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1 Materials and Methods

1.1 Cell culture

MCF10a cells (ATCC CRL-10317) were maintained in F12/DMEM media (Life Tech-
nologies) supplemented with serum, insulin and hydrocortisol according to (29). For the
analysis of the ERK pathway, MCF10a constitutively expressed the FRET sensor EKARev-
NES (28). This sensor has been optimized for dynamic range (33) and indeed we see up
to 200% increase on the FRET/CFP ratio. Externally delivered EGF (PeproTech Cat. No.
AF-100-15) was used to generate EKR response. Analysis of Ca2+ pathway was done
by loading cells with 1 µM Fluo-4 using PowerLoad (Life Technologies) loading solution
according to manufacturer’s instructions. Calcium pathway was activated through exter-
nally delivered ATP (Teknova Cat. No. A1204). All experiments were performed in Hepes
buffer containing 5 mM KCl, 125mM NaCl, 1.5 mM MgCl2, 1.5mM CaCl2, 50 mM Hepes,
10mM Glucose, pH 7.4, at 37oC.

Before cell activation, MCF10A were cultured overnight in 96 well plate in assay media
(as previously described in (29). The following day, cells were stained with 0.5µM Hoechst
(Invitrogen Cat. No. 21492) in assay media for 30 min before imaging. For the inhibitor
study, indicated doses of UO126 (Cell Signaling Technology) were also added. After 30
min, assay media was replaced with Hepes buffer (supplemented with UO126 in inhibitor
study) before the cells were imaged on a prewarmed stage (37C). Before adding EGF (or
ATP) cells were imaged for 10 (or 1) minutes to establish a baseline. To correct for possible
cell response to the shear forces generated from pipetting during media switch, Hepes
buffer of the same volume as stimuli was added to the control wells.

RAW267.4 cells ATCC TIB-71) were maintained in a DMEM (CellGro 10-013) medium
supplemented with 10% fetal bovine serum, 20mM HEPES, and 1x penicillin/streptomycin.
Analysis of NFκB was done by sequentially transducing RAW cells to create a stable line
with lentivirus vectors containing EYFP-RelA (driven by the native RelA promoter) and
H2B-mCherry. Double-stable lines were made by successive selection, then further FACS-
enriched. Cells were used in imaging from passage 16 to passage 20, then discarded. 20
hours prior to experiment start, cells were replated in Ibidi 8-well -slide at a density of
50,000/sq. cm. 2 hours before the experiment, 1/3 of the total media volume was drawn off
and mixed with stimulus (LPS, Sigma B5:055 Cat.No. L2880), which was then injected
into the chamber precisely at experiment start.

1.2 Image acquisition and analysis of single cell responses

Analysis of information transmission of dynamic vector responses can only be done
from single live cell measurements. Furthermore, the analysis algorithm developed in this
report is based on the estimation of the probability density for each cellular response based
on its degree of similarity to the response of cells with very similar responses. While
the algorithm corrects for sample size using a jackknife procedure to eliminate possible
bias, we have empirically found that robust estimation substantially benefits from a large
sample size. Therefore, a key technical aspect of this work is the ability to collect very large
numbers of single cell responses. To that goal we have optimized both the image acquisition
and analysis to increase the sample size without compromising on measurement accuracy.
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Below we outline the key steps that were taken to allow the collection of the signaling
responses of 910,121 cells overall.

1.2.1 Image acquisition of MCF10A cells Ca2+ and ERK pathways

The image acquisition was done in a 96-well plate format (Coaster 3094) on a Nikon Ti
microscope using a 10x 0.45NA Plan Apo objective. To increase the number of cell images
the camera that was used (Zyla 5.5 sCMOS camera, Andor) has a large sensor size (21.8
mm). Furthermore, an additional de-magnifying 0.7x optovar was in the light path. The
microscope was controlled through custom software written in Matlab that uses the open-
source micro-manager (30) as the driver layer that controls the hardware. Image acquisition
was completely automated and relied on the Nikon Perfect Focus (PFS) to perform multi-
well imaging while maintaining focus. The custom software performed periodic checks
to verify that focus is maintained. To speed up image acquisition and minimize photo-
damage and photo-bleaching, the acquisition rate of each channel was determined based
on the need, where the channels that were used for measurement were acquired at every
time point, whereas the channels that were used for image segmentation were acquired
at 8x slower rate. To minimize background, cells were imaged in Hepes buffer for short
period of time (< 1 hour).

1.2.2 Image acquisition of RAW 267.4 cells NFκB pathway

Cells were incubated and imaged every 5 minutes using a Zeiss AxioVert fitted with
a 40x oil-immersion objective, LED fluorescence excitation, and CoolSnap HQ2 camera.
We collected DIC, mCherry, and YFP images over 18.5 hours at 12 stage positions per
experimental condition.

1.2.3 Image analysis of MCF10A Ca2+ and ERK pathways

Fully automated image analysis pipelines are essential to maintain throughput of data
collection (39) and extract single cell response profiles from the raw images. An overview
of the analysis of MCF10a data is shown in Fig. S1. The analysis was based on three
stages: image correction (I), image segmentation and tracking (II), and cell measurements
(III).

I. Image Correction. Images were corrected for three well known issues during ac-
quisition: uneven illumination, background fluorescence, and stage jitter/drift. Uneven
illumination is a result of the large imaging area. To correct for uneven illumination, each
combination of channel and objective on the microscope was calibrated to estimate the spa-
tial distribution of excitation intensity using wells containing an Alexa dye that matched the
excitation and emission filters for that channel. Images were corrected for systemic shift
(Zyla 5.5 adds 100 to all pixels to avoid negative values) and were divided by the estimated
value of illumination. The resulting images had flat intensity as was verified by looking
at the average intensity of cell stained with CellTracker dyes at multiple wavelengths. To
remove any signal not resultant from cellular fluorescence we further estimated and sub-
tracted the remaining background. Background estimation was done by first dividing the
image into blocks of approximately 128x128 pixels each. In each of the blocks the mini-
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mum intensity was measured to produce a 16x16 matrix that was then resized using bilinear
interpolation to produce the estimated background. To correct for possible drift over time
images were registered to the initial image. To register the image we identified the transla-
tion matrix using normalized cross correlation analysis of the center of the Hoechst image
as it provided the most robust signal. Since Hoechst was imaged at lower frequency than
other channels, drift was assumed to be of constant speed and channels that were imaged
more frequently than Hoechst were corrected accordingly.

II. Image segmentation and tracking. Images were segmented to first identify the nuclei
based on Hoechst staining. First, each image was converted into a binary mask using Otsu’s
method (37) on the log transform of the intensity. Since cells were imaged at confluence,
separation of nuclei was not complete, i.e. there were situation where nuclei were overlap-
ping. Therefore we utilized a marker controlled watershed approach. The nuclei image was
first eroded using a 5x5 local neighborhood as the structural element. The eroded image
intensity was higher at the center of the nuclei than at its edges. Further smoothing the
eroded image with a 2D Gaussian filter converted each nuclei into a local hill. Simple peak
detection, followed by rejection of peaks of small magnitude allowed us to find a single
marker pixel per nuclei. Geodesic distance transformation from the marker pixels followed
by watershed operation over the binary image created from Hoescht staining segmented
overlapping nuclei into individual nuclei with separate regions in the label matrix. Figure
S2 shows a region of the nuclei image going through several of the above transformation.
In the case of ERK pathway, additional segmentation step was taken to assign cytoplasmic
pixels to each nucleus based on proximity (Fig. S3). The proximity measure allowed accu-
rate assignment of more than 50% of the pixels in each cell. Using median statistics for the
measurements of intensity, together with the fact that MCF10a cells grown to confluence
show relatively constant intensity across the cell area, allowed for accurate measurement of
individual cell intensity. To make sure this was the case, cells whose cytoplasmic EKARev
intensity was too small compared to the nuclear signal or showed high variability were
excluded from the analysis. Cells where tracked over time to allow us to create the mul-
tivariable vector responses for each cells that represent their signaling response. We took
advantage of the fact that MCF10a grown to confluence are grid-locked and do not migrate.
Since the images were registered using nearest neighbor criteria, we achieved very good
matching of cells between frames. Furthermore, over the period that we imaged for (1
hour) the percent of cells that divide was small. Cells whose temporal trajectories were not
compete (i.e. were lost during tracking) were removed from any additional analysis.

III. Cell measurements. For Ca2+ measurements, we used the fluorogenic indicator
Fluo-4. Loading 1 µM of Fluo-4 allowed for very high signal to noise levels and accurate
Ca2+ measurements. Since Fluo-4 and Ca2+ increase in the cytoplasm as well as the
nucleus, we used the nuclear labels segmented based on Hoescht staining as described
above as the region for measurement. Acquisition of Ca2+ data was done one well at a
time for 15 min each.

For ERK measurements, the median FRET signal per cell was calculated based on the
measured FRET channel (CFP excitation, YFP emission) corrected for bleed-through from
Cyan and Yellow channels based on previous calibration of bleed-through in our system
divided by the CFP intensity in the Cyan channel. We found that the expressed CFP con-
tributes substantially to the FRET channel whereas YFP had only minimal contribution
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(∼ 2%). To increase imaging throughput and minimize photo-damage to the cells, the Yel-
low channel was imaged at 8-fold lower frequency. The missing values for bleed-through
correction were estimated by interpolation. This was partially justified by the very low
(2%) bleed-through measured during calibration. Overall the experimental and analysis
pipeline described above was optimized for accuracy and throughput and it allowed us to
measure very large samples of the dynamic Ca2+ and ERK responses in thousands of cells
per experiment.

