Supplementary information

Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes

JunMo Lee¹, Kyeong Mi Kim², Eun Chan Yang³, Kathy A. Miller⁴, Sung Min Boo⁵, Debashish Bhattacharya⁶, & Hwan Su Yoon^{1,*}

List of Tables

Table S1. Information about the NGS data for five newly sequenced red algal plastid genomes.

 Table S2. Gene compositions of red algal plastid genomes.

Table S3. List of 193 plastid protein-coding genes used in the ML tree search.

Table S4. Newly annotated genes from previously published red algal plastid genomes.

 These genes have been overlooked, underestimated or mis-annotated in previous studies.

Table S5. Results of BLASTx search using plasmid-derived regions in plastid genomes. Cutoff of *e*-value is 1.0e⁻⁰⁵ and two cases of relaxed *e*-value (2.0e⁻⁰¹ and 3.0e⁻⁰³) are adapted to Gle4293 *orf*4 of *Sporolithon* and Gro4059 *orf*2347 of *Grateloupia*. Abbreviations: HyP indicates hypothetical protein as in *orf* for the open reading frame, PG for the pseudogenized gene. In the plastid genome region of *Sporolithon durum*, between *arg*B and *fts*H gene, 4.2 kb (non-coding) includes two plasmid-derived pseudogenized genes. In the plastid genome of *S. durum*, the region between rRNAs and *ycf*27 pm_*orf*86 shows uncertain mixed plasmid signals from BLASTx search results. The plastid genome of *Gracilariopsis tenuistipitata* var. *liui* also shows uncertain plasmid signals between *leu*D and *psb*D gene.

Table S6. Samples used in this study.

Table S7. Combined and pseudogenized cases of plasmid-derived regions. Several partial regions of plasmid-derived regions were combined into each single or pseudogenized gene based on their alignment as complementary parts. Detailed information about these sequences is shown below the table. In the genome of *Moorea producens*, hypothetical protein (GI: 332351884) and both flanking regions were combined and these bacterial sequences were translated using the Bacterial, Archaeal and Plant Plastid Code (codon table 11). In the mitochondrial genome of *Marchantia polymorpha*, *orf*196 (GI: 11467138) and *orf*207 (GI: 11467137) were combined as a single pseudo-gene (89 bp interval between two regions). For phylogenetic analysis, these plant mitochondrial sequences have been translated to amino acids using a standard code (codon table 1). In red algae, each part of pseudo-gene regions was translated using the codon table 11 and combined serially.

Table S8. Contents of subfamily groups in DNA polymerase type-B family catalytic domain(POLBc) superfamily from conserved domain database (CDD).

Table S9. List of published red algal plasmids. 13 species out of a total 36 red algal species surveyed contain plasmids (marked as "present [O]"). Among 13 species, 14 plasmid sequences were reported from only 5 species (*Porphyra pulchra, Pyropia tenera, Gracilaria chilensis, Gracilaria robusta* and *Gracilariopsis lemaneiformis*) in the NCBI database. 14 plasmid sequences encoded 56 open-reading frames (*orf*).

Table S10. Primer information for population analysis. Different individuals of *Gelidium elegans*, *Porphyra pulchra* and *Sporolithon durum* were used to check the presence or absence of the plasmid-derived region. The plasmid-derived regions of *G. elegans* (between *ycf*27 and *psb*D gene), *P. pulchra* (between *orf*121 and *apc*F gene) and *S. durum* (between pseudogenized *syf*B and *rps*1 gene) were confirmed by PCR.

List of Figures

Fig. S1. Plastid genome map of *Porphyra pulchra*. Functional gene groups are color-coded. Genes drawn inside of the circle indicate the transcriptionally clockwise strand, and genes on outside indicate the counter-clockwise strand.

Fig. S2. Plastid genome map of *Sporolithon durugm*. Functional gene groups are color-coded. Genes drawn inside of the circle indicate the transcriptionally clockwise strand, and genes on outside indicate the counter-clockwise strand.

Fig. S3. Plastid genome map of *Gelidium elegans*. Functional gene groups are color-coded. Genes drawn inside of the circle indicate the transcriptionally clockwise strand, and genes on outside indicate the counter-clockwise strand.

