌSÌEÌL IÌTÌKÌAÌVÌAÌAÌSÌKÌEÌ RÌS G VÌSÌLÌAÌAÌLÌKÌKÌAÌLÌA A A GÌYÌD VÌEÌKÌNÌNÌS R I KÌLÌGÌL K SÌL VÌS K G T L VÌQÌTÌK G TLG A S GÌSÌF K L N K K A A S GÌE A K P K A K K A GLA ALK A K K P A G A A KLK P KLKLĂ T G A ALT P K KLS A KÌKLT P K KL A KLK P A A ALALGLALKLK A KLS P KLKLALK A ALK P K K A P KLS PLALKLALK A VLK PLK A ALK P K T ALK PLK A AL K PLKLK ALALALK K K

Figure S3 H14acph3 asyn

ac-s e tî a p a a p a a p a p a p î a e kîtî p v kîkîk a rîkîs aîgî a a kîrîk a sîg p p vîsîeîl i t k a vîaîaîs k eî Rîs g vîs lîaîaîl kîkî a l a a a g yîd vîeîkînînîs r i kîl gîl k s l v sîk g t l vîq t k g t g a s g s f k l n k k a a s gîe a k p k a k k a g a a k a k k p a g a a k k p k kla t g a a t p k kls a k k t p k k a k k p a a alalgî a k kla kl^îsî p klkîalk a alk p k k a p kl^îs plalkî k k

MCF-10A s phase

H12ac_s phase

**-S E T A P A A P A A A P P A E K¹A P V¹K K¹K¹A¹A¹K¹K¹A¹G¹G¹T P R¹K A S¹G P P V¹S¹E¹L I T¹K¹A¹V¹A¹S¹K²F¹ R¹S¹G V¹S¹L¹A¹L¹K¹K¹A¹L A A A G¹Y¹D V¹E¹K¹N¹N¹S R I K¹L¹G¹L K S¹L¹V S¹K G T L V¹Q¹T¹K G T G A S G¹S F K L N K K A A S G¹E A K P K V K K A G G T₁K P K₁K P V G A A K₁K P K K₁A A G G A₁T P K₁K₁S A K K T P K₁K A K K P A A A T V₁T₁K₁K V A K₁S P K₁K₁A K V A₁K P₁K₁ K₁A A K₁S₁A₁A₁K A V₁K P K A A₁K P₁K V V₁K P₁K₁K A₁A

H12acph_s phase

ac-S E T A P A A P A A A P P A E K¹A P V K K¹K¹A A¹K¹A A G¹G¹T P R K A S¹G P P V¹S¹E¹L I T K A V¹A A S¹K E¹ R S G V S L¹A¹A L K¹K A L A A A G Y¹D V E K N N S R I K L G L K S L V S K G T L V Q¹T K G T G A S G S F K L N K K A A S G₁E A K P K V K K A G G T K P K K P V G A A K K P K K A A G G A T P K K¹S A K K T P K K A K K P A A A T¹V¹T¹K K V¹A K¹S P K¹K¹A¹K V A¹K P K K A A K¹S¹A¹K A V¹K P K A A¹K P K V V¹K P K K A¹A P¹K K K

H12SNPac_s phase

ac-S E TÌA P A A P A A P P A EÌKÌV PÌVÌKÌKÌKÌAÌAÌKÌK A GÌGÌT P RÌKÌA SÌG P P VÌSÌEÌL I TÌKÌA VÌAÌAÌSÌKÌEÌ RÌSÌG VÌSÌLÌAÌAÌLÌKÌKÌAÌL A A A G YÌD VÌEÌKÌNÌNÌS R I KÌLÌGÌL KÌSÌLÌVÌSÌK G T L VÌQÌT K G T G A S GÌS FÌ K L N K K A A S GÌE ALK PÌK V K K A G G TLK P KLK P V GLALA KLK P KLKLA A G G ALT P K K S A K K T P KLK A K K P A A A TLVLTLKLK V A KLS P KLKLALK V A K PLK KLA A KLSLALALK A VLK P K A ALK PLK V VLK PLK K ALA PLK K K