1.2.4 Image analysis of RAW 267.4 cells NFκB pathway

Image analysis consisted of 5 major steps: cell identification (phase/DIC) (I), nucleus
identification (II), nucleus tracking/error correction (III), shape-based segmentation (IV),
and NFκB measurement (V).

I. Cell identification. Vertical and horizontal Sobel edge transformations were calcu-
lated of cells in brightfield images (Fig. S4A-B): a custom speckle-noise-based threshold
of the combined edge magnitude image formed the basis for foreground-vs-background de-
termination (Fig. S4C). To better identify spread cells with weak outer edges, we used the
preliminary masked Sobel image to ”mark” edges detected in Gaussian-smoothed images
at multiple scales - marked edges were expanded, then we intelligently filled holes and gaps
to form a final mask (Fig. S4D).

II. Nucleus identification. Due to cellular heterogeneity in both morphology and ex-
pression levels of the H2B-mCherry label, we employed a separate algorithm to identify
the nucleus in H2B-mCherry-labeled macrophages. The search space for nuclei was con-
strained to cell-identified regions from step I. Nuclei were then identified in a two-step
process: first, using the Sobel edge-magnitude transformed image, we iteratively stepped
down the threshold, searching for appropriately round nuclear-shaped objects (Fig. S4E),
and stopping the search in the affected area (identified using a watershed transformation
on the nuclear image). Second, weaker nuclei were identified after searching and ranking
pixels in each remaining watershed region (Fig. S4F)) - appropriately concentric regions
were pulled out and combined with the first set of nuclei. In the final step, we discerned
between pieces of individual nuclei that needed to be combined, versus overlapping nuclei
that needed to be separated, by merging all possible combinations of overlapping objects,
and minimizing the total morphological compactness and eccentricity of the result. In this
way, we could accurately identify the borders of objects possessing a wide range of inten-
sities, where a single threshold would have led to overestimation of bright objects, or loss
of dim ones.

III. Nucleus tracking/error correction. To maintain cell lineages, we applied a tracking
algorithm across 7 frames simultaneously. All possible links were computed between an
object and its viable candidate object in subsequent images. These links were then resolved
based on minimizing distance and morphological similarity (area and perimeter) of the
objects, and combined into ”blocks”, the list of each object’s likely location in each frame.
After making and updating this list of blocks, we used the list to make decisions about cell
fate: division, death, and drift in or out of the frame. Using a stack size of 7 frames made
it possible to identify and correct errors in subsets of frames, such as false positives (Fig.
S5A) or falsely combined nuclei (Fig. S5B-C), voting on fates using information from
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previous and subsequent frames.
IV. Shape-based segmentation. Macrophages are extremely heterogeneous in size and

shape, meaning that existing segmentation techniques were ill-suited to drawing bound-
aries between clusters of cells (Fig. S5E). To aid segmentation, we employed a shape-
based approach where the morphological skeleton was calculated (Fig. S5F) and pruned to
segments connecting nuclei of cells. A distance transform calculated along these pruned-
skeleton segments shows distinct local maxima (Fig. S5G) that generally correspond to
inflection points where one cell touches another. We used these inflection points to inform
the segmentation decision, which was ultimately made by the ”propagate” algorithm (32).

V. NFκB measurement. Raw nuclear intensity traces could not be used directly, as
macrophages experience strong morphological changes in response to LPS. To account for
these changes, we computed both the median value for the pixels contained in the nucleus
of each cell (Fig. 6A), and a value representing the cytoplasm - we chose the upper mode
of the generally bimodal distribution derived from cellular cytoplasmic regions, which cor-
responds to the brighter portion of the cell close to the nucleus. This cytoplasmic function
is insensitive to nuclear translocation events (Fig. 6B), but does show pronounced changes
that were assumed to be indicative of the overall morphological shape of each cell. We
used the cytoplasmic trajectory to fit the changes in nuclear values of each cell - cells were
assumed to be in an off/zero state at time t=0, and at extremely late timepoints (t=12+
hrs). Baseline cytoplasmic/nuclear values from these two timepoints were used to scale
the (smoothed) cytoplasmic trajectory of each cell, such that this scaled cytoplasmic trajec-
tory could then be subtracted from the nuclear trajectory to eliminate the nuclear baseline
change (Fig. S6C). Corrected nuclear traces were then divided by initial cytoplasmic val-
ues, thereby giving the fold-change in nuclear intensity over time.
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2 Information transfer estimation from experimental data

2.1 Algorithm derivation

To derive the algorithm for estimation of information transfer, we first considered the
type of experimental data that we have acquired, which will guide our general approach.
In our signal transduction networks, the input signal S is defined by m discrete levels of
extracellular ligand concentration (S = [s1, s2, ..., sm]). For each input signal si we have ni
output protein trajectories (Ri = [ri1, ri2, ..., rini ]), with each trajectory occupying a single
point in continuous Euclidean space of dimension d, where d is the number of time points
in each output trajectory. Combined, we have N =

∑m
i ni trajectories in our response R

array. The general breakdown of the data is as follows:

S =


s1

s2
...

si
...

sm

 , R =



R1

R2
...
Ri
...
Rm


, si → Ri =



ri1
ri2
...
rij
...
rini


, rij = [rij,1, rij,2, . . . , rij,d]

To estimate the information transfer (I) between an input (S) and an output (R) using
well known formula

I(R;S) = H(R)−H(R|S). (2.1)

we need to calculate Shannon entropies H(R) and H(R|S). The general scheme of our
approach is shown in Fig. S7. First, given that our data is continuous, we need to define
how we will estimate these entropies. For a continuous probability density f(x) of some
observable X , the Shannon entropy is defined as differential entropy

Hdiff(X) = −
∫ ∞
−∞

f(x)log2(f(x))dx. (2.2)

Following change of variable of integration, Equation 2.2 becomes

Hdiff(X) = −
∫ 1

0
log2(f(x))dy. (2.3)

where y =
∫ x
−∞ f(t))dt is the cumulative probability density. We can estimate y by the

cumulative probability distribution of Nx observations using

Hdiff(X) = −
Nx∑
j=1

δjlog2(f(xj)), (2.4)

where δj is the probability of observing xj , P (X = xj).
Using Equation 2.4 as our basis, we will now illustrate how to obtain Hdiff(R|S) and

Hdiff(R), given that our experimental data only contains conditional probabilities of a re-
sponses.
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For the conditional case, Hdiff(R|S), since all ni responses in Ri are equally likely,
δj = 1

ni
, we can estimate probability density of a single response rij directly from all the

other responses to S = si,

Hdiff(Ri|S = si) = −
ni∑
j=1

1

ni
log2(f(Ri = rij |S = si)). (2.5)

Here f(Ri = rij |S = si) represents the probability density of response rij in Ri
given all the other responses ri (in Ri) to the signal S = si. We will explain how to
estimate f(Ri = rij |S = si) later in the derivation. With the probability of a given signal,
qi = P (S = si), we can then sum the conditional entropies of each signal to get overall
conditional entropy,

Hdiff(R|S) =
m∑
i=1

qiHdiff(Ri|S = si) = −
m∑
i=1

qi

ni∑
j=1

1

ni
log2(f(Ri = rij |S = si)). (2.6)

The case of estimating Hdiff(R) requires special attention, since we do not have access
to non-conditional probabilities of responses. The difficulty arises from the fact that our
estimate of non-conditional density of a single response, f(R = r) is dependent on the
probability of the input signals that generated all other responses. One approach is to
estimate probability density that a given response r occurred in response to a given input
signal (sw), for each of the signals in S, by effectively placing that response into Rw and
estimating the probability density for r is if it were also a response to sw. Using total
probability, for every response r in R, we can estimate the probability density within each
set of responses Rw and sum over m such densities multiplied by the probability qw of the
signal that generated responses in Rw, as follows

f(R = r) =
m∑
w=1

qwf(R = r|S = sw). (2.7)

Plugging 2.7 into 2.4, we get

Hdiff(R) = −
m∑
i=1

ni∑
j=1

δijlog2(f(R = rij)). (2.8)

The key difference between f(Ri = rij |S = si) and f(R = rij), is that the former cal-
culates the conditional probability density of a response among all other responses to the
same signal, while the latter estimates non-conditional probability density of the response,
combining law of total probability and conditional probability density of the response be-
longing to each of the subsets of responses Ri. To get δk we must account for the different
probabilities associated with observing responses from different input signals and the num-
ber of responses ni obtained for each input signal:

Hdiff(R) = −
m∑
i=1

qi
ni

ni∑
j=1

log2(f(R = rij)). (2.9)
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Possibly a more intuitive presentation of the above formula using matrix representation
of our data would be

f(R) =



n1



f(R = r11)
...

f(R = r1j)
...

f(R = r1n1)

n2


f(R = r21)

...
f(R = r2n2)

...
f(R = rij)

...