Fig. S4. Plastid genome map of *Gelidium vagum*. Functional gene groups are color-coded. Genes drawn inside of the circle indicate the transcriptionally clockwise strand, and genes on outside indicate the counter-clockwise strand.

Fig. S5. Plastid genome map of *Gracilaria chilensis*. Functional gene groups are color-coded. Genes drawn inside of the circle indicate the transcriptionally clockwise strand, and genes on outside indicate the counter-clockwise strand.

Fig. S6. Maximum likelihood tree based on aligned amino acid sequences of concatenated 193 protein encoding genes from 16 published and 5 new (underlined) plastid genomes (2000 replications, bootstrap support > 50%).

Fig. S7. Synteny of all plasmid-derived regions in red algae. Colored boxes indicate each homolog region in red algal plasmid and plastid genomes. *Porphyra pulchra* plasmid Pp6859 *orf4* and *orf5* homolog regions are also presented with two cyanobacterial species.

Fig. S8. Maximum likelihood tree based on aligned amino acid sequences of *Gracilariopsis lemaneiformis* plasmid GL3.5 *orf*2 related genes and its homologs from BLASTp search (cutoff *e*-value $1.0e^{-03}$) (2000 replications, bootstrap support > 50%). Taxon information and their sequence localities are color-coded as follows: bacteria (black), red algae (red), virus (violet), plastid (green) and plasmid (brown).

Fig. S9. Maximum likelihood tree based on aligned amino acid sequences of red algal replicase genes from *Pyropia tenera* (GI: 254029132, 17980119) plasmids, *Porphyra pulchra* plasmid (GI: 7108461, 7108459, 7108457) and their homologs from BLASTp search (cutoff *e*-value $1.0e^{-05}$) (2000 replications, bootstrap support > 50%). Taxon information and their sequence localities were indicated with color-code as follows: parasitic bacteria (blue), plant (green), red algae (red), rhizaria (cyan), stramenopile (brown), plasmid (violet), mitochondria (orange) and nucleus (black).

No.	Taxa	Total bases of NGS sequencing data (Mbp)	Size of complete plastid genome (bp)	Total bases of mapped plastid genome (bp)	Average coverage of plastid genome (X)
1	Gelidium elegans	1,529 Mbp	174,749 bp	44,027,950 bp	228X
2	Gelidium vagum	990 Mbp	179,852 bp	66,802,278 bp	339X
3	Gracilaria chilensis	506 Mbp	185,637 bp	87,006,562 bp	445X
4	Porphyra pulchra	263 Mbp	194,175 bp	12,007,987 bp	52X
5	Sporolithon durum	3,190 Mbp	191,464 bp	32,008,868 bp	159X

Table S1. Information about the NGS data for five newly sequenced red algal plastid genomes.

Species Reference		GC (%)	Coding genes	tRNAs	rRNAs	Introns
Cyandiophyceae						
Cyanidioschyzon merolae (NC_004799)	Ohta et al. 2003	37.6	207	31	3	0
<i>Cyanidium caldarium</i> (NC_001840)	Glöckner et al. 2000	32.7	199 (2*)	30	3	0
Galdieria sulphuraria (NC_024665)	Jain et al. 2014	28.5	182	39	6	0
Porphyridiophyceae						
Porphyridium purpureum (NC_023133)	Tajima et al. 2014	30.3	224	29	6	43
Bangiophyceae						
Porphyra pulchra	This study	33.3	207	37	6	0
Porphyra purpurea (NC_000925)	Reith & Munholland 1995	33.0	209	37	6	0
Porphyra umbilicalis (JQ408795)	Smith et al. 2012	32.9	208 (1*)	37	6	0
Pyropia fucicola (KJ776837)	Hughey et al. 2014	32.7	207 (4*)	35	3	0
<i>Pyropia haitanensis</i> (NC_021189)	Wang et al. 2013	33.0	213 (2*)	37	6	0
Pyropia kanakaensis (KJ776836)	Hughey et al. 2014	32.8	210 (4*)	35	3	0
Pyropia perforata (NC_024050)	Hughey et al. 2014	32.9	211 (2*)	35	3	0
<i>Pyropia yezoensis</i> (NC_007932)	Wang et al. 2013	33.1	213	37	6	0
Florideophyceae						
Calliarthron tuberculosum (NC_021075)	Janouškovec et al. 2013	29.2	201	31	3	2
Sporolithon durum	This study	29.3	202	30	3	2
Chondrus crispus (NC_020795)	Janouškovec et al. 2013	28.7	204	30	3	1
Gelidium elegans	This study	30.2	202	30	3	1
Gelidium vagum	This study	29.9	201	30	3	1
Gracilaria chilensis	This study	29.3	203	30	3	1
Gracilaria salicornia (NC 023785)	Campbell et al. 2014	28.8	203 (1*)	30 (1*)	3	1 (1*)
Gracilaria tenuistipitata var. liui (NC 006137)	Hagopian et al. 2004	29.2	205 (2*)	30 (1*)	3	1 (1*)
Grateloupia taiwanensis (NC_021618)	DePriest et al. 2013	30.6	234 (1*)	30 (1*)	3	1 (1*)

