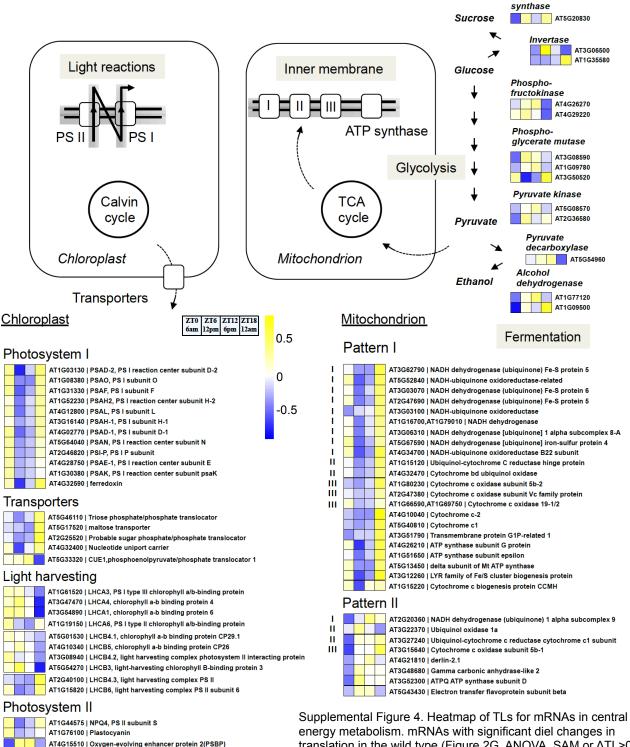

Supplemental Figure 1

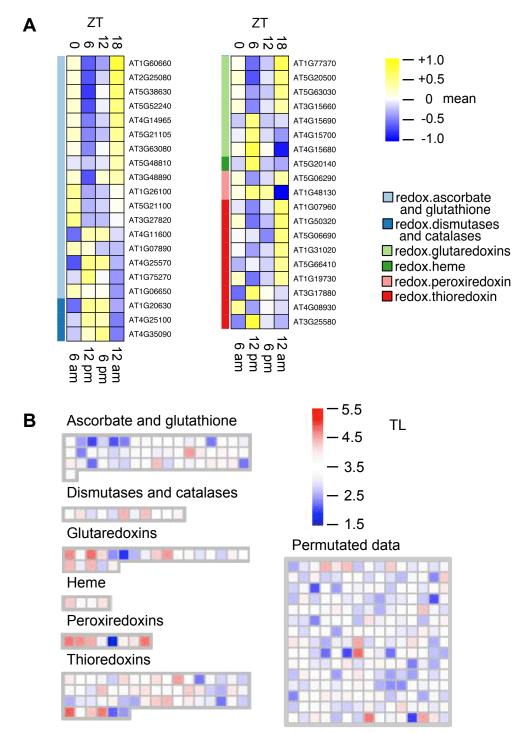
Representative polysome gradient UV absorption profiles. Each panel is a scanned trace of pen on graph paper, showing that the fractionation worked as well as reasonably expected. The positions of the 40S, 60S, and 80S ribosome (monosome) are indicated. Peaks with 2, 4, and 7 ribosomes per mRNA are also identified. The regions of the gradient that were pooled into (NP) non-polysomal mRNA, (SP) small polysomes averaging 2 ribosomes per mRNA, and (LP) large polysomes averaging 7 ribosomes per mRNA are indicated in (D). Overall ribosome loading cannot be quantified from these charts because of underlying pigments that contribute to the UV absorption. Ribosome loading for Figure 1 was quantified from UV absorption at 260nm after purifying the RNA from the gradients.


Supplemental Figure 2

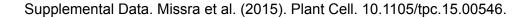
Microarray data of mRNA translation state are reproducible by quantitative real-time PCR. The RNA samples from polysome fractionations that were used for the microarray analysis of mRNA translation state were examined independently by qRT-PCR. Solid line: array data. Broken line: qRT-PCR. For qRT-PCR a fifth time point was collected after 24h (ZT24) to confirm that TL values will approach the original TL value at ZT0, thus closing the diurnal cycle. Dotted line: For the array data the ZT0 datapoint was plotted again at ZT24. Error bars show standard deviations from three replications.