=





f(r11|S = s1) · · · f(r11|S = sm)
... . . . ...

f(r1j |S = s1) · · · f(r1j |S = sm)
... . . . ...

f(r1n1|S = s1) · · · f(r1n1 |S = sm)
f(r21|S = s1) · · · f(r21|S = sm)

... . . . ...
f(rij |S = s1) · · · f(rij |S = sm)

... . . . ...
f(rij |S = s1) · · · f(rij |S = sm)

... . . . ...



˙


q1

q2
...
qm





Hdiff(R) = −

[ n1︷ ︸︸ ︷
q1

n1
,
q1

n1
, . . . ,

q1

n1
, q2n2 , . . . ,

qi
ni
, . . .

]
˙



n1



log2(f(R = r11))
...

log2(f(R = r1j))
...

log2(f(R = r1n1))
log2(f(R = r21))

...
log2(f(R = rij))

...


Now that we have formulas for Hdiff(R) and Hdiff(R|S), we need to estimate the prob-

ability densities f(R = r|S = si) in 2.7 and f(Ri = rij |S = si) in 2.5. This can be
accomplished with the k-nearest neighbor (KNN) estimator,

f(xj |X) =
k

NxVdz(xj |X)dk
(2.10)

where

Vd =
π

d
2

Γ(d2 + 1)
(2.11)

is the the volume of a unit sphere of dimension d (also dimension of xj), Nx is the number
of xj in X , and z(xj)k is the Euclidean distance to the kth nearest neighbor in X from xj
(35).

Applying this estimator to Equations 2.5 and 2.7, we get

Hdiff(R|S) = −
m∑
i=1

qi
ni

ni∑
j=1

log2(
k

niVdz(rij |Ri)dk
). (2.12)
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Hdiff(R) = −
m∑
i=1

qi
ni

ni∑
j=1

log2(
m∑
w=1

qw
k

nwVdz(rij |Rw)dk
) (2.13)

where z(rij |Ri)k is the distance from response rj in Ri to the kth nearest neighbor in
Ri, while z(rij |Rw)k is the distance from response rij in Ri to the kth nearest neighbor in
Rw (Fig. S8). These formulas are very similar to Eqn. 20 in Kraskov et al (34), with the
main difference coming from small error in our estimation of ψ(k) and ψ(n), where ψ(x)
is the digamma function. These estimation errors cancel out, however, when we calculate
the mutual information by taking the difference between conditional and non-conditional
entropies.

Without the knowledge of qi, we are unable to estimate the information transfer I(R;S)
using Equations 2.13 and 2.12. However, the maximum information transfer (C) can be
calculated with

C(R;S) = max
Q
{I(R;S)}, (2.14)

where Q = [q1, q2, ..., qm], such that
∑m

i=1 qi = 1 and qi ≥ 0 (Elements of Information
Theory, 2nd ed.). This corresponds to the maximum possible information transfer between
input S and output R.

2.2 Information transfer estimate validation

To test the accuracy of our algorithm, we decided to compare our estimate to the analyt-
ical value of mutual information. To get the analytical value, we considered 2-input system
with the outputs being multivariate Gaussians with all sigmas equal to 1 and separation
between the two multivariate Gaussians equal to 2 in one of the dimensions and 0 in all
other dimensions (Fig. S9 A). To get the true value of conditional entropy we numerically
integrated the analytical probability density in the dimension where the two multivariate
Gaussians are separated and used the well known formula for the entropy of a multivariate
Gaussian in the other directions: H = 1

2 log2(2πe|Σ|), where |Σ| is the determinant of the
covariance matrix. For our estimates, we used k = 10 for KNN calculation and considered
two sizes of wells (N = 500 and N = 4000) corresponding to the number of cells we
looked at experimentally. First, we looked at the effect of dimension of our estimate of
mutual information up to dimension of 15 (Fig. S9 B). We find pretty good agreement be-
tween our estimate and the true value of mutual information. The absolute error of mutual
information is much less than that of conditional and non-conditional entropy estimates.
(Fig. S9 C). As expected there appears to be a bias in estimation of entropies. However,
this bias results in less than 10% error in mutual information estimation.

Since our estimate introduces a new approach to estimation of non-conditional prob-
ability, we wanted to make sure that the algorithm is not affected by different size wells.
To this effect, for dimension 10, we ran our algorithm for varying sized of well 1 (Fig. S9
D). There appears no bias in this estimate, except for inaccuracies due to small sample size
in bin 1. Next, we considered the separation between the two multivariate Gaussians of
dimension 10 (Fig. S9 D). Again, we find good agreement between our estimate and the
true value of mutual information. Our algorithm appears to slightly overestimate MI for

10



small separation and underestimate for large separation. These effect do not appear to be
significant. Finally, considering different variances in the first dimension of D-10 Gaus-
sians (separation of 2 in the same dimension), we find that our algorithm underestimates
MI in cases where one of the dimensions appears to have very low variance (Fig. S9 F).

To calculate the maximum information transfer, or channel capacity (CC), we used
fmincon function in Optimization ToolboxTM (MATLAB R©) to optimize over possible qi.
We compared our ”bin-less” algorithm in the case of one dimensional Gaussians against
”binned” algorithm described by Cheong et al (12), for increasing separation between the
two Gaussians, again finding very comparable results (Fig. S10A). To correct for sam-
ple size bias, we adapted jackknife sampling procedure similar to Cheong et al (12).
Specifically, we computed information transfer (CC) for sampled fractions of the data
(60%− 100%). Then, plotting CC relative to the inverse of sample size (defined as faction
of all available trajectories), we fitted a straight line to obtain the y-intercept corresponding
to the information transfer for infinite sample size (Fig. S10B). Statistical analysis of jack-
knife shows that our sampling leads to very small variability in channel capacity estimate
(Fig. S11).
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3 Information-theoretic analysis of dynamic signaling

3.1 Signal-to-Noise Ratio (SNR) in single-cell experiments

Suppose that the signaling pathway is characterized by the joint distribution of the scalar
input S and the scalar output R, P (R, S). Let us first compute the non-dimensional signal-
to-noise ratio (SNR) according to the experimental algorithm (see Section 4.3.1). in which
the observed output “signal” R̄ is found by averaging responses from multiple cells within
the same well, i.e. driven by the same input S. Therefore, the signal is given by the formula:

R̄ =

∫
dRRP (R|S) (3.1)

where P (R|S) is the conditional distribution of cellular responses given the input signal S,
P (R|S) = P (R, S)/P (S). The average value of output signals for all input signals S

〈R〉 =

∫
dS P (S)

∫
dRRP (R|S) =

∫∫
dRdS RP (R, S) (3.2)

We define the signal magnitude as the variance of R̄ around its mean value 〈R〉 over all
possible input values S:

σ2
r =

∫
dS P (S)

[∫
dRRP (R|S)

]2

−
[∫∫

dRdS RP (R, S)

]2

(3.3)

The noise magnitude is defined as the average width of the distribution of cellular re-
sponses for a given input S, averaged over S. Experimentally it is computed by first find-
ing a variance of outputs R within the same well, and then averaging this variance over all
wells. Therefore, mathematically it can be defined as

σ2
n =

∫
dS P (S)

[∫
dRR2P (R|S)−

[∫
dRRP (R|S)

]2
]

(3.4)

Then the signal-to-noise ratio SNR is given by the fraction σ2
r/σ

2
n.

3.2 Intrinsic noise and extrinsic variability

Generally, the response R within a single cell is a sum of the deterministic part g(S,P)
that depends on the input S and the K-dimensional vector of parameters P, and the zero-
mean fluctuating component ξ that we will call intrinsic noise

R = g(S,P) + ξ (3.5)

Note that intrinsic noise distribution may also depend on the input signal and the system
parameters. Every cell in a population shares the same functional structure of the signaling
function g(s,P), but the parameters P are a priori unknown and vary from cell to cell. We
associate this uncertainty with extrinsic noise.
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If the input signal and cell parameters deviate weakly from their respective means, we
can linearize the system response function with respect to deviations of the input, parame-
ters, and the output from their respective mean values:

r =
∂g

∂S
s+

K∑
k=1

∂g

∂Pk
pk + ξ (3.6)

Here r = R− 〈R〉, s = S − 〈S〉, pk = Pk − 〈Pk〉. We assume for simplicity that s, pk, and
ξ are independent Gaussian random variables with variances σ2

s , σ
2
pk
, σ2
ξ . Then according

to (3.3),(S21), we obtain the following formulas for the signal magnitude:

σ2
r =

(
∂g

∂S

)2

σ2
s (3.7)

extrinsic noise magnitude

σ2
e =

K∑
k=1

(
∂g

∂Pk

)2

σ2
pk

(3.8)

the total noise magnitude
σ2
n = σ2

e + σ2
ξ , (3.9)

and the signal-to-noise ratio

SNR ≡ σ2
r

σ2
n

=
(∂g/∂S)2 σ2

s∑K
k=1

(
∂g
∂Pk

)2
σ2
pk

+ σ2
ξ

(3.10)

We can also introduce the Intrinsic-to-Extrinsic Ratio (IER)

IER ≡
σ2
ξ

σ2
e

=
σ2
ξ∑K

k=1

(
∂g
∂Pk

)2
σ2
pk

(3.11)