PLKKK

MCF-10A H13ac_s phase

ac-S E TÎA PÎL A P T I P A P A E KÎT P V KÎKÎKÎAÎKÎK A
GÎAÎTÎAÎGÎKÎRÎK A S G P P VÎSÎEÎL I TÎKÎA VÎA AÎSÎK
EÎRÎSÎG V SÎLÎAÎAÎL KÎKÎAÎL A A A G YÎD VÎEÎKÎNÎNÎS
R I KÎLÎGÎL K S L VÎS K G T L VÎQÎTÎK G T G A S GÎS
FÎK L N K K A A S GÎE GÎK P K_LA K K A G A A K P R K
P A G A A K K P K_LK V A G A A T P K K_LS I K K T P K_L
K V K K P A T_LA A_LG_LT_K_LK V A K_LS_LA_LK_LK_LV K_LT P_LQ P
K_LK_LA_LA K_LS P A_LK_LA K A P_LK K K

H14ac_s phase

ac-S E TÌA PÌA A P AÌA PÌA P A E KÌT P V KÌKÌKÌAÌRÌKÌSÌ AÌGÌAÌAÌKÌRÌKÌAÌSÌG P P VÌSÌEÌL IÌTÌKÌAÌVÌAÌAÌSÌKÌEÌ RÌSÌG VÌSÌLÌAÌAÌLÌKÌKÌAÌLÌA A A GÌYÌD VÌEÌKÌNÌNÌS R I KÌLÌGÌL K SÌLÌVÌSÌK G TÌL VÌQÌTÌK G T G A S GÌS FÌ K L N K K A A S GÌE ALK PLKLA K K ALGÌA ALK A KLK P A G A A KLK P KLKLA TLG A ALT P KLKLSLA K KLT PLKLK A KLK P A A ALALGLALKLK A KLS PLKLKLALKLA ALK P K K A P K S PLALKLA K A VLK P K A ALK P K T ALK PLK A AL K PLKLK ALALALK K K

Figure S3 H14acph_s phase

***-S E TJA P A A P AJA P A P A E KJT P V KJKJKJAJRJKJSJ AJGJAJAJKJRJKJAJSJG P P VJSJEJL IJTJKJAJVJAJAJSJKJEJ RJSJG VJSJLJAJAJLJKJKJAJLJA A A GJYJD VJEJKJNJNJS R I KJLJGJL K SJL V SJK G T L VJQJT K G T G A S GJS F K L N K K A A S GJE ALK PLKLA K K ALGLA ALK A KLK P A G A A KLK P KLKLA T G A A T P K KLS A K K T P KLK A K K P A A ALALGLALK KLA KLS P KLKLALKLA ALK P KLK A P K S PLALKLALK A VLK P K A A K P K T ALK PLK A AL K PLKLK ALALALK K K

H14acph2_s phase

ac-S E TÎA P A A P AÎA P A P A E KÎT P V KÎKÎKÎAÎRÎKÎSÎ AÎGÎAÎAÎKÎRÎKÎAÎSÎG P P VÎSÎEÎL I TÎKÎAÎVÎAÎAÎSÎKÎEÎ RÎSÎGÎV SÎLÎAÎAÎLÎKÎKÎAÎLÎA A A GÎYÎD VÎEÎKÎNÎNÎS R I KÎLÎGÎL K SÎLÎVÎSÎK G T L VÎQÎTÎK G TLG A S GÎS FÎ K L NÎK K A A S GÎE AÎK P K A K K A GÎA ALK A K K P A G A A K K P KLKLA T G A A T P K KLS A K K T P KLKL A K K P ALA ALALGLALK KLA KL^S P KLKLALK A ALK P K K A P KL^S PLALKLA K A VLK PLK A ALK P K T ALK PLK A AL K PLKLK ALALALK K K