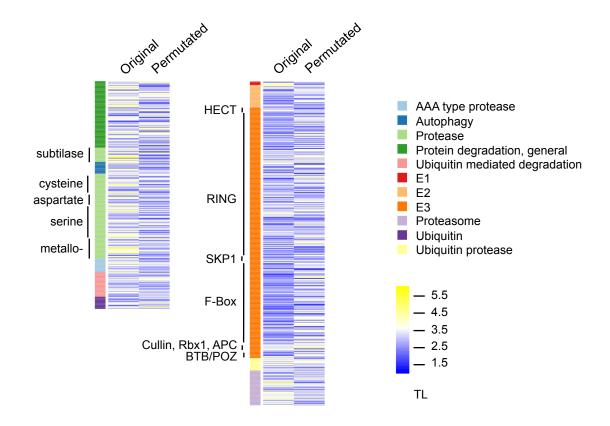
Supplemental Figure 3.

Heatmap of translation states for 189 cytosolic ribosomal protein mRNAs. mRNAs (Barakat et al., 2001; Browning and Bailey-Serres, 2015) were matched to probeset IDs (228 out of the 249 genes). Of these, 189 genes passed a criterion for sufficient and reliable gene expression for at least two time points in wild type. Wild-type ribosome loading data were averaged from three replicates and then clustered hierarchically using their Pearson correlation coefficient, resulting in the dendrogram on the left. The equivalent data for CCA1-ox were not clustered and are displayed in the same gene order as for wild type. For display, the ribosome loading of each gene was z-score transformed, where z=+1 (yellow) indicates a translation state one standard deviation above the mean translation state of the gene. Positive and negative z-scores are yellow and blue respectively. The light period lasts from ZT0 to ZT16. Datapoints with insufficient data, such as low mRNA level, are masked in black. Protein names are readable in the high-resolution version of the figure.

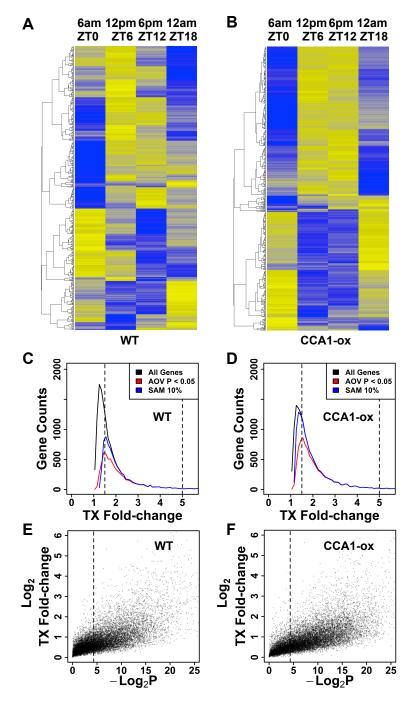

Calvin cycle

AT5G44520 | Rib5P Isomerase

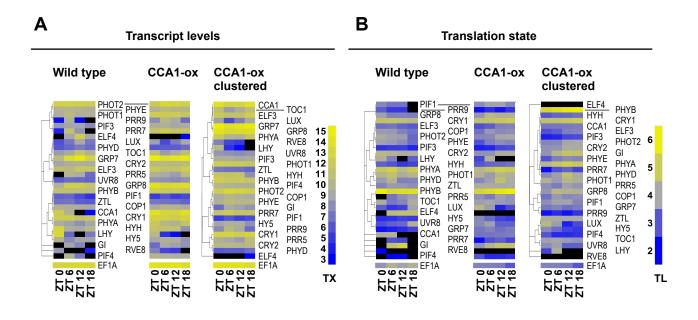

supplemental Figure 4. Readinap of TLS for MRNAs in central energy metabolism. mRNAs with significant diel changes in translation in the wild type (Figure 2G, ANOVA, SAM or Δ TL>0.7) were selected. The series of diel TL values from ZT0-ZT18 was mean-centered (mean=0). The data were overlaid over Arabidopsis gene ontology groups using the pathway visualization tool MAPMAN (Thimm et al., 2004). Displayed here are mRNAs involved in energy metabolism in the chloroplast,


Sucrose

the mitochondrion, and glycolysis. mRNAs without significant translation cycles are omitted. For example, the ribosome loading of the following glycolytic enzymes was flat: Hexokinase (2 genes), phosphoglucose-isomerase (2 genes), phosphofructokinase (4 other genes), aldolase (7 genes), pyruvate dehydrogenase (3 genes). The tricarboxylic acid cycle also revealed no significant TL cycles. Heatmaps were grouped such that mRNAs with exceptional TL profiles are set apart from the rest.