3.3 Information capacity of scalar signaling

Let us compute the mutual information between an input S and a single output mea-
surement R. According to the standard definition (31), the mutual information is given by
the formula

I(R;S) =

∫
dSdR P (R, S) log2

P (R, S)

P (R)P (S)

′
(3.12)

For Gaussian distributions of R and S this general expression reduces to

I(R;S) =
1

2
log2

(
σ2
R

σ2
R|S

)
(3.13)
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where σR is the overall variance of responses and σ2
R|S is the variance of the responses

conditioned by the signal, and then averaged over all signals:

σ2
R =

∫∫
dSdRR2P (R, S)−

[∫∫
dSdRRP (R, S)

]2

(3.14)

σ2
R|S =

∫
dSP (S)

[∫
dRR2P (R|S)−

[∫
dRRP (R|S)

]2
]

=

∫∫
dSdRR2P (R, S)−

∫
dS P (S)

[∫
dRRP (R|S)

]2

. (3.15)

Using (3.6) again, we arrive at the following expressions

σ2
R = σ2

r + σ2
n, σ2

R|S = σ2
n (3.16)

Substituting these in Eq. (3.13), we obtain the standard formula

I(R;S) =
1

2
log2

(
1 +

σ2
r

σ2
n

)
=

1

2
log2(1 + SNR) (3.17)

Note that the scalar mutual information depends only on the overall SNR and is independent
of IER.

3.4 Information capacity of vector signaling

We consider a vector signaling pathway as an input-output system that has a single
scalar input S and generally multi-dimensional vector of outputs {R1, ..., RN}. These out-
puts may represent either values of a single variable taken at different time points, if the
signaling cascades exhibits a non-trivial dynamic behavior in response to the input signal,
or different physical variables (e.g. concentrations of multiple transcription factors activat-
ing downstream circuits), or possibly both (time courses of multiple output variables). We
assume that system depends on K internal parameters {P1, ..., PK} which can vary from
cell to cell however remain fixed over the time (or, more generally, among multiple mea-
surements) for the duration of a particular signaling event. We also take into consideration
that every output variable is perturbed by stochastic fluctuations, and that the downstream
cascades may measure the output with a finite precision. In the following, for simplicity we
assume that these sources of intrinsic noise generate additive and uncorrelated stochastic
contributions {ξ1, ..., ξN}. This system can be written as

R = g(S,P) + ξ (3.18)

where R ∈ RN is the vector of outputs, P ∈ RK is the vector of parameters, and ξ ∈ RN
the vector of intrinsic noise which we assume to be Gaussian and statistically independent
among different components 〈ξiξj〉 = σ2

ξiδij .
The fidelity of the signaling pathway can be characterized by the amount information

about the input that is contained in the response, or the mutual information between S and
R. This information is generally limited not only by the intrinsic noise, but also (and often
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even stronger) by the uncertainty of the system parameters P, which may depend on the
cell size, microenvironment, and other extrinsic, epigenetic factors.

In this section we will demonstrate quantitatively that multi-dimensional output can
reduce both types of uncertainty and increase the mutual information for the same SNR.
Importantly, while the effect of intrinsic noise can only be diminished gradually (logarith-
mically with the number of measurements), the uncertainty related to the unknown system
parameters can be reduced dramatically or even completely eliminated with a finite number
of independent output channels.

3.4.1 Dynamic measurements: extrinsic noise only

Let us first ignore the intrinsic noise completely, then the input-output relationship
(3.18) has a form of a system of N deterministic algebraic equations for K + 1 unknowns
S, P1, ..., PK :

Ri = gi(S,P), i = 1, ..., N (3.19)

From this interpretation it is clear that for sufficiently large N ≥ K + 1 number of non-
redundant equations, this system has at most a discrete set of solutions (not a continuous
family) for both the system parameters and the input signal. Evidently, knowledge of these
discrete solutions corresponds to an infinite amount of information about the input signal.
As an illustration, in Fig. S12 we show the case of single parameter (K = 1). Then the out-
put R1 can be described by a two-dimensional surface in 3-dimensional space (S, P1, R1),
where for a measured R1∗ the input S and the parameter P1 form a two-dimensional curve
as an intersection of that surface and plane R1 = g1(S, P1). Thus, without knowledge
of P1, the input S cannot be determined uniquely. However, a second measurement,
R2 = g2(S, P1) forms a different two-dimensional curve on the plane (S, P1). The in-
tersection of these two curves yields a single (or possibly multiple but still discrete) value
of the input S that means infinite mutual information between S and R.

To re-iterate, multiple measurements R1, ..., RN can be either different outputs of the
signaling cascade, or different time points of a single output, provided that the output signal
is dynamic and the time points are separated by sufficient time so that different time points
provided sufficiently different input-output relations (3.19) for the accurate root-finding. A
similar procedure is known in the nonlinear time series analysis as time-delay embedding
(38) that according to Takens theorem and its generalizations allows one to unfold the “at-
tractor” of a dynamical system and determine its parameters. While solving the nonlinear
system (3.19) may prove difficult or impossible in cases when the structure of the pathway
is poorly understood, this argument indicates that using multiple time point measurements
can drastically increase the amount of information about the input signal in case of com-
plex dynamical pathways. In the next section we illustrate this by computing the mutual
information between a scalar input and a multidimensional output for a linear signaling
cascade model.

3.4.2 Dynamic measurements: extrinsic and intrinsic noise

Now we return to the case when measurements are contaminated by both extrinsic
and intrinsic noise. A quantitative characterization of the information gain from multi-
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dimensional data can be achieved by linearization of the general nonlinear input-output
relationship (3.18). Let us assume here that the dynamic ranges of the signal and parameters
are small, such that the transfer function g(·) can be linearized in the operational domain
near the mean values S0 and P0. Introducing deviations of these quantities from their mean
values, s = S − S0, p = P − P0 and the deviation of the output r = R − R0, we can
re-write Eq. (3.18) in the following form

r = J0s+ Ĵ · p + ξ (3.20)

where Ĵ is the N×K Jacobian matrix of g with components Jik = ∂gi/∂pk, and J0 =
∂g/∂S taken at S = S0, P = P0. We can also introduce the extended (K+1)-dimensional
vector p+ = {s,p} and Jacobian Ĵ+ = {J0 Ĵ} of dimensionN×(K+1). Then Eq. (3.20)
can be re-written as

r = Ĵ+ · p+ + ξ (3.21)

Assuming that signal s, parameters pi and noise ξi are drawn from independent Gaussian
distributions with zero mean and variances σ2

s , σ
2
pi , σ

2
ξ , we can compute the mutual infor-

mation between the signal s and the response r using general formula

I(R1, ..., RK ;S) =
1

2
log2

(
|ΣR|∣∣ΣR|S

∣∣
)

(3.22)

The components of the covariance matrices ΣR and ΣR|S read

(ΣR)ij = Ji0Jj0σ
2
s +

∑
k

JikJjkσ
2
pk

+ δijσ
2
ξi (3.23)

(ΣR|S)ij =
∑
k

JikJjkσ
2
pk

+ δijσ
2
ξi (3.24)

By introducing the renormalized vector J′0 with elements J ′i0 = Ji0σs and the Jacobian
matrix Ĵ′ with elements J ′ik = Jikσpk , we can simplify the expressions for the covariance
matrix elements to

Σ̂R = Ĵ′+ · Ĵ′T+ + Îσ2
ξ , (3.25)

Σ̂R|S = Ĵ′ · Ĵ′T + Îσ2
ξ . (3.26)

The products of Jacobian matrices with their own transposes yield symmetric positive-
semidefinite Gram matrices which we denote

Ĝ = Ĵ′ · Ĵ′T , Ĝ+ = Ĵ′+ · Ĵ′T+ , (3.27)

Thus, the mutual information between the scalar signal s and the vector output r is given
by

I =
1

2
log2

|Ĝ+ + Îσ2
ξ |

|Ĝ + Îσ2
ξ |

(3.28)

16



Using the matrix determinant lemma∣∣∣Ĵ′+ · Ĵ′T+ + Îσ2
ξ

∣∣∣ ≡ ∣∣∣J′0J′T0 + Ĵ′ · Ĵ′T + Îσ2
ξ

∣∣∣ =
∣∣∣Ĵ′ · Ĵ′T + Îσ2

ξ

∣∣∣ (1 + J′T0 (Ĵ · Ĵ′T + Îσ2
ξ )
−1J′0

)
(3.29)

we obtain
I =

1

2
log2

(
1 + J′T0 (Ĝ + Îσ2

ξ )
−1J′0

)
(3.30)

Returning to the original notation, we can re-write it as

I =
1

2
log2

(
1 + σ2

sJ
T
0 (ĴĈĴT + Îσ2

ξ )
−1J0

)
(3.31)

where Ĉ is the diagonal K×K covariance matrix of parameters with diagonal elements
σ2
pk

.
Let us first consider σ2

ξ = 0 (no intrinsic noise, only parameter variability). If the
number of measurements is less than or equal to the number of independent parameters,
N ≤ K, and the measurements are linearly independent, the Gramian |Ĝ| is non-zero, the
inverse Ĝ−1 exists, and the mutual information is finite. We can estimate it by performing
eigendecomposition Ĝ = Q̂Λ̂Q̂T , where Q̂ is the matrix composed of orthonormal eigen-
vectors qi and Λ is the diagonal matrix of corresponding eigenvalues of the Gram matrix
Ĝ. Then

Ĝ−1 = Q̂Λ̂−1Q̂T (3.32)

Substituting this expression in (3.30), we obtain

I =
1

2
log2

(
1 + σ2

s

N∑
i=1

d2
i

λi

)
(3.33)

where di = J0 ·qi are projections of vector J0 on the orthonormal eigenvectors of the Gram
matrix Ĝ. Since Gram matrix is positive-semidefinite, its eigenvalues are non-negative, and
so the mutual information is positive, as it should.