Table S2. Gene compositions of red algal plastid genomes.

*: including un-annotated genes in previous reports

Table S3. List of 193 plastid protein-coding genes used in the ML tree search.

See the file "Table_S3_S4_S7_supplementary_tables.xlsx" (sheet Table S3).

Table S4. Newly annotated genes from previously published red algal plastid genomes.These genes have been overlooked, underestimated or mis-annotated in previous studies.Detailed information is shown in remarks.

See the file "Table_S3_S4_S7_supplementary_tables.xlsx" (sheet Table S4).

Table S5. Results of BLASTx search using plasmid-derived regions in plastid genomes. Cutoff of *e*-value is 1.0e⁻⁰⁵ and two cases of relaxed *e*-value (2.0e⁻⁰¹ and 3.0e⁻⁰³) are adapted to Gle4293 *orf*4 of *Sporolithon* and Gro4059 *orf*2347 of *Grateloupia*. Abbreviations: HyP indicates hypothetical protein same as in *orf* for the open reading frame, PG for the pseudogenized gene. The plastid genome region of *Sporolithon durum* between *arg*B and *fts*H gene is 4.2 kb non-coding part that includes two plasmid-derived pseudogenized genes. Between rRNAs and *ycf*27 in plastid genome of *S. durum*, pm_*orf*86 shows uncertain mixed plasmid signals from BLASTx search results. The plastid genome of *Gracilariopsis tenuistipitata* var. *liui* also shows uncertain plasmid signals between *leu*D and *psb*D gene.

Species	Locality	Region	Feature	Size	Matched results	E-value	Identities	GI	Remarks
Porphyra pulchra	orf121-apcF	-	PG	585 bp	Pp6427 orf3	1.E-39	45%	11466611	
	petG-rps14	-	PG	414 bp	Pp6859 orf7	3.E-44	63%	11466621	
	petG-rps14	-	PG	291 bp	Pp6859 orf 6	3.E-22	48%	11466620	
Pyropia haitanensis	petG-rps14	pm_orf72	orf	216 bp	Pp6859 orf 5	9.E-12	55%	11466341	un-annotated gene previously
	ycf12-ftrB	-	PG	399 bp	Pp6859 orf 4	4.E-36	51%	11466618	
	ycf12-ftrB	pm_orf93	orf	279 bp	Pp6427 orf 1	1.E-12	59%	11466609	un-annotated gene previously
	PG(syfB)-rps1	pm_orf185	orf	555 bp	Gle4293 orf 4	2.E-01	26%	11465618	relaxed e-value, Pp6859 orfl region mixed
	PG(syfB)-rps1	pm_orf73	orf	219 bp	Pp6859 orf 6	4.E-06	37%	11466620	
Sporolithon durum	PG(syfB)-rps1	pm_orf819	orf	2457 bp	Calothrix sp. HyP	1.E-146	36%	668693613	Pp6859 orf4 and orf5 homolog
	argB-ftsH	-	PG	312 bp	Calothrix sp. HyP	8.E-09	78%	668693613	copy region of pm_orf819
	argB-ftsH	-	PG	381 bp	Gch7220 orf 5	5.E-14	36%	11465596	
Gelidium elegans	ycf27-psbD	-	PG	831 bp	Pp6859 orf 5	2.E-38	36%	11466341	
Calidium uncum	rps6-rRNAs	-	PG	2091 bp	Calothrix sp. HyP	2.E-107	34%	66863613	Pp6859 orf4 and orf5 homolog
Genatum vagum	rps6-rRNAs	-	PG	555 bp	Gro4970 orf 5	2.E-12	25%	11466341	
	ycf27-psbD	-	PG	306 bp	GL3.5 orf 1	1.E-05	35%	18514	overlapped to unique orf31 & orf32
Grateloupia taiwanensis	rRNAs-ycf27	-	PG	183 bp	GL3.5 orf 2	3.E-12	74%	18515	overlapped to unique orf06
	ycf27-psbD	-	PG	303 bp	Gro4059 orf 2347	3.E-03	27%	11466334	relaxed e-value, overlapped to unique orf32
Gracilaria salicornia	ycf27-psbD	orf139	orf+PG	495 bp	Gro4970 orf 1	3.E-24	50%	11466337	
Gracilaria tenuistipitata var. liui	rRNAs-ycf27	-	PG	441 bp	Gle4293 orf 1	5.E-14	64%	11465615	
	leuD-psbD	-	PG	606 bp	Gle4293 orf 1	7.E-37	61%	11465615	
Gracilaria chilensis	leuD-psbD	-	PG	300 bp	Gle4293 orf 2	6.E-08	36%	11465616	
	leuD-psbD	-	PG	408 bp	Gle4293 orf 3	1.E-23	52%	11465617	