Supplemental Figure 5. Translation states of redox-related mRNAs. (A) Diel cycles of relative translation states. Only mRNAs with significant diel cycles are included in this panel. The TL values were centered on the mean of each time course (mean = 0) for better comparability. Yellow indicates elevated TL and blue is depressed TL. (B) Absolute translation states (TL) of mRNAs were visualized with MAPMAN (Thimm et al., 2004). Each square represents one gene. The data are from the ZT6 (12pm) time point. Except for the ascorbate/glutathione group, the redox mRNAs have relatively high translation states. The panel entitled 'Permutated data' shows a random sampling of translation states from the entire genome.



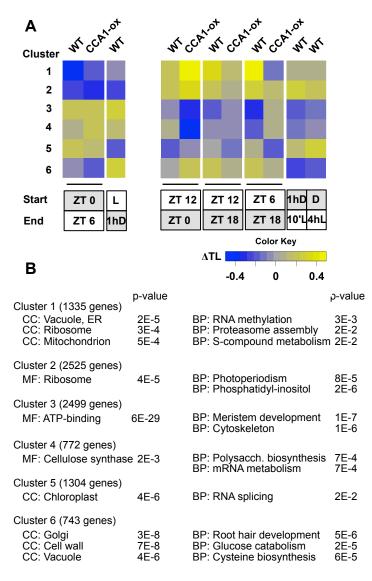
Supplemental Figure 6. Translation states of mRNAs related to protein turnover. The heatmap illustrates the absolute translation states (TL) of mRNAs in various subgroups of the MAPMAN gene ontology term, protein turnover. Each row represents one gene. The actual TL of the gene is plotted in the column labeled 'original'. The column labeled 'permutated' shows the distribution of TL values after randomization. The data are from the ZT6 (12pm) time point. Proteases and including 26S proteasome subunits tend to have notably higher translation states than mRNAs for E3 ubiquitin ligases.

Supplemental Figure 7.

Diel transcript levels in wild type and CCA1-ox. Heat map of total mRNA levels obtained under long day conditions at 6am (ZT0), 12pm (ZT6), 6pm (ZT12), and 12am (ZT18). Data are averages from three biological replicates. Only mRNAs with a fold-change higher than 5-fold are included. (A) WT, 615 genes, (B) CCA1-ox. Transcript levels are displayed after z-score transformation (yellow=high). The clustering tree on the left reveals how, in CCA1-ox, most mRNAs fall into two large clusters that correlate with light (12pm and 6pm) and darkness (6am and 12am). In contrast, in wild type, transcript levels fall into four major clusters that were less prone to reflect the light environment. Panels (C) and (D) show a line histogram of transcript fold changes for the entire dataset (13,625 genes) similar to Figure 2C and D. Panels (E) and (F) show the relation between ANOVA p-value (AOV) and fold-change in transcript level for 14,218 genes (volcano plots). The stippled line represents p=0.05.

Supplemental Figure 8. Diel cycles of translation states and mRNA transcript levels for clockassociated genes.

(A) Transcript abundance, averaged over three replicates. Abundance values are log2transformed expression signals (yellow=high). Black indicates that the gene did not pass our prefilter for that time point. Previously described clock-regulated genes were hand-selected, focusing on the central oscillator, the light input pathways, and selected outputs. EF1A was included for comparison as a weakly cycling mRNA. (Left) WT. Genes were clustered using hierarchical clustering based on Pearson coefficients, with replicates averaged. (Middle) Data from CCA1-ox were displayed as for WT, and the genes are ordered according to the WT clustering tree. Gene names are printed between left and middle panels and apply to both panels. (Right) CCA1-ox data were re-clustered on their own; gene names are printed on the right.


(B) Translation patterns of clock-associated genes are displayed as in panel A. Translation states (TL) were calculated as described in Methods, where TL = 3 corresponds to an estimated average of three ribosomes per mRNA.