If the number of independent measurements is greater than the number of independent
parameters, N > K, the Gramian |Ĝ| = 0 (the rank RG of the Gramian is at most K,
which means that at least N − K eigenvalues are zero. If additionally the corresponding
projections di are non-zero, the mutual information becomes infinite. What is the meaning
of non-orthogonality of J0 and qi, one of the the null-vectors of Ĝ? It is easy to see
that if J0 · qi = 0, then qi is also the nullvector of Ĝ+, i.e. the extended Gramian is also
degenerate, so the measurements are linearly dependent. And the converse statement is also
true, namely, if |Ĝ| = 0 but the measurements are linearly independent, then the Gramian
Ĝ+ 6= 0 which is only possible if J0 · qi 6= 0.

Equivalently, the condition for infinite mutual information can be formulated via the
ranks RG, RG′ of the Gram matrices Ĝ, Ĝ′. As the number of measurements N increases
beyond 1, so do the ranks RG, RG′ . If all measurements are linearly independent, RG RG′
are equal to N until N = K. For all N > K, RG = K and RG′ = K + 1. For all
these N > K, the mutual information is infinite. However, the divergence of I does not
always occur at N = K. More generally, the divergence of the mutual information occurs
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atN = N∗ when for the first timeRG′ = RG+1. If some of the measurements as functions
of parameters and the signal are linearly dependent, N∗ can be greater thanK. On the other
hand, If RG is less than K, but RG′ is still RG + 1, then the divergence occur earlier than
K, atN = RG. This corresponds to the case when in some measurements, only parameters
act as a a single combination, while the outputs as functions of parameters and the signal
are still linearly independent.

These findings are consistent with the notion that in the absence of intrinsic noise, given
enough independent measurements, the signal can be deduced exactly even when param-
eters of the system in individual cells are unknown. However, even when the number of
measurements is less than the number of unobserved parameters, the information gain can
be significant (see Eq. (3.41) below and Figure S14). On the other hand, if the mea-
surements are linearly dependent, then additional measurements will not help to eliminate
parameter uncertainty.

Let us now return to the case of non-zero intrinsic noise. If we additionally assume that
the intrinsic noise amplitude is the same in all measurements (σ2

ξi = σ2
ξ ), the above formula

(3.33) can be easily generalized

I =
1

2
log2

(
1 + σ2

s

N∑
i=1

d2
i

λi + σ2
ξ

)
(3.34)

so the MI remains finite for any N . When the number of measurements is greater than
the number of parameters (N > K), for small intrinsic noise the main contribution to the
information is given by the zero-eigenvalue terms:

I ≈ 1

2
log2

(
1 +

σ2
s

σ2
ξ

N−K∑
i=1

d2
i

)
(3.35)

(where the summation is performed only over the nullspace of Ĝ), and the extrinsic noise is
to the large degree eliminated. Since the magnitudes of projections di can be estimated as
µi|∂g/∂S| where µi = O(1) are system-dependent constants , we can rewrite this formula
as

I ≈ 1

2
log2

(
1 + µ2(N −K)SNR(1 + IER−1)

)
(3.36)

where µ = O(1) and σ2
e is the variance of the extrinsic noise, see (3.8). Comparison of this

formula with Eq. (3.17) for the scalar mutual information shows two distinct sources of the
information gain from multi-dimensional measurements: First, if IER� 1 (small intrinsic
noise), sufficient number of measurements N = K + 1 leads to complete elimination of
extrinsic noise, and for large SNR the information gain is roughly −0.5 log2(IER) bits.
Second, additional measurements beyond N = K + 1 suppress the remaining intrinsic
noise and add approximately 0.5 log2(N − K) bits to the mutual information. Figure 3A
shows the two contributions to the information gain.

To illustrate these theoretical results, we computed average mutual information for a
random selection of linear signaling systems with 3 parameters that produce up to 9 outputs.
These outputs are different linear combinations of the input signal s, the three parameters
p1−3, and the intrinsic noise ξ that is different and independent in each measurement. We
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assume that the extended Jacobian for each of the linear systems is a random 5× 3 matrix
with real entries taken from a uniform distribution between -0.5 and 0.5.

We also assume that the signal and all parameters are taken from Gaussian distributions
with the same variance σ2

s = σ2
pi = 1, and the intrinsic noise at each output has identical

variance σ2
ξ . For a typical matrix Ĵ+ the rank of Ĝ for N ≥ 3 is 3, and the rank of Ĝ+ for

N ≥ 4 is 4.
Figure S13 shows the mutual information between input signal and the N -dimensional

vector output computed using Eq. (3.28) as a function of the output dimension N and
averaged over 1000 realizations of Ĵ+.

We also plot the average mutual information for different ratios of intrinsic-to-extrinsic
noise (IER) which is determined by the level of intrinsic noise σ2

ξ . When IER is large,
the dynamical nature of the underlying system is unimportant, and the dynamical vector
measurements produce the information gain on par with redundant measurement case (see
below Sec. 3.4.3). For small IER, however, the information gain can be much higher as
soon as N > K. The big jump in the mutual information between N = 3 and 4 is due
to the appearance of the large term with zero eigenvalue λ4 = 0 but d4 6= 0 in the sum
of Eq.(3.34). After the big jump, the mutual information continues to rise more slowly
(logarithmically) with the dimension due to additional statistical averaging of the intrinsic
noise (multiple terms with zero λi and di 6= 0).

The big jump occurs at N = N∗ when for the first time RG′ = RG + 1. Typically,
N∗ = K. However, if in a particular realization of Ĵ+ some of the measurements are
linearly dependent, N∗ can be greater than K. This occurs when in some measurements,
parameters and signal act as a single combination. On the other hand, if RG is less than K,
but RG′ is still RG + 1, then the big jump occurs at N∗ < K, viz. at N = RG. This occurs,
for instance, when in some measurements, only parameters act as a single combination,
while the outputs as functions of parameters and the signal are still linearly independent.

Average mutual information for random pathways in large K, small N limit.
The eigenvalues and eigenvectors of the Gram matrix are not universal, they depend on
the specific structure of the signaling pathway. However, an analytical formula for the
average mutual information can be derived averaging over an ensemble of such random
systems if K is much larger than N . We assume that all elements of the Jacobian matrix
are i.i.d with mean 0 and variance σ2

j . Then the Gram matrix Ĝ can be approximated by a
diagonal matrix Ĝ = Kσ2

j δij , i, j = 1, ..., N withN equal eigenvalues λi = Kσ2
j and their

corresponding projections di = 1. According to Eq. (3.34), the average mutual information
is then given by

I =
1

2
log2

(
1 +

Nσ2
s

Kσ2
j + σ2

ξ

)
(3.37)

Note that in this case Kσ2
j is equal to the variance of the extrinsic variability σ2

e , so we
obtain

I =
1

2
log2

(
1 +

Nσ2
s

σ2
e + σ2

ξ

)
=

1

2
log2 (1 +N · SNR) (3.38)
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Average mutual information for random pathways in large K,N limit.
If both K,N � 1 and N = O(K), the approximation of the Gram matrix by a diagonal F
fails for the estimation of its eigenvalues. However, in this limit the spectrum of eigenvalues
of the Gram matrix for a Jacobian with random i.i.d. entries can still be found analytically.
Indeed, according to the Marchenko-Postur formula (36), the asymptotic distribution of
eigenvalues for N < K is given by

P (λ) =

 1
2πσ2j

√
(λ+−λ)(λ−λ−)

∆λ , for Kσ2
jλ− < λ < Kσ2

jλ+

0 otherwise
(3.39)

where λ± = (1 ±
√

∆)2 and ∆ = N/K. For N > K, a singular term (1 − K/N)δ(λ)
should be added to expression (3.39) that accounts for the family of zero eigenvalues of Ĝ.
It is also known that eigenvectors of the random Gram matrix qi are distributed uniformly
over a unitN -sphere independently of λ. It is easy to show that in this case the mean square
value of the product J0 · qi where J0 is a fixed vector with random elements having zero
mean and unit variance, is one.