No.	Taxa	Strain No.	Date	Locality	
	Gelidium elegans	SKKU18	Oct. 27, 2012	Anin, Gang-reung, Korea	
1		SKKU22	Oct. 27, 2012	Gamchusa, Donghae-si, Korea	
		SKKU28	Oct. 22, 2012	Wando, Jungdo-ri, Korea	
2	Gelidium vagum	-	Jul. 23, 2012	Manripo, Tae-an, Korea	
3	Gracilaria chilensis	-	Feb. 1, 2003	Ancud, Chile	
4	Porphyra pulchra	UC1879714	Jun. 20, 1970	Moss Beach, California, USA	
		UC1454976	Jun. 20, 1970	Moss Beach, California, USA	
5	Sporolithon durum	SKKU_SD01	Nov. 6, 2012	Army Bay, Whangaparaoa, New Zealand	
		SKKU_SD02	Aug. 28, 2014	Army Bay, Whangaparaoa, New Zealand	
		SKKU_SD03	Aug. 28, 2014	Army Bay, Whangaparaoa, New Zealand	

Table S6. Sampling information used in this study.

Table S7. Information about the combination and separation of plasmid-derived regions. Several partial *orf* regions were combined into one single *orf*, while an *orf* was separated into two genes based on the complementary alignment. In the genome of *Moorea producens*, hypothetical protein (GI: 332351884) and its flanking regions (both of sides) were combined and these bacterial sequences were translated using the Bacterial, Archaeal and Plant Plastid Code (codon table 11). In the mitochondrial genome of *Marchantia polymorpha*, orf196 (GI: 11467138) and orf207 (GI: 11467137) were combined as a single orf (89 bp interval between two regions). For phylogenetic analysis, these plant mitochondrial sequences have been translated to amino acids using a standard code (codon table 1). In red algae, each part of sequences were translated. All these red algal sequences were translated using the codon table 11.

See the file "Table_S3_S4_S7_supplementary_tables.xlsx" (sheet Table S7).

Conserved domain database	Accession
POLBc superfamily	cl10023
DNA polymerase type-B family catalytic domain (POLBc)	cd00145
DNA polymerase type-B B1 subfamily catalytic domain (POLBc B1)	cd05530
DNA polymerase type-B B2 subfamily catalytic domain (POLBc B2)	cd05531
DNA polymerase type-B alpha subfamily catalytic domain (POLBc alpha)	cd05532
DNA polymerase type-B delta subfamily catalytic domain (POLBc delta)	cd05533
DNA polymerase type-B zeta subfamily catalytic domain (POLBc zeta)	cd05534
DNA polymerase type-B epsilon subfamily catalytic domain (POLBc alpha)	cd05535
DNA polymerase type-B B3 subfamily catalytic domain (POLBc B3)	cd05536
DNA polymerase type-II subfamily catalytic domain (POLBc Pol II)	cd05537
DNA polymerase type-II B subfamily catalytic domain (POLBc Pol II B)	cd05538

Table S8. Contents of subfamily groups in DNA polymerase type-B family catalytic domain(POLBc) superfamily from conserved domain database (CDD).