Transcript peak – CCA1-ox Transcript peak – CCA1-ox Annotated Annotated Annotated Annotated Enrichment Enrichment Enrichment Enrichment 6 am ZT 0 12 pm ZT 6 6 pm ZT 12 12 am ZT 18 Present present Present Present FDR FOR FDR FOR W N N Cellular Component N Cellular Component Cellular Component **Cellular Component** Nucleus 4967 1.2 0.9 Chloroplast 865 Chloroplast 1198 2E-10 Nucleus 2774 1.5 1E-42 1.0 2774 701 1.5 2E-35 4967 1589 1.1 1E-14 1.1 1.5 Stroma Plasma membrane 1.2 1E-06 1.6 Stroma 2110 539 -Mediator complex 606 220 1.7 1E-18 1.0 588 222 2.2 2E-33 1.8 23 10 16 1.3 Cell wall - Nucleoid - Spliceosome complex 27 18 31 7E-06 10 Clp protease 8 3 2.2 1.0 174 50 1.4 2.2 11 7 2.3 2.1 LNucleolus L Plastoglobule 58 5E-03 2.5 L Plastoglobule 58 20 2.0 0.3 Golgi apparatus 673 152 1.1 1.5 24 2.0 7E-03 244 123 1.8 4E-12 1.5 Plastid envelope 534 1.7 4E-15 1.2 Plastid envelope 2.0 1E-20 1.5 195 534 180 Ribonucleoprotein 403 179 1.6 5E-11 1.2 Thylakoid Thylakoid 378 2.2 4E-20 1.2 378 141 1.8 9E-12 1.6 140 **Biological Process** L Cvtosolic ribosome 228 108 1.7 5E-09 1.3 L Membrane 281 1.7 Membrane 283 107 2.2 3E-16 1.1 106 1.8 3E-09 L Photosystem $L O_2$ evolving cx. 63 23 1.7 4E-02 2.2 19 9 2.8 2E-02 1.2 Cellulose metabolism 130 34 13 2.1 Cullin-Ring E3 ligase 122 51 1.5 5E-03 1.4 PS II 42 2.0 L Lumen 68 33 2.9 2E-08 1.3 12 1.3 Pectin metabolism 47 14 1.4 3.6 L React. center 12 0 0 Cell wall organization 80 1.1 353 1.8 Mitochondrial part 229 47 1.2 1.1 **Biological Process** PS I 21 11 2.5 2E-02 26 Cell wall loosening 18 2 0.5 4.4 Cytosolic ribosome 228 17 1.0 L React. center 3.0 67 2E-05 11 2.6 1E-02 6 (An)ion transport 385 117 1.5 2E-04 21 RNA-biology Vacuole 654 1.3 1E-02 1.3 139 Lumen 68 1.8 20 14 L Inorganic 179 72 1.9 3E-07 27 Translation 459 186 1.5 5E-08 1.1 Apoplast 247 2.1 4E-12 1.6 89 Chromosome 144 52 1.7 3E-04 1.5 - Nitrate 122 49 19 3E-05 26 RNA methylation 171 115 2.4 3E-24 L Nucleosome 43 22 24 2E-04 Chromosome 144 26 1.1 1.9 14 Ammonium 25 13 2.5 3.9 1E-02 rRNA processing 253 62 0.9 1.1 L Nucleosome 43 3 04 2.6 L Transition metal 104 34 1.6 1.2 L Cleavage 18 14 2.8 3E-04 2.2 **Biological process** Amino acid import 60 26 21 2.8 2E-03 RNA splicing 88 52 2.1 3E-08 1.9 **Biological Process** Amine metabolism 182 43 1.1 1.7 mRNA catabolism 102 48 1.7 5E-04 1.5 Photosynthesis 2E-12 400 150 1.8 1.4 Glucosinolate biosynthesis mRNA transport 161 15 0.5 0.9 60 39 2.3 7E-08 2.7 Light reaction 309 122 1.9 8E-12 1.5 PS, light reaction 309 107 20 4E-12 10 L PS II light harvesting 27 18 3.2 2E-05 1.0 Protein local. to organelle L PS II assembly 491 238 1.7 1E-22 1.8 170 2.1 0.9 Reg. of defense response 2.0 62 4E-08 434 144 1.6 1E-07 NADP metabolism 198 66 1.6 8E-04 1.4 Mitochondrion 98 60 2.2 3E-10 2.3 NADP metabolism - Response to chitin 277 104 1.8 2E-08 2.1 198 1.7 2E-20 1.5 94 Glyceraldehyde-3-P metab. 227 95 2.0 6E-11 1.3 -"- to salicylic acid Nucleocytoplasm 177 100 2.0 1E-15 337 102 6E-04 1.7 1.6 Glucose catabolism 455 2.1 1.4 1.5 165 2E-20 Disaccharide metabolism 188 87 2.2 9E-13 1.5 Peroxisome 59 2.2 2E-10 2.2 Cell death 132 1.6 95 Pentose-P shunt 395 3E-07 2.0 195 94 2.8 2E-20 1.5 Oligosaccharide metab 208 89 2.0 7E-11 1.5 L Vesicle mediated 229 L Respiratory burst 3E-04 484 1.7 3E-18 1.0 80 34 2.1 2.9 Polysaccharide synthesis 428 113 1.5 2E-05 1.8 216 100 2.2 1E-16 Starch metabolism 1.6 L Starch 182 80 2.5 2E-15 3.2 Photoperiodism Pentose-P shunt Response to darkness 148 94 2.3 2E-17 3.3 29 13 2.2 2.4 195 1.6 66 5E-04 1.4 Amino acid biosynthesis 512 148 1.7 9E-10 1.5 Response to hypoxia 40 1.9 Long-day 19 11 2.1 2.4 Plastid transcription 16 1.8 73 37 2.4 9E-07 1.0 Reg. circadian rhythm Cvsteine 207 79 2.2 2E-11 1.2 37 22 -"- to unfolded protein 2.1 1E-05 1.4 139 58 2.0 1E-06 2.1 Amino acid biosynthesis 512 143 1.3 2E-03 1 1 L Peptidvl-Cvs-S-15 12 4.6 4E-06 1.0 Pigment metabolism 305 2.3 1E-26 148 1.6 Glucosinolate biosynthesis 161 11 0.2 0.3 nitrosylation Chlorophyll 184 Cell division 446 89 1.0 0.4 Phosphatidvlinositol bios. 99 50 1.8 3E-05 0.8 85 2.2 2E-12 2.1 Chlorophyll biosynthesis 121 2.2 46 1E-08 0.9 L Cytokinesis Fatty acid catabolism Isoprenoid biosynth. 381 153 1.9 1E-15 1.3 201 36 0.9 0.2 188 92 1.8 2E-08 1.5 Glucosinolate biosynthesis 161 79 2.8 2E-18 2.3 Carotenoids 105 64 2.9 2E-16 1.3 Cell division 446 101 0.8 0.7 Flavonoids rRNA processing 253 77 1.8 4E-06 11 185 1E-04 1.5 66 1.7 L Cytokinesis 201 26 0.5 0.3 4E-10 1.5 Glucosinolate biosynthesis 161 Response to metal ion 471 140 1.7 43 1.3 1.8 rRNA processing 253 83 0.9 16 2E-04 Response to red light 86 36 2.0 3E-04 1.7 DNA replication 2.4 190 61 1.9 8E-06 Inositol phosphate biosynth. 61 3.5 4E-16 2.1 Pvrimidine nucleotide bios, 139 45 23 1.0 3.0 Cell division Cell division 446 103 1.1 1.4 446 89 1.2 0.9 L Cvtokinesis 201 52 1.2 2.2 Cytokinesis 201 62 1.8 3E-05 1.3