In the limit N → ∞, the sum over the eigenvalues in (3.34) can be replaced by an
integral:

I =
1

2
log2

(
1 +Nσ2

s

∫
P (λ)

d2

λ+ σ2
ξ

dλ

)
(3.40)

where P (λ) is the distribution of eigenvalues of the Gram matrix G. The integral in (3.40)
with P (λ) given by (3.39) can be calculated analytically, and the resultant expression for
the mutual information reads

I =
1

2
log2 (1 +K SNR(1 + 1/IER)W )) (3.41)

where

W =
1

2

(√
(λ− + IER)(λ+ + IER)−

√
λ−λ+ − IER

)
+ (1−K/N)H(N/K − 1)

(H(x) is the Heaviside function). This expression becomes especially simple in the case
IER = 0:

I =
1

2
log2

(
1 +

N

1−N/K
SNR

)
(3.42)

Note that for N � K this formula agrees with (3.38), as expected. It is evident from this
formula that the mutual information diverges as N → K. For non-zero IER, the diver-
gence of mutual information at N = K is lifted, and the mutual information remains finite.
Figure S14 compares the mutual information as a function of N for K = 10 and five dif-
ferent IER obtained from analytical formulas (3.41) and by direct numerical computation
using Eq.(3.34). The analytical formula agrees very well with the numerics already for
these not so large K and N .
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3.4.3 Redundant measurements

In this section we consider the case of redundant measurements, i.e. when all N mea-
surements from the same cell have the same deterministic functional response g(S,P), and
therefore the same values of gain ∂g/∂S and parameter sensitivities ∂g/∂Pk. Then the
covariance matrix ΣR has the components

(ΣR)ij =

(
∂g

∂S

)2

σ2
s +

K∑
k=1

(
∂g

∂Pk

)2

σ2
pk

+ σ2
ξδij (3.43)

and (
ΣR|S

)
ij

=
K∑
k=1

(
∂g

∂Pk

)2

σ2
pk

+ σ2
ξδij (3.44)

These matrices have the form of a matrix X̂ with matrix elements Xij = a + bδij . Using
the matrix determinant lemma it is easy to show that |X̂| = bN (1 +Na/b), so

|ΣR| = σ2N
ξ

(
1 +Nσ−2

ξ

[(
∂g

∂S

)2

σ2
s +

K∑
k=1

(
∂g

∂Pk

)2

σ2
pk

])
(3.45)

and ∣∣ΣR|S
∣∣ = σ2N

ξ

(
1 +Nσ−2

ξ

K∑
k=1

(
∂g

∂Pk

)2

σ2
pk

)
(3.46)

and the mutual information is then

I(R1, ..., RN ;S) =
1

2
log2

1 +
N
(
∂g
∂S

)2
σ2
s

σ2
ξ +N

∑K
k=1

(
∂g
∂Pk

)2
σ2
pk

 (3.47)

or using the notation (3.10), (3.11),

I(R1, ..., RN ;S) =
1

2
log2

(
1 + SNR

IER + 1

IER/N + 1

)
=

1

2
log2

(
1 +

SER

IER/N + 1

)
(3.48)

As seen from this expression, the amount of information about the input gained from multi-
dimensional redundant measurements depends not only on the signal-to-noise ratio, but
also on the intrinsic-to-extrinsic ratio. For N = 1 this formula reduces to (3.17), as ex-
pected, but for large N it approaches the maximum value

lim
N→∞

I(R1, ..., RN ;S) =
1

2
log2 (1 + SER) (3.49)

where SER is the ratio of signal to extrinsic noise,

SER =

(
∂g
∂S

)2
σ2
s∑K

k=1

(
∂g
∂Pk

)2
σ2
pk

, (3.50)
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Thus a large number of measurements effectively eliminates the information loss due to
the intrinsic noise ξ. On the other hand, in the absence of intrinsic noise, N drops out of
eq. (3.47), so the mutual information is independent of the number of measurements. This
is also expected, since in this case all measurements from the same cell are identical, and
therefore redundant measurements do not yield any additional information about the input
signal.

While above results are obtained for Gaussian-distributed input signal, fluctuations, and
responses, we expect them to hold semi-quantitatively for other continuous non-Gaussian
distributions. Of course, for discrete input distributions (as in our experiments) the mutual
information is limited from above by the entropy of the input distribution.
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4 Additional calculations for model to data fitting

4.1 ERK Model Simulations

For numerical simulations, we adopted the ODE model of ERK signaling network from
Sturm et al (23). The model incorporates dynamics from RasGTP through Raf and MEK
down to ERK phosphorylation. Following (23), we used the input concentration of RasGTP
as a proxy for extracellular EGF, varying its value over several orders of magnitude. The
output was defined as double phosphorylated ERK (ERKpp), which serves as a proxy for
ERK activity that is a monotonously increasing function with respect to ERKpp. We found
that ERKpp dynamics generated by the model closely matched the dynamics of FRET
signal recorded in experiments (Fig. S15). Given these realistic trajectories, we used the
model to test some of the results predicted by the earlier discussed theory.

4.1.1 Simulations with extrinsic noise

To illustrate the effect of using multi-dimensional measurements to eliminate the con-
tribution of extrinsic noise to the information transfer of the system, we calculated MI
using model simulation trajectories of ERKpp as the response and the input RasGTP. The
range of input RasGTP (2500 to 22500) was chosen to minimize saturation at both ends of
response. Except for ERK and MEK, model parameter values were kept consistent with
Sturm et al for all simulations. To generate extrinsic noise we randomly sampled initial
concentrations (i.c.) of ERK and MEK values from uniform distributions (±20%) centered
around the nominal values presented in Sturm et al . The model was allowed to reach a
steady state with the chosen i.c. of ERK and MEK parameters at the lowest value of Ras-
GTP (2500), before applying inducing amount of RasGTP. The model was simulated for
30min. As the number of input levels of RasGTP within the input range increased, we
found that the multi-dimensional measurement of ERKpp (0 : 3 : 30min) resulted in MI
equivalent to the number of input levels (orange curve in Fig. 3B). In stark contrast, the
scalar measurement MI shows a saturation around 2 bits (purple curve in Fig. 3B), which
is consistent with theoretical prediction that at least 3 measurements are required to com-
pletely remove extrinsic noise. We were also able to carry this analysis out with intrinsic
noise, which was added in the form of Gaussian noise that scales with the response and
additive Gaussian noise that is response independent (Fig. S16). The limit in number of
trajectories per signal level makes estimation of MI at higher input levels more difficult
with addition of intrinsic noise.

To further demonstrate the underlying principles that allow for elimination of extrinsic
noise, we plot 50 ERKpp trajectories generated from two nearby input values of RasGTP
(Fig. 3C). The overlap between these trajectories might suggest that it would be practically
impossible to distinguish between the two input signal values. Furthermore, considering
two different time points (vertical lines), this is exactly the case given the overlap between
ERKpp response values at those time points (left and bottom 1-D histograms in Fig. 3D).
If we consider those two points together, however, we can clearly see a separation between
the two input levels as the 2-D histogram in Fig. 3D indicates.
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4.1.2 Fitting vector MI vs SNR data

In Figure 4, for ERK response vector (green circles), we first considered the case that
the mutual information as a function of signal-to-noise ration (SNR) can be explained by
redundant measurements (i.e. no dynamics). Fitting IER in the theoretical formula for
redundant measurements (MI = 0.5log2(1 +SNR(IER+ 1)/(IER/N + 1)) we find the
best fit to be equal to 100 (higher bound on the fit). In actuality, the optimal IER is equal
to infinity when extrinsic noise is equal to 0 (Fig. refMIvsSNR). Our IER estimates from
this and one other study (SOM 4.3), lead to fits that more closely align with ERK scalar
response data (green crosses) and theory (red curve).

To fit dynamic ERK response experimental inhibition data in Figure 4 (green filled
circles), we applied a theoretical description of mutual information and SNR (see Section
IIC: Extrinsic and intrinsic noise) to our ERK model. We calculated sensitivities of the
ERK response at 10 equally spaced time points on the trajectory with respect to the signal
(Ras GTP) and 7 model protein parameters (MEK, ERK, Raf, Phase1, Phase2, Phase3,
Phase4) near the middle induction level and nominal parameter values. Constructing Gram
matrices with these sensitivities, we were then able to calculate MI as a function of SNR,
according to Eq. 3.28 . We assumed equal coefficient of variation (CV) for all parameters.
Intrinsic noise was calculated based on experimental IER ratio. Varying the number of
parameters contributing to the extrinsic noise in the model, we were able to fit the mean
MI vs SNR curve to the experimental data (Fig. S18). For a given number of parameters,
we generated the mean MI vs SNR curve for all combinations of parameters. The best fit
was obtained with two parameters accounting for the extrinsic noise in the model. This
could be thought of as the number of effective system parameters contributing to extrinsic
noise that our dynamic measurements can overcome. The fit is based on a linear Gaussian
model where the parameters of the model are estimated with a non-linear dynamical model
of ERK used in Fig. 3. It is possible that the goodness of fit of the curve to the data could
further be improved with a more refined model that is not based on the linear Gaussian
approximation.

4.2 Sampling dimension for vector response

To select the time points that should be part of the vector of dynamic responses for
increasing dimension of the vector in Figure 4, we used a simple strategy. For a given time
frame of the trajectory (60min for ERK, 15min for calcium, 5hrs for NFκB) and chosen
dimension N , we selected N + 2 equally spaced response values throughout the given time
frame, removing the first and the last values. For example, for vector of dimension 1, we
chose response value at the center of the given time frame, while for dimension 2, we chose
values located at the one third and two thirds points of the time frame (Fig. S19).