Table S9. List of published red algal plasmids. 13 species out of a total 36 red algal species surveyed contain plasmids (marked as "present [O]"). Among 13 species, 14 plasmid sequences were reported from only 5 species (*Porphyra pulchra, Pyropia tenera, Gracilaria chilensis, Gracilaria robusta* and *Gracilariopsis lemaneiformis*) in NCBI database. 14 plasmid sequences encoded 56 open-reading frames (*orf*).

Order	Species	Present (O), Absent (X)	No. of plasmids	Reported plasmid sequences	NCBI GI (retained proteins)	References
Erythropeltidales	Smithora naiadum	0	3	Х		Goff and Coleman 1990
Glaucosphaerales	Glaucosphaera vaculolata	Х				Goff and Coleman 1990
	Porphyra linearis	Х				Villemur 1990a
Bangiales	Porphyra pulchra	0	5	5	11466614 (7), 11466608 (5), 7108460 (1), 7108458 (1), 7108456 (1)	Moon and Goff 1996, 1997
-	Pyropia perforata	Х				Goff and Coleman 1990
	Pyropia tenera	0	?	2	17980118 (1), 254029130 (2)	Choi et al. 2001
	Wildemania miniata	О	3	Х	25 1027 150 (2)	Villemur 1990a
Ceramiales	Asterocolax gardneri	Х				
	Campylaephora californica	Х				
	Choreocolax polysiphoniae	Х				
	Harveyella mirabilis	Х				
	Janczewski gardneri	Х				
	Micorcladia coulteri	Х				
	Odonthalia floccosa	Х				Goff and Coleman 1990
	Odonthalia washigtoniensis	Х				
	Osmundea spectabilis	О	?	Х		
	Polyneura latissima	Х				
	Polysiphonia elongata	Х				
	Vertebrata lanosa	Х				
Gigartinales	Gardneriella tubifera	Х				Goff and Coleman 1990
	Gymnogongrus sp.	0	2	Х		Villemur 1990a
	Sarcodiotheca gaudichaudii	Х				Goff and Coleman 1990
Gracilariales	Gracilaria chilensis (1)	0	4	1	18476 (1)	Villemur 1990a
	Gracilaria chilensis (2)	0	?	2	11465608 (5), 11465591 (16)	Goff and Moon (unpublished)
	Gracilaria pacifica	О	4	Х		Goff and Coleman 1990
	Gracilaria robusta (1)	_	?	2	11466336 (7), 11466333 (2)	Goff and Moon (unpublished)
	Gracilaria robusta (2)	0	1	Х		
	Gracilaria textorii	0	2	Х		Goff and Coleman 1990
	Gracilaria tikvahiae	О	3	Х		Villemur 1990a
	Gracilariophila oryzoides	О	2	Х		Goff and Coleman 1990
	Gracilariopsis langissima	Х				Villemur 1990a
	Gracilariopsis lemaneiformis	О	3	2	18513 (2), 11465614 (5)	Goff and Coleman 1990
	Gracilariopsis sp.	Х				Villemur 1990a
Halymeniales	Prionitis lanceolata	Х				Goff and Coleman 1990
Plocamiales	Plocamiocolax pulvinata	Х				
	Plocamium cartilagineum	Х				Goff and Coleman 1990
Rhodymeniales	Lomentaria divaricata	Х				Goff and Coleman 1990

Table S10. Primer information for population analysis. Different individuals of *Gelidium elegans*, *Porphyra pulchra* and *Sporolithon durum* were used to check the presence or absence of plasmid-derived region. The plasmid-derived regions of *G. elegans* (between *ycf*27 and *psb*D gene), *P. pulchra* (between *orf*121 and *apc*F gene) and *S. durum* (between pseudogenized *syf*B and *rps*1 gene) were confirmed by PCR.