Supplemental Figure 9.

Gene ontology analysis of diurnal transcript levels in the CCA1-ox strain. Diurnal transcript levels were filtered for a difference between peak and trough using SAM with a 10% FDR without a fold-change cutoff. Groups of mRNAs with peaks at the given times were examined for enrichment of functional annotation categories using TOPGO. mRNAs lacking a peak were also tested for GO enrichment but did not return significant biases. The total number of genes in this dataset that falls under a given GO term is given as 'Annotated', the number that has a transcript peak at the given time is given as 'Present', along with the fold-overrepresentation (Enrichment) of this class in the CCA1-ox. FDR indicates the likelihood of false discovery. For comparison, the enrichment factor for each term in WT is also shown. If the enrichment factor in CCA1-ox is more than 1.5 fold higher than in wild type, the WT enrichment value is printed bold red; if the wild-type enrichment is 1.5 fold higher, then the WT enrichment value is underlined and green.

			Tran	slation pea	ık – CCA1-ox								Trans	slation pea	k – CCA1-ox				
6 am ZT 0 Cellular Component	Ann	otated Pres	ent Enri	chment FDR	12 pm ZT 6 Cellular Component	Ann	otated Pres	sent Er	richment FDR	6 pm ZT 12 Cellular Component	Anne	otated Pres	ent Enri	ichment FDR	12 am ZT 18 Cellular Component	Ann	otated Pre	ent Enri	chment FDR
Chloroplast └ Thylakoid │ Membrane │ Photosystem	2494 407 271 42	516 127 97 27	1.1 1.6 1.9 3.4	4E-02 2E-08 9E-10 3E-09	Chloroplast – Stroma L Nucleoid – Plastid envelope	2494 558 31 495	349 118 11 89	1.8 2.7 4.5 2.3	4E-30 4E-22 2E-04 3E-12	Chloroplast Stroma L Ribosome Thylakoid	2494 558 5 407	298 73 0 not e	1.2 1.4 nriched	3E-03	Nucleus Molecular Function	4451	402	1.2	3E-04
⊢ PS II └ React. cent └ PS I └ React. cent	15	13 astid en 14 8	2.5 coded 4.9 5.3	4E-03 1E-08 2E-05	L Thylakoid Membrane L Photosystem L Lumen	407 271 42 77	70 35 3 15	2.2 1.6 not e 2.4	1E-08 3E-02 enriched 1E-02	Chromosome	125 65	21 12	1.7 1.9		ATP binding Protein kinase Helicase	1089 577 99	140 82 16	1.8 2.0 2.2	5E-10 7E-08 4E-02
L b6f complex L Lumen	65		1.5		Signal recognition particle Nuclear chromatin Proteasome complex	9 15 44	6 4 10	8.3 3.4 2.9	3E-04 2E-02	Molecular Function	38 1089	17	4.6	4E-06	Biological Process				
Ribonucleoprotein - Ribosome - Cytosolic ribosome		139 110	2.2 2.4 2.6	3E-23 4E-24 5E-23	Biological process	4405	405		45.00	ATP binding	1089	157	1.5	1E-05	mRNA catabolism Gene silencing by RNA Chromatin silencing	98 236 185	20 33 26	2.7 1.9 1.9	6E-03 4E-02 6E-02
Large subunit Small subunit Plastid ribosome	90 72 5		3.3 2.3 0	1E-18 7E-06	Carboxylic acid metab. Ribonucleotide metabolism Amino acid metabolism	694	185 39 107	1.6 1.9 1.9	1E-09 1E-03 4E-09	Biological Process Plastid organization	375	74	2.0	3E-06	Protein phosphorylation Protein glycosylation N compound catabolism	668 193 315	86 31 32	1.7 2.1 1.4	2E-04 6E-03