4.3 Experimental noise analysis

4.3.1 Signal-to-Noise Ratio (SNR)

To calculate ERK signal-to-noise ratio (SNR), we defined the signal magnitude σ2
r as

the variance of average responses over all m input levels of EGF:
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Noise magnitude was defined as the average of the variances of ni responses to a single
input level of EGF:

σ2
n =

1

m

m∑
i=1

(
1

ni

ni∑
j=1

(
1

ni

ni∑
w=1

riw − rij)2 (4.2)

SNR is then σ2
r/σ

2
n.

4.3.2 Autocorrelation of ERK response

We performed autocorrelation analysis on ERK trajectories to evaluate the time sam-
pling of the data. According to the analysis, decay of autocorrelation function shows that
on average self-correlation is lost after 11min (Fig. S20). This suggests that ERK measure-
ments taken every 10min are on average independent from one another.

4.3.3 Intrinsic-to-Extrinsic Ratio (IER)

To calculate ERK intrinsic-to-extrinsic noise ratio (IER) from our data, we defined
intrinsic noise as combination of stochasticity inherent to biochemical reactions in signal
transduction and measurement noise, while extrinsic noise was defined by the variability
in individual cell states. To estimate the upper bound on the experimental IER, we used
the fact that our sampling of ERK response was faster than ERK dynamics (based on the
autocorrelation of ERK response), to calculate intrinsic noise. Using second portion of
ERK trajectory, where ERK levels did not change significantly between successive time
point measurements, we estimated the intrinsic noise (σ2

ξ ) as the variance of the differences
in ERK expression between successive time points (Fig. S21 red). To get the extrinsic
noise (σ2

e ), we estimated the total noise according to equation 4.2 (Fig. S21 A cyan) for
the second portion of ERK trajectory, and simply subtracted the intrinsic noise from the
total noise. The mean IER (σ2

ξ/σ
2
e ) for all experimental conditions (69) was estimated to be

0.024. We also looked at increasing values of the time step for our intrinsic noise estimate
finding that IER scaled with the time step, as expected. We found that even at a time step
of 15 minutes the IER was only about 1 (Fig. S S21 C)

While IER estimate from our data best matches our theoretical analysis, it is limited
by our assumption about ERK dynamics. For completeness, we decided to use previously
obtained data (25) to estimated an upper bound on IER. We chose ERK data from Toettcher
et al (25), who were able to measure multiple ERK responses within a single cell. To
estimate IER from their data, we used a slightly different approach. Using a Hill function
fit (exponent of 2 from (25) for each cell, we estimated intrinsic noise as the variance of the
differences between experimental values and the model fit (Fig. S21 red). Similarly, to get
the total noise, we fit the same function to all of the experimental points and calculated the
variance of the differences between experimental values and the model fit (Fig. S21 cyan).
To get extrinsic noise, we simply subtracted the intrinsic noise from the total noise. The
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mean ratio of intrinsic to extrinsic noise was estimated to be 1.14. The higher value for
IER in this estimate could in part come from the noise in membrane SOScat measurement
as well.

To further show the benefit of dynamics on information transfer, we calculated channel
capacity for 3 separate regions of ERK response trajectories (0-20min, 20-40min, and 40-
60min). Comparing to the full trajectory maximal information transfer, we find that the first
portion of the trajectory, which contains majority of the dynamic information contributes
the most to the total information transfer (Fig.S22)
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1.1. Uneven Illumination

1.2. Background Correction

1.3. Image Registration

2.1. Nuclei Segmentation

2.2. Cytoplasmic segmentation (Erk only)

2.3. Quality control and cell rejection
 
2.4. Cell tracking

3.1. Average Fluo-4 intensityCa2+

Erk

2.1. Median of cytoplasmic FRET, CFP, YFP

2.2. Interpolation of skipped YFP frames

2.3. Channel Bleedthrough correction

2.4 Single Cell FRET/CFP readout

Fig. S1
Overview of the image analysis of MCF10A cells.
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Hoescht image Erosion Smoothing Peak detection Watershed

Fig. S2
Image analysis steps done to segment nuclei using Hoescht staining. Only a small part of
an image is shown for brevity.
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Fig. S3
MCF10a cells stained with Hoescht (blue) and expressing EKARev (yellow) with bound-
aries between cells determined by automatic segmentation marked in green. Red dots indi-
cate ”true” boundaries identified by eye. The error in cell segmentation based automatically
obtained and ”true” boundaries is 9%± 2% (SEM).
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A B C D

E F G H

Fig. S4
Initial cell and nucleus identification. (A) Raw DIC image. (B) Sobel edge-magnitude
image. (C) Thresholded edge image. (D) Final foreground/cellular boundaries. (E) Raw
nuclear image (H2B-mCherry). (F) Strong objects found by scanning edge image (G)
Weaker objects found in remaining candidate areas - pixels are ranked by intensity, and
appropriately concentric objects are identified as nuclei. (H) Final nuclear boundaries.
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III. Tracking/error correction

IV. Shape-based segmentation

A B C D

E F G H

Fig. S5
Tracking and segmentation. (A-D) 4 consecutive images are individually processed, then
tracked together. Voting on objects across the stack allows easy identification and correc-
tion of false positives (A, red) and false negatives (B and C, red). (E) Segmentation begins
using the nuclear and cellular boundaries identified earlier. (F) The morphological skeleton
is computed, then pruned to areas connecting each nuclei. (G) We identify the local max-
ima of the distance transformation along the pruned skeleton, as candidate splitting points.
(H) Final segmented image.
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Fig. S6
NFκB measurement. (A) We calculate values that correspond to the nuclear (blue, me-
dian/mode) and cytoplasmic (green, higher mode) intensity distributions, which show iden-
tical decreasing trends over time (as a function of changing cell morphology). (B) Raw
nuclear trajectories show cells that are at basal level before stimulation, and eventually sta-
bilize after a maximum 10-14 hrs. We use this information, along with the shape computed
from each cell’s cytoplasmic trajectory, to calculate a true baseline for each cell. (C) Final,
corrected and normalized nuclear trajectories can be directly compared.
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C(R; S) = max
Q

I(R; S) { ∑m
i= 1 qi = 1
qi ≥ 0

Q = [ q1, q2, ..., qm]

5. Information transfer

f (R = rij|S = sw) =
k

NwVdz(R = rij|S = sw)d
k

1. Estimate probability density (PD) using KNN estimator

f (Ri = rij|S = si)
2. Calculate conditional PDs

f(R = rij) =
m

∑
w= 1

qw f(R = rij|S = sw)

2. Calculate non-conditional PDs

Hdiff (R|S) = −
m

∑
i= 1

qi
ni

ni

∑
j= 1

log2( f(Ri = rij|S = si))

3. Calculate conditional entropy

Hdiff (R) = −
m

∑
i= 1

qi
ni

ni

∑
j= 1

log2( f(R = rij))

3. Calculate non-conditional entropy

I(R; S) = H(R) − H(R|S)
4. Mutual Information

Estim
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probability densities
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of  entropies

Inform
ation 
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Fig. S7
General scheme for estimation of information transmission based on experimentally ob-
tained conditional responses (R) to scalar input levels (S).
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rij

 

R i

R w

Fig. S8
Representation of k-nearest neighbor calculation for k = 5. The blue circle radius is the
distance to the fifth closest neighbor within the same input response represented by blue
points. The green circle radius is the distance to the fifth closest neighbor to a different
input response (green points).
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Fig. S9
(A) Sample of 2 input system with multivariate Gaussian output with separation of 2 in
one of the dimensions. (B) True mutual information versus our estimate for two well
sizes corresponding to number of cells measured in experiments. Our method shows good
agreement up to dimension 15. (C) The absolute value of the error for conditional and non-
conditional entropies due to algorithm bias increases with increasing dimension, while the
error in mutual information appears to increase very slowly even in the case of 500 points
per well. (D) The difference in the size of wells does not affect the accuracy of our esti-
mate of mutual information except for when the size of those wells is too small (< 200).
Dimension 10 and separation of 2 in one dimension. (E) Our algorithm estimate of MI
matches true value of MI very well for varying separation of the two output multivariate
Gaussians. The algorithm overestimates small separation and underestimates larges sepa-
ration slightly. Dimension 10. (F) For varying variance of one of the wells, we find that
our algorithm underestimates MI for low variance wells (< 0.5). Dimension 10, separation
2 in one dimension. Mean data for 10 iterations shown with error bars representing SEM.
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Fig. S10
(A) Comparison of our binless channel capacity calculation versus binned method (Cheong
et al) for 2 Gaussians (var = 1) for increasing separation between their means showed sim-
ilar results. Mean results shown with error bars representing SEM. (B) Applying jackknife
sampling to the data, we can extrapolate the information transfer at infinite sample size.
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Fig. S11
Statistical analysis of our method shows that the sampling involved in jacknife estimation
of channel capacity leads to very little uncertainty (STD = 0.007 bits). In this analysis we
used the 10-dimensional response of ERK in Figure 2B.