Speices	Strain	Primer set
	SKKU18	[Forward 1] Gele_F1_1: 5'-ATTCAGTCTTCTAGAACTACTAGTAA-3' Gele_F1_2: 5'-AAAGACATGTTGATACAAGAGTTGTC-3'
Gelidium elegans	SKKU22	[Reverse 1]
	SKKU28	Gele_R1_1: 5'-CTTGTCCAATTGCTATGGTCATATTA-3' Gele_R1_2: 5'-AACCTTCTAGATAAGAACTAGCTAA-3'
Doumhung mulahug	UC1879714	[Forward 1] Pp_F1_1: 5'-TCTAGATTATAGATAGATTTAGTGCTC-3' Pp_F1_2: 5'-AAGACTAGTATATTTGTTAGTGCATCA-3'
r orpnyra puichra	UC1454976	[Reverse 1] Pp_R1_1: 5'-AACTTTGAAGCTTTATTAGATGCAAGA-3' Pp_R1_2: 5'-GCTTAGGATATTAGAATTCACAGATAA-3'
	SKKU_SD01	[Forward 1] Spo_F1: 5'-CTGACACTGAGACAGATATAGAAAATTA-3' [Reverse 1]
Sporolithon durum	SKKU_SD02	[Forward 2]
	SKKU_SD03	Spo_F2: 5'-GTGCTAGTGTATTTAAGCTATATGAAG-3' [Reverse 2] Spo_R2: 5'-TTATTAAATAGAAGTTTAGCTCCATCT-3'

Fig. S1. Plastid genome map of *Porphyra pulchra*. Functional gene groups are color-coded. Genes drawn inside of the circle indicate the transcriptionally clockwise strand, and genes on outside indicate the counter-clockwise strand.

Fig. S2. Plastid genome map of *Sporolithon durum*. Functional gene groups are color-coded. Genes drawn inside of the circle indicate the transcriptionally clockwise strand, and genes on outside indicate the counter-clockwise strand.

Fig. S3. Plastid genome map of *Gelidium elegans*. Functional gene groups are color-coded. Genes drawn inside of the circle indicate the transcriptionally clockwise strand, and genes on outside indicate the counter-clockwise strand.

Fig. S4. Plastid genome map of *Gelidium vagum*. Functional gene groups are color-coded. Genes drawn inside of the circle indicate the transcriptionally clockwise strand, and genes on outside indicate the counter-clockwise strand.

Fig. S5. Plastid genome map of *Gracilaria chilensis*. Functional gene groups are color-coded. Genes drawn inside of the circle indicate the transcriptionally clockwise strand, and genes on outside indicate the counter-clockwise strand.

Fig. S6. Maximum likelihood tree based on aligned amino acid sequences of concatenated 193 protein encoding genes from 16 published and 5 new (underlined) plastid genomes (2000 replications, bootstrap support > 50%).

Fig. S7. Synteny of all plasmid-derived regions in red algae. Colored boxes indicate each homolog region in red algal plasmid and plastid genomes. *Porphyra pulchra* plasmid Pp6859 *orf*4 and *orf*5 homolog regions are also presented in some cyanobacterial species.

Fig. S8. Maximum likelihood tree based on aligned amino acid sequences of *Gracilariopsis lemaneiformis* plasmid GL3.5 *orf*2 related genes and its homologs from BLASTp search (cutoff e-value 1.0e-03) (2000 replications, bootstrap support > 50%). Taxon information and their sequence localities are color-coded as follows: bacteria (black), red algae (red), virus (violet), plastid (green) and plasmid (brown).

Fig. S9. Maximum likelihood tree based on aligned amino acid sequences of red algal replicase genes from *Pyropia tenera* (GI: 254029132, 17980119) plasmids, *Porphyra pulchra* plasmid (GI: 7108461, 7108459, 7108457) and their homologs from BLASTp search (cutoff e-value 1.0e-05) (2000 replications, bootstrap support > 50%). Taxon information and their sequence localities were indicated with color-code as follows: parasitic bacteria (blue), plant (green), red algae (red), rhizaria (cyan), stramenopile (brown), plasmid (violet), mitochondria (orange) and nucleus (black).