L snRNP Nucleolus Prefoldin complex	26 237 9	10 60 7	2.0 1.3 4.1	8E-02 5E-02 2E-03	L α-amino acid biosynth. ⊢ Aromatic − Arginine − Serine family	386 86 9 208	52 23 3 29	1.7 3.3 4.1 1.7	3E-03 1E-05 3E-02	L Localization Photosynthesis Carbohydrate biosynthesis		23 39 89	1.3	5E-03 enriched 3E-02	Actin nucleation Cell cycle Gravitropism	75 552 129	14 63 35	2.5 1.5 3.6	6E-02 4E-02 2E-08
Mitochondrion – Mito. inner membrane L Respiratory chain – Complex I NDH – Complex II	1349 151 69 43 8	274 44 28 20 4	1.1 1.5 2.1 2.5 2.6	1E-02 2E-04 3E-04	 Valine, (Iso)leucine Aspartate family Thr metabolism Glutamine family Lysine Proline 	208 14 111 14 20 7 5	29 5 13 7 3 1	1.7 4.4 1.5 6.2 1.9 1.8 2.5	4E-02 1E-03	└─ Polysaccharide └─ Starch Cell cycle └─ Cell division └─ Cytokinesis Microtubule process	455 179 552 393 178 241	68 30 82 63 42 51	1.5 1.7 1.5 1.6 2.4 2.2	8E-03 3E-02 3E-03 3E-03 1E-05 2E-05					
L Complex III Mito. envelope Vacuole Endoplasmic reticulum H+ ATPase, V-type	14 186 600 381 11	3 51 174 101 9	1.1 1.4 1.5 1.4 4.3	2E-02 1E-08 1E-03 1E-04	L Histidine rRNA processing tRNA metabolic process L tRNA aminoacylation	8 247 108 39	1 48 34 12	1.6 2.4 3.9 3.8	7E-07 8E-10 8E-04	Carotenoid biosynthesis tRNA aminoacylation Histone lysine methylation	103 39 178 136	21 9 34 29	2.1 2.4 2.0 2.2	2E-02 5E-03 2E-03					
Biological Process		0			S-compound metabolism - Fe-S cluster assembly - Glucosinolate metab.	499 95 173	72 23 32	1.8 3.0 2.3	3E-05 4E-05 2E-04	L H3-K4	8	3	3.8	antology	y analysis of diurnal c	hone		_	
Translation Carbohydrate catabolism L Glucose Pentose-P shunt Phospholipid biosynthesis Photorespiration Phosphatidylinositol bios. RNA methylation Divalent metal ion transpo Cysteine biosynthesis Vesicle mediated transpo α-amino acid biosynthesis	451 195 354 149 90 165 Drt 175 202 rt 461	5 147 141 141 5 60 4 103 9 52 0 46 5 64 5 61 2 64 125	1.9 1.5 1.6 1.5 1.8 2.7 2.0 1.8 1.6 1.4 1.3	7E-13 1E-05 7E-08 3E-02 3E-04 4E-02 5E-09 6E-07 7E-05 1E-03 1E-03 9E-02	L Cysteine biosynthesis Protein targeting to plastid Photosystem II assembly Isoprenoid biosynthesis L Carotenoids	202 61 146 351 103	27 12 28 62 25	1.7 2.4 2.2 3.0	6E-02 4E-02 3E-04 3E-07 2E-05	translation state in classified accordin TL cycle by select with p<0.05 or Del peak at 6am: 2140 performed with TC background set. F between 1E-10 an 1E-05 and 5E-02 a	CC/ ing to ing w ita TI ger PGC DR v d 1E are li g pho	A1-o the t vith S _>0.7 nes; O, us value -05 ght g ospha	x. Tr ime SAM 7. G 12pr ing s be are gree ate;	ranslatio of peak (Tusher enes wit m: 899; (all 10,94 elow 1E- colored n n. Abbre snRNP,	y analysis of outmark on states of nuclear-er TL. Genes were filter r, 2001) at an FDR of th TL peaks were dist 6pm:1112; 12am: 842 2 reliably expressed 10 are colored dark g medium green, and th eviations: PS, photosy small nucleolar ribon	ncode red fo <0.1, ribute 2. GC I gene green hose	ed go or a s od as a an a an a an a an a an a an a an a	enes signif NOV follo alysis s a se veen NH, N	icant /A ows: s was