37



p	
  p	
  

S	
  

S	
  S	
  

p	
  

R1	
   R2	
  

S*	
  

p*	
  

Fig. S12
Using two measurements for unique determination of the input signal for a one-parameter
system.
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Fig. S13
Average mutual information as a function of the output dimension for different levels of
intrinsic noise. The values of MI were averaged over 1000 realizations of random Jacobian
matricis Ĵ+ with entries uniformly distributed between -.5 and 0.5, SNR=3, and different
values of IER.
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Fig. S14
Average mutual information as a function of the output dimension N for SNR= 3, K= 10
and five different IER obtained from formula (3.41) and by direct numerical calculations
for 1000 random realizations of Jacobian matrices using Eq. (3.34).
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Fig. S15
Model simulation comparison to experimental ERK FRET trajectories. (A) Mean response
of ERK FRET sensor to persistent EGF input. (B) ERKpp response trajectories from sim-
ulations of the ERK model (Sturm et al ) for increasing amounts of RasGTP.
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Fig. S16
Information transmission capacity of dynamic (blue, green) and static (red) calculated
based on the full computational model of ERK where the extrinsic (all) noise and intrinsic
(green) noise contributed to cell response variability.
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Fig. S17
Experimental measurement of the mutual information between ERK response (dimension
10) and EGF measured as a function of the response signal-to-noise ratio (SNR). Each
marker represents calculations of SNR and mutual information from the dynamic (dot)
and maximal scalar (cross) responses of cells from an 8-well dose-response experiment.
Shown data are calculated based on 535,107 single cell responses from 29 experiments
with six doses of MEK inhibitor U0126. Lines represent theoretical predictions of the
mutual information as a function of SNR for three types of responses: static scalar (red
line), redundant measurements where the multivariate response has no dynamics calculated
based on two independent estimates of IER (0.024-light blue, 1.14-dark blue) and best fit
IER=inf to the vector data (magenta), and dynamic response (orange) that can mitigate both
intrinsic and extrinsic noise.
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Fig. S18
Fitting ERK model to dynamic MI vs SNR data using analytic theory approach. We used K
number of parameters and RasGTP input level as the two fitting parameters for the model.
Grey MI vs SNR curves were obtained for are all combinations of K parameters (out of 7).
Colored curves (input RasGTP level) correspond to the mean of all of those combinations
of K parameters. The black dots represent experimentally obtained values for vector MI
shown in Figure 4, that the model (colored curves) were fit to. Yellow highlighted box
corresponds to the best fit for K and RasGTP level.
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Fig. S19
Dimension sampling approach for vector dimension in Fig. 2B.
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Fig. S20
Mean autocorrelation of ERK response trajectories (bars represent s.d.). Decay of autocor-
relation function shows that on average self-correlation is lost after 11min.
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Fig. S21
Estimate of extrinsic and intrinsic noise in ERK data. (A) Using our data, intrinsic noise
was estimated by the mean of the mean of squared errors between successive ERK trajec-
tory points (red). Total noise was estimated by the mean of squared errors (cyan) between
single ERK trajectory and average of all trajectories (green). Extrinsic ratio was obtained
from the difference between total noise and intrinsic noise. The mean ratio of intrinsic
to extrinsic noise was estimated to be 0.024. (B) Using Toettcher et al data, we fit a Hill
function to the data and calculated the mean squared error between the fit for each cell
(intrinsic noise) and between the fit for all points and each cell (total noise). The IER was
estimated to be 1.14 (C) For increasing the time step in our estimate we find and increase
in our estimate of IER, which never goes above Toettcher et al data IER estimate.
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Fig. S22
Comparing the information transfer capacity of three equal and independent segments of
ERK trajectory, we find that the first segment results in the highest vector information
transfer. This can be explained by the fact that majority of the ERK dynamic response
takes place in the first 20min, while the latter stages of the response are relatively static.
Mean data shown with error bars representing SEM.
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Fig. S23
Data from inhibitor experiments. The columns represent different MEK inhibitor (U0126)
concentrations. The color-coded rows are different EGF induction levels. The plots show
cell distribution with time where darker tint represents higher probability density. The
addition of inhibitor leads to reduced ERK response due to decrease in signal propagation
through the ERK pathway.
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Fig. S24
Example of capacity-achieving signal distributions for ERK (A), Calcium (B) and NFκB
(C) responses. The left plots show input distribution for vector calculation while the right
plots show input distributions obtained for scalar response. The more uniform distribution
across all input levels is indicative of higher information transfer.
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Fig. S25
Addition of increasing amounts of MEK inhibitor (U0126) does not affect information
transfer calculated using vector (blue) as compared to max (red) ERK response, which
shows decrease in information transfer (A). The signal-to-noise ratio (SNR) for both mea-
surements decreases with increasing concentration of U0126 (B). Fitting a straight line to
noise vs signal plot for each of the measurements (C), we find that there appears to be a
limit to SNR for each of the measurements (insert). (A) and (B) show mean values with
error bars representing SEM.
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Table S1
Number of cell trajectories obtained in ERK experiments.

0 4208 0 4081 0 5103 0 4871 0 2242 0 2736
0.05 4381 0.03 3671 0.05 4937 0.05 5130 0.05 2854 0.05 2972
0.1 4367 0.05 4580 0.1 5012 0.1 5041 0.1 2387 0.1 2999

0.25 4457 0.1 4390 0.2 4812 0.2 4816 0.25 2510 0.25 2855
0.5 4306 0.25 4285 0.3 5098 0.3 5100 0.5 2718 0.5 2806

0.75 4266 0.5 3648 0.4 4956 0.4 4938 1 2490 1 2701
1 4492 1 4209 0.5 5258 0.5 4985 5 2324 5 2708

1.25 4499 5 3792 0.6 5263 0.7 4740 10 2165 10 2377
1.5 4332 10 3708 0.7 5146 0.8 4717

2 4288 0.8 5260 0.9 4710
3 4557 0.9 5266 1 4721
4 4332 1 5320 2 4653
5 5030 2 5145 3 4564

3 4923 4 5023
4 4879 5 4821
5 4901
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Table S2
Number of cell trajectories obtained in Calcium experiments.

ATP (uM) 1 2 3 4
0 3081 3279 3931 3139

0.1 3364 3460 3819 3710
0.33 3425 3399 3676 3299

1 3063 3419 2946 3639
3.33 3072 3366 3094 3618

10 3053 3090 2834 3790

Calcium
replicate #
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Table S3
Number of cell trajectories obtained in NFκB experiments.

LPS (ng/mL) # cells
0.5 465

1 534
5 557

10 599
20 455
50 354

500 363
1000 555
5000 672

NFkB
replicate 1
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Table S4
Number of cell trajectories obtained in EGF and UO126 experiments.

0 0.1 0.33 1 3.33 10 0 0.1 0.33 1 3.33 10
0 2445 2563 2912 2657 2710 2539 3094 3098 3044 3043 3161 2851

0.07 2795 2392 2763 2478 2515 2318 3193 3243 3193 3243 3030 2843
0.15 2653 2617 3031 2534 2685 2381 3089 3435 3106 3508 2967 2910

0.3 2697 2687 3091 2520 2766 2483 3159 3294 3473 3547 3154 2482
0.625 2759 3075 2661 2878 2699 2797 3028 3487 3306 3561 2858 2300

1.25 2449 2918 2964 2686 2773 2414 3201 3325 2983 3275 2873 2472
2.5 2492 2655 2876 2783 2464 2153 3147 3053 3034 3334 2652 2595

5 2355 2211 2413 2447 2448 2353 3206 3188 3020 3129 2754 2806

0 0.1 0.33 1 3.33 10 0 0.1 0.33 1 3.33 10
0 1437 1713 1575 1653 1738 1762 2092 2451 2368 2549 2523 2533

0.07 1854 1766 1658 1616 1708 1677 2078 2464 2904 2387 2666 2675
0.15 1791 1788 1730 1696 1364 1345 1970 2197 2511 2601 2619 2552

0.3 1877 1723 1829 1780 1589 1615 1896 2484 2506 2706 2415 2055
0.625 1795 1689 1786 1705 1609 1659 1823 2349 2400 2703 2487 2396

1.25 1890 1705 1759 1623 1716 1435 2006 2336 2583 2249 2361 2107
2.5 1778 1692 1611 1597 1602 1643 1815 2055 2204 2475 724 2204

5 1853 1532 1666 1725 1634 1558 1909 2090 2390 2267 2189 1926

EN
G

 (m
g/

m
L)

EGF + U0126

U0126 (uM)

U0126 (uM)
replicate 3 replicate 4

U0126 (uM)

EN
G

 (m
g/

m
L)

U0126 (uM)
replicate 2replicate 1
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Table S5
Number of cell trajectories obtained in ERK control experiments.

EGF (mg/mL) 1 2 3 4 5
0 2633 1698 2958 2042 1772
0 2762 1918 3260 2080 2055
0 2397 1417 3568 2035 2062
0 2342 1669 3644 2566 1668
0 2624 1652 3225 2598 2159
0 2447 1542 3724 2273 1819

ERK control
replicate #
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Table S6
Student’s t-test p-values for Figure 3C (vector vs. scalar).

A T D R
ERK 1.43× 10−5 3.51× 10−6 5.57× 10−6 1.58× 10−5

Ca+2 1.69× 10−2 2.67× 10−2 2.62× 10−2 3.32× 10−2

NFκB 1.99× 10−9 1.89× 10−7 5.84× 10−10 1.22× 10−10
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