Figure S3

MCF-10A m phase H14ac_m phase

ac-S E T A P A A P A A P A P A P A E K¹T P V K¹K¹A¹R¹K¹S
A¹G¹A¹A K¹R¹K¹A S¹G P P V¹S¹E¹L I T K¹A V A¹A¹S K E¹
R S G V S L¹A A L K K A L A A A G Y¹D V E K N N S R
I K L G L K S L V S K G T L V Q T K G T G A S G S F
K L N K K A A S G₁E A K P K A K K A G A A K A K K P
A G A A K K P K K₁A T G A A T P K K S A K K T P K K
A K K P A A A A G A₁K K A K₁S P₁K₁K₁A₁K A A₁K P K K
A P K S P A₁K₁A K A V₁K P K A A₁K P K T A₁K P K A A₁

H14acph3 _m phase

ac-S E T A P A A P A A P A P A P A P A E K T P V K K K A R K S
A G A A K R K A S G P P V S E L I T K A V A A S K E
R S G V S L A A L K K A L A A G Y D V E K N N S R
I K L G L K S L V S K G T L V Q T K G T G A S G S F
K L N K K A A S G E A K P K A K K A G A A K K K P
A G A A K K P K K A T G A A T P K K S A K K T P K K
A K K P A A A A A G A K K P K K K S P K K K S P K K K P K K K
A P K S P A K K K K

H14acph _m phase

ac-S E T A P A A P A A P A A P A E K T P V K K K A R K S A G A A K R K A S G P P V S E L I T K A V A A S K E R S G V S L A A L K K A L A A A G Y D V E K N N S R I K L G L K S L V S K G T L V Q T K G T G A S G S F K L N K K A A S G E A K P K A K K A G A A K A K K P A G A A K K P K K A T G A A T P K K S A K K T P K K A K K P A A A A A A A A S P K A K K S P K K A K K P K K A P K S P A K A A V K P K A A K P K T A K P K A A K P K K A A A K K

H14acph2 _m phase

ac-S E TÌA P A A P A A P A P A P A E KÌT P V KÌKÌKÌAÌRÌKÌSÌ AÌGÌAÌAÌKÌRÌKÌA SÌG P P VÌSÌEÌL I T KÌA VÌA AÌSÌK EÌ RÌS G V S LÌAÌA L KÌKÌA L A A A G YÌD VÌE KÌNÌN S R I KÌL G L K SÌL V S K G T L V QÌT K G T G A S G S F K L N K K A A S GLE A K P K A K K A G A A K A K K P A G A A K K P K KLA T G A A T P K K S A K K T P K K A K K P A A ALALGLA K KLA KLS P KLKLALK A ALK P K K A P KLS PLALKLA K A VLK P K A ALK P K T ALK PLK A AL K PLKLK ALALALK K K

H14acph4 _m phase

ac-S E T A P A A P A A P A P A P A E KIT P V KIKIK A RIKIS AIGIAIA KIRIKIA SIG P P VISIEIL I T KIA VIA AIS K EI RIS G VIS LIAIA L KIKIAIL A A A G YID VIEIKININIS R I KIL GIL K SILIV S K G T L VIQITIK G T G A S GIS FI K L N K K A A S GJE A K P K A K K A GLA A K A K K P A G A A K K P KLK A T G A A T P K KLS A K K T P KLKL A K K P A A ALALGLALK K K K S P KLKLALK A ALK P K K A P KLS PLALKLALK A VLK P K A ALK P K T ALK PLK A AL K PLKLK ALALALK K

H14acph5 _m phase

ac-S E T A P A A P A A P A P A P A E K T P V K K A R K S A G A A K R K A S G P P V S E L I T K A V A A S K E R S G V S L A A L K K A L A A A G Y D V E K N N S R I K L G L K S L V S K G T L V Q T K G T G A S G S F K L N K K A A S G E A K P K A K K A G A A K A K K P A G A A K K P K K A T G A A T P K K S A K K T P K K A K K P A A A A G A K K A K F K K A K K P K K S A K K T P K K A P K S P A A A A K K K