Supplemental Figure 11. The diel translation responses to light-dark changes are only partially correlated with responses to short-term light-dark shifts. Data from wild type and CCA1-ox were co-clustered together with mRNAs known to be regulated by a 1 hour exposure to darkness (L-> 1hD), followed by reillumination for 10 minutes (1hD->10'L; Juntawong et al., 2012), as well as with mRNAs known to be translationally regulated when dark-grown, etiolated, seedlings are exposed to four hours of light (D->4hL; Liu et al., 2012). Public microarray data sets GSE34231 and GSE29657 were obtained from the Gene Expression Omnibus (GEO) repository at http://www.ncbi.nlm.nih.gov/geo/. Raw data were processed as described above, and probes with marginal ("M") or present ("P") expression signals in all polysome and total RNA fractions within each data set were retained, resulting in 9,178 probes of sufficient quality in common among the two public data sets and our own. TL was calculated for each probe in the public data as TL = polysomal/total RNA, and TL in our data was calculated as described earlier. ΔTL values were calculated for eleven comparisons between experimental conditions as the difference in mean TL. Hierarchical clustering of the genes on the basis of their ΔTL across the eleven comparisons was performed, using the Pearson coefficient as the similarity metric. The resulting cluster tree was cut into six clusters, and within each cluster, the ΔTL values were averaged over all genes. (A) displays the eleven mean ΔTL values for each cluster (yellow=translational stimulation). Treatments are indicated at the bottom where gray shading stands for dark condition (e.g. ZT18) and no shading stands for light condition (e.g. ZT6). (B) GO enrichment analysis was performed on the genes in each cluster using topGo. Key enriched terms are shown along with the false discovery corrected p-value. BP. biological process, MF, molecular function, CC, cellular compartment.

Oligonucleotide	AGI	Sequence 5' to 3'					
Oligonacieotide	Number						
RPL26B F	AT5G67510	GTTCTCATGAGCTCGCCGTT					
RPL26B R	AT5G67510	GAACGTCCCACGAACAACTT					
LHCA1 F	AT3G54890	CAGCTTACCTTGACGGTTCTG					
LHCA1 R	AT3G54890	GAGCTCTGACTCTTTGTATCTCTCAA					
GIGANTEA F	AT1G22770	GCAACAATACGGTGCCTTTC					
GIGANTEA R	AT1G22770	TGGGTATGGAGCTTTGGTTC					
EF1A F	AT5G60390	TCTCCGAGTACCCACCTTTG					
EF1A R	AT5G60390	CTCCAGTTGGGTCCTTCTTG					
CCA1 F	AT2G46830	CGGGTGTGAATGATGGAAAAGA					
CCA1 R	AT2G46830	CGATCTTCATTGGCCATCTCAG					
CAB4 F	AT3G47470	AGAGCTAGCAAACGGGAGGT					
CAB4 R	AT3G47470	TCAGACAAGTGCTGCAACAGA					
LHY F	AT1G01060	GACAACGCGGTTCAAGATG					
LHY R	AT1G01060	TGCCAAGGGTAGTTTTGCAT					
MCM3 F	AT5G46280	CAACAACAATGGGGTTGGAG					
MCM3 R	AT5G46280	GCCATCGCTGATCATCACTT					
PRR3 F	AT5G60100	TGACAAGAAGTCGGTGAAACC					
PRR3 R	AT5G60100	CCACCACTACTCCCACTTTCA					

Supplemental Table 1. Oligonucleotides

Supplemental Table 2	AGI
Gene	Number
CAB4	AT3G47470
CCA1	AT2G46830
COP1	AT2G32950
CRY1	AT4G08920
CRY2	AT1G04400
EF1A	AT5G60390
ELF3	AT2G25930
ELF4	AT2G40080
GI	AT1G22770
GRP7/CCR2	AT1G06820
GRP8/CCR1	AT4G39260
HY5	AT5G11260
НҮН	AT3G17609
LHCA1	AT3G54890
LHCB3	AT5G54270
LHY	AT1G01060
LTP1	AT2G38540
LUX	AT3G46640
MCM3	AT5G46280
MRPL11	AT4G35490
PEPC1	AT1G17710
PHYA	AT1G09570
PHYB	AT2G18790
PHYC	AT5G35840
PHYD	AT4G16250
PHYE	AT4G18130
PHOT1	AT3G45780
PHOT2	AT5G58140
PIF1	AT2G20180
PIF3	AT1G09530
PIF4	AT2G43010
PGR5	AT2G05620
PRR3	AT5G60100
PRR5	AT5G24470
PRR7	AT5G02810
PRR9	AT2G46670
RCE1	AT4G36800
RPL26B	AT5G67510
RVE8	AT3G09600
SRR1	AT5G59560
TOC1	AT5G61380
UVR8	AT5G63860
ZTL	AT5G57360
ZIL	A15G5/360

Supplemental Table 2. Arabidopsis Genome Identifiers (AGI) of selected genes.

Supplemental References

Thimm, O., Blaesing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., Selbig, J., Müller, L.A., Rhee, S.Y. and Stitt, M. (2004). MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J **37:** 914-39.

Browning, K.S. and Bailey-Serres, J. (2015). Mechanism of cytoplasmic mRNA translation. The Arabidopsis Book **13**:e0176.