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TECHNICAL APPENDICES 

 

Appendix A: Parameter Estimation in Statistical Models 

A1. Generalized Linear Models 

In generalized linear model (GLM), the response variable is assumed to follow a distribution 

from the exponential family that includes Normal, Poisson, Bernoulli, Multinomial, Gamma, 

Beta, Geometric, Negative Binomial and many other distributions.  As the univariate can be 

viewed as a special case of multivariate where the dimensionality of variable is one, without 

loss of generality, multivariate exponential family of distributions is used here to illustrate the 

theory of generalized linear model.  A GLM is characterized by three parts: stochastic 

component — the response distribution, systematic component — the linear predictor, and 

the link function between the linear predictor and the mean of the response variable.  

Specifically, considering a response vector Y  in a GLM, the density function has such a 

general form, 
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where θ  is the location parameter vector of interest, also known as the canonical parameter, 

φ  is the nuisance scale (dispersion) parameter vector, )(⋅a , )(⋅b , and )(⋅c  are known 

functions to specify a member of the exponential family.  The expectation and variance of Y  

are given as, respectively, 

)(')( θμY bE == , 

and 

)('')()( θφY baVar = , 

where 
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θθ
θθ  are the first-order and 

second-order derivatives of )(θb , respectively.  Denote )('')( θμ bV = , called variance 

function, to highlight that )('' θb  depends on μ .  The variance of Y  depends on both location 

and scale parameters. 

Assuming the set of explanatory variables influence the outcome only through a linear 

function, the linear predictor upon which θ  depends can be written as, 

XββXβXIβημ =++== ccttl 0)( , 

where )(⋅l  is an invertible link function, β  is the effect vector probably consisting of 0β , tβ  

and cβ  for the intercept(s), the target effects of interest and the covariate effects, respectively, 

X  is the corresponding design matrix consisting of block matrices I , tX  and cX , and I  is a 

unit matrix.  The link function ημ =)(l  relates the mean to the linear predictor.  When the 

link function makes the linear predictor η  the same as the canonical parameter θ  (i.e., 

ηθ ≡ ), it is called the canonical (or natural) link which has nice mathematical and numerical 

properties in connection with the estimation process. 

GLMs cover a wide range of practical situations by allowing for response variables 

that follow any probability distribution in the exponential family of distributions (not only 
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simply normal distributions) and for the link function of the response variable to vary linearly 

with the predictor (not only assuming that the response itself must vary linearly).  For 

dichotomous phenotypes following a Bernoulli distribution, the natural link function is a log-

odds (or logit), 
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while 1)( =φa , ( )θθ eb += 1ln)( , and 0),( =φYc .  There are also several popular alternative 

link choices for binomial data including probit and complementary log-log.  For count 

outcomes following a Poisson distribution, the canonical link is the log function, 

( )µηθ log== , 

while 1)( =φa , θθ eb =)( , and ( )!ln),( YYc −=φ .  For continuous responses having a 

univariate normal distribution, ( )2,σµN , the natural link is the identity, i.e., µηθ == , 

while 2)( σφ =a , 
2

)(
2θθ =b , and ( )σπ

σ
φ 2ln
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),( 2
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YYc . 

A1.1. Likelihood and Parameter Estimation in GLMs 

The log-likelihood, also known as the support, for a set of independent observations iy  

( Ni ,,2,1 = ) is, 
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where iX s are the design matrix.  The score, Hessian matrix and the expected Hessian matrix 

are, respectively, 
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where )()('' iii Vb μθV == , I  is a unit matrix and ⊗  represents a Kronecker product. 

The GLM can be fitted by maximum likelihood (ML) estimation method.  Note that 

estimation of β  does not require knowledge of φ , implying that one first estimates β  and 

estimates φ  afterwards on the basis of the estimate β̂ .  The ML estimator can be derived by 

setting the score equal to zero and solving the resulting likelihood equations.  In general, 

there is no closed form of ML estimates available for GLMs, and numerical algorithms are 

required in fitting parameters to data.  The Newton-Raphson method and the Fisher's scoring 

method are two well worked methods for finding ML estimates in