
S1 Appendix. Description of climate-envelope models: presence-only (BIOCLIM), presence-

background (MaxEnt), and presence-(pseudo)absence (generalised linear model).

Climate-envelope models attempt to capture the climatic conditions that constrain the potential niche of

a species, and use them to predict the probability of occurrence of species in an area. There are many 

different types of climate-envelope models [1], distinguished among other things by the type of data 

they use and the type of predictions that can make [2]. The performance of climate-envelope models 

can also vary depending on the characteristics of the data [3–5]. Thus, we applied three different types 

of models, each with its own strengths and weaknesses, and then averaged their predictions weighted 

by their respective predictive performances (evaluated with the true skill statistic). 

BIOCLIM was one of the first algorithms used to model species distributions [6], and is one of a small 

family of climate-envelope models that rely only on presence data (fossils are necessarily presence-

only data). Other methods require the use of ‘background’ or absence data (known or suspected points 

in space where the species is/was absent), but BIOCLIM simply describes the climate envelope of a 

species as the multidimensional niche between the extreme conditions in which the species has been 

observed. It can rank the suitability of an area as a function of how far the climatic conditions of a site 

are from the median climatic conditions in which the species has been observed. Because it is simple 

and requires few assumptions compared to other methods, it has been recommended for modelling 

palaeo-distributions based on fossil records [7]. 

MaxEnt [8] has become one of the most popular methods to model species distributions with presence-

only data due to its general good performance [9]. The method is based in the principle of maximum 

entropy, which states that from an infinity of possible climate envelopes with a common set of 

constraints, the one with the maximum entropy should be preferred (see refs 9 and 10 for a detailed 

statistical description of MaxEnt). For example, constraints could be that the climate envelope of a 

species should have the same mean or median as the climates in which the species was observed. 

However, there is an infinite number of different climate envelopes that produce the same median or 

mean. Thus, of all the possibilities, the one with the maximum entropy (i.e., closest to a uniform 

distribution) should prevail. To determine which climate envelope has maximum entropy, the climates 

in which the species has been observed as well as the availability of climates throughout the study 

region must be known. As such, MaxEnt is called a presence-background method, in contrast to 

BIOCLIM. 



The binomial generalised linear model represents a powerful technique to model not only the 

occurrence of species, but almost any phenomenon with a binary response [11]. In contrast to 

BIOCLIM and MaxEnt however, generalised linear models require presence and absence data. While 

the background data used by MaxEnt are not assumed to be places where the species is truly absent, the

absences used in generalised linear models are. This can be troublesome even when absences have been

recorded during field surveys [12], and even more so when true absence data are lacking. Nonetheless, 

it is common to select pseudo-absences from the background area for generalised linear models 

[13,14]. Pseudo-absences are points where the species has not been observed and are assumed to be 

absences. Selecting pseudo-absences in a way that minimizes the risk of having false absences (e.g., by 

selecting them from places with climates in which the species has not been observed)  or that accounts 

for spatial biases in the sampling effort can improve the performance of climate-envelope models [14], 

but sometimes simply picking pseudo-absences randomly results in the best predictions [15].
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