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Langevin dynamics simulations. Chromatin regions and
protein complexes are represented by beads, and the posi-
tion of the ith bead in the system evolves according to the
Langevin equation
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where ri is the position of bead i with mass mi, γi is the fric-
tion due to an implied solvent, and η i is a vector representing
random uncorrelated noise such that

〈ηα(t)〉= 0 and 〈ηα(t)ηβ (t ′)〉= δαβ δ (t− t ′). [S2]

The noise is scaled by the energy of the system, given by the
Boltzmann factor kB multiplied by the temperature of the sys-
tem T , taken to be 310 K for a cell. The potential Ui is a sum
of interactions between bead i and all other beads, and we use
phenomenological interaction potentials as described below.
For simplicity we assume that all beads in the system have
the same mass mi = m. Equation (S1) is solved in LAMMPS
using a standard Velocity-Verlet algorithm.

For the chromatin fibre the ith bead in the chain is con-
nected to the i + 1th with a with a finitely extensible non-
linear elastic (FENE) spring given by the potential
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where ri,i+1 = |ri−ri+1| is the separation of the beads, and the
first term is the Weeks-Chandler-Andersen (WCA) potential
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which represents a hard steric interaction which prevents ad-
jacent beads from overlapping; here di j is the mean of the di-
ameters of beads i and j. The diameter of the chromatin beads
is a natural length scale with which to parametrize the system;
we denote this σ , and use this to define all other length scales.
The second term in Eq. (S3) gives the maximum extension of
the bond, R0; throughout we use R0 = 1.6 σ , and set the bond
energy KFENE = 30 kBT . The bending rigidity of the polymer
is introduced via a Kratky-Porod potential for every three ad-
jacent DNA beads

UBEND(θ) = KBEND [1− cos(θ)] , [S5]

where θ is the angle between the three beads as give by

cos(θ) = [ri− ri−1] · [ri+1− ri], [S6]

and KBEND is the bending energy. The persistence length in
units of σ is given by lp = KBEND/kBT . Finally, steric inter-
actions between non-adjacent DNA beads are also given by
the WCA potential [Eq. (S4)].

Each protein complex is represented by a single bead and
the WCA potential is used to give a steric interaction between
these. Chromatin beads are labelled as binding or not-binding
for each protein species according to the input data (see sec-
tion on ChIP-seq and DNase-seq data analysis below). For
the interaction between proteins and the chromatin beads la-
belled as binding, we use a shifted, truncated Lennard-Jones
potential

ULJcut(ri j) =
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where rcut is a cut off distance, and ri j and di j are the sepa-
ration and mean diameter of the two beads respectively. This
leads to an attraction between a protein and a chromatin bead
if their centres are within a distance rcut. Here ε ′ is an energy
scale, but due to the second term in Eq. (S7) this is not the
same as the minimum of the potential, which for clarity we
denote ε (and we refer this to as the interaction energy). For
simplicity we set the diameter of the protein complexes equal
to that of the chromatin beads, di j = σ , and set rcut = 1.4 σ .

The polymer is initialized as a random walk, and the dy-
namics are first evolved in the absence of protein interactions
in order to generate an equilibrium coil conformation. In-
teractions with the protein complexes are then switched on,
and the dynamics are evolved until a new equilibrium con-
formation is obtained. The length scale σ , mass m and en-
ergy scale kBT give rise to a natural simulation time unit
τLJ =

√
σ2m/kBT , and Eq. (S1) is integrated with a constant

time step ∆t = 0.01τLJ, for a total of at least 8× 106 time
steps. Each simulation is repeated at least 500 times using a
different initial conformation and random noise, resulting in
an ensemble of conformations. Two chromatin beads are said
to be interacting if their separation is less than 2.75 bead di-
ameters; counting the proportion of conformations in which
a given pair of beads is interacting gives an approximation of
the probability that those beads interact.

So far the system has been described in units σ , m, and
kBT . In order to map these simulation units to real ones
we must recognise that there are two further important time
scales in the system, namely the inertial time τin = m/γi (from
Eq. (S1) this is the time over which a bead loses informa-
tion about its velocity), and the Brownian time τB = σ 2/Di
(the time it takes for a bead to diffuse across its own diam-
eter σ ). Here Di is the diffusion constant for bead i, given



through the Einstein relation by Di = kBT/γi; if we make the
approximation that a chromatin bead will diffuse like a sphere
we can then use Stokes’ Law, where γi = 3πνdi, with ν the
viscosity of the fluid, and di the diameter of bead i. Taking
realistic values for the length, mass and viscosity one finds
that τin ¿ τLJ ¿ τB, with the times separated by several or-
ders of magnitude. For numerical stability we must choose
the time step ∆t smaller than all of these times, and we wish
to study phenomena which will occur on times of the order
τB; this means that using real values for all parameters would
lead to infeasibly long simulation run times. Instead we make
an approximation by setting m = kBT = σ = 1, and γi = 2,
and map to real time scales through the Brownian time τB;
although this means that beads in our simulation have more
inertia than in reality, this does not effect our results, which
are taken once the polymer has reached an equilibrium con-
formation. Taking the diameter of the chromatin beads to be
15.8 nm, and assuming a viscosity of 10 cP for the nucleo-
plasm gives τB ≈ 87 µs, meaning that a simulation time unit
is ≈ 43.5 µs. Each simulation run therefore represents ap-
proximately 7 s of real time.

ChIP-seq and DNase-seq data analysis. As an input to
the model we use ChIP-seq and DNase-seq data (previously
published in Refs. (14,50,56-58) as indicated in the cap-
tions for Additional files 3, 9 and 12: Figures S2, S7 and
S10) to identify protein binding sites in the chromosome re-
gion of interest. For protein binding, ChIP-seq reads are
aligned to the mouse reference genome build mm9 using the
Bowtie2 software (59); duplicate reads are removed, and pile-
ups are generated using the BedTools package (60). Bind-
ing sites are identified using the macs2 peak calling soft-
ware (61) using a control data set where available; peaks
which have a normalised p-value < 0.001, and which have
a fold-change higher than a threshold are retained. DNase-
seq reads are similarly aligned to the mm9 genome using
Bowtie2, but peaks are identified using the PeaKDEck soft-
ware (which uses a peak finding algorithm calibrated specifi-
cally for DNase-seq data (62)). As detailed in the main text,
we simplify our model by assuming that DNase hypersensi-
tive sites indicate the positions of transcription factor binding
sites. For histone modifications, we also align reads using
Bowtie2; since these modifications can be found across wide
regions, rather than identifying peaks we instead find regions
where the pile-up of reads exceeds a threshold.

In order to incorporate the data into the simulations, the
locus of interest is divided into regions corresponding to each
bead in our model chromatin fibre. Beads are then labelled
according to any peak or histone modification which overlaps
with the region; for simplicity we only label beads a binding
or not (or as having a histone modification or not), and do not
incorporate peak intensities into the model.

Cluster Analysis. In order to assess the similarity between
the conformations generated in each set of simulations we
perform a cluster analysis. First we calculate the generalised
“distance” between all pairs of conformations; then a den-

drogram is generated using the standard hierarchical cluster-
ing algorithm in the MATLAB software (64), with an average
linkage criterion.

A standard way to measure the distance between two poly-
mer conformations is to consider the mean squared difference
between separations of pairs of beads in each; however since
our polymer consists of regions which bind proteins and un-
structured regions, this does not perform well (the unstruc-
tured regions dominate in the mean, and no clear clusters are
found). Instead we use a distance Γ(C,C′) between confor-
mations C and C′ which ignores the unstructured regions, de-
fined as
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where rC
i j is the separation of beads i and j in conformation

C. The Kronecker δ -function is defined such that δa,b = 1
if a = b and 0 otherwise, with sC

i j = 1 if beads i and j are
interacting in conformation C and 0 otherwise (an interac-
tion is defined as having separation less than 2.75 bead di-
ameters). Thus the only contributions to the mean are from
beads which are interacting in one conformation but not in
the other; further limiting the analysis to consider only the
chromatin beads within the most structured region of the lo-
cus (indicated by green bars in Figures 1C and 4C) results in
a series of well defined clusters (Figures 2 and 4D).

Capture-C data. In order to test the predictions of the model
we compared simulation results with Capture-C data; for the
α and β globin loci data were from Ref. (14), whereas data
for the mitoferrin locus in Figure 6 were from new exper-
iments performed according to the method in that reference.
In these experiments a set of oligonucloetide capture “targets”
is designed, a 3C library is obtained using a frequently cutting
restriction enzyme (Dpn II, cutting at GATA), and SureSelect
oligonucleotide capture is followed by Hi-seq paired-end se-
quencing. The resulting reads then undergo in silico DpnII di-
gestion (producing a set of fragments for each read), and the
fragments are aligned to the mouse mm9 reference genome
as single-end reads using the Bowtie software (63). Identical
sets of read fragments are assumed to be PCR artefacts, and
are removed (14); read sets which contain a targeted restric-
tion fragment and a reporter fragment are retained. Data are
then smoothed by counting interactions within 800 bp win-
dows centred on genomic positions separated by 400 bp steps,
giving an interaction profile for each target (black lines with
grey shading in Figures 3A,B, 4E,F and 5C,F, and Additional
Files 6 and 14: Figures S4 and S12). Since the efficiency
of capture of each target is unknown, the obtained profiles
show relative interaction strength, and profiles from different
targets cannot be compared quantitatively. Reads showing in-
teractions between targeted regions could have been captured
from either target, so these reads are not quantitative and must
be removed; these regions are indicated by black blocks in
Figures 3A,B, 4E,F and 5C,F, and Additional Files 6 and 14:
Figures S4 and S12.



To compare Capture-C data with our simulated interaction
profiles we first identify the simulation beads that correspond
to each of the targeted regions. From the ensemble of simu-
lated conformations we find the probability that that any chro-
matin bead within the target region is interacting (separation
less than 2.75 bead diameters) with each other bead (the prob-
ability is approximated by n/N when there is an interaction
in n conformations in a set of N). Since the Capture-C ex-
periment only gives relative interaction profiles, to plot the
data on the same axis as simulations we must scale it by a
factor γ which we find via a least squares fit. After remov-
ing interactions between targets from both the simulation and
experimental data sets, we use cubic spline interpolation to
obtain points at the same genomic locations for each data set;
in a plot with simulation and experimental values on the axes,
γ is this slope of a linear fit which goes through zero.

Quantitative comparison with experimental data - the Q
score. In order to quantitatively compare our simulations
with data from Capture-C experiments we define a score, de-
noted Q which takes a value between 0 and 1 depending on
the overlap between chromatin interaction peaks which are
predicted by simulations, and those observed in experiments
(Q = 1 denoting perfect overlap). For a data set for a given
capture target we first normalise by dividing by the number
of interactions in the vicinity of the target; we then scale all
of the experimental data so that it best fits the simulation. A
sliding averaging window is used to smooth both the simu-
lation and experimental data, before applying a peak finding
algorithm to identify interactions (the “findpeaks” function in
the MATLAB software (64)). We use the peak positions and
widths (but not heights) to test whether peaks in each data set
overlap, and calculate a value

qi =
nse +nes

ns +ne
, [S9]

where ns and ne are the number of peaks found in the sim-
ulation and experimental data respectively, nse is the num-
ber of peaks in the simulation data which overlap with one
or more peaks in the experimental data, and nes is the num-
ber of peaks in the experimental data which overlap with one
or more peaks in the simulation data. It is possible for nse
and nes to differ if, for example, two adjacent peaks in the
simulation overlap a single broader peak in the experiment.
Since from a single simulation and experiment we compare
data from each capture target separately, we take an average
to find an overall score Q = ∑i qi, where qi is the score for
the ith capture target. Note that since the experimental data is
always scaled so as to best fit the simulation (necessary since
the Capture-C signal is in units of numbers of reads, and we
do not know the proportionality constant which relates this
to the probability of two regions interacting), simulations al-
ways score reasonably well, and defining a measure of their
quality is very difficult. To set the scale, we compare with a
simulation where the bead colourings are shuffled randomly.

In Additional file 8: Figure S6 we compare Q scores for
a number of different simulation models. To generate the

“shuffled” chromatin fibre, the bead colourings are shuffled
subject to two constraints: first, in order to preserve e.g. the
pattern of histone methylation around the DHS or CTCF sites,
we keep groups of 10 adjacent beads (4 kbp) together, and
second, so that there are some interactions to compare we
preserve the bead colouring at the targets used in the exper-
iment (if a protein binding site were shuffled away from a
target, then there would be very little long range interaction
with that region).

Quantifying the difference between two different sets of
simulations is more straightforward, since no scaling is re-
quired. We define

χ2(A,B) =
1

(n(n−7)) ∑
|i− j|>6

[PA(i, j)−PB(i, j)]2, [S10]

where PA(i, j) is the probability that chromatin beads i and j
are in contact in set of simulations A (i.e. the values shown
in contact maps), and the sum runs over all pairs of beads
which have a linear separation greater than 6 (this means the
diagonal in contact maps are not included in the comparison).
χ2 gives the difference between two contact maps, i.e. the
larger its value the more different the two sets of experiments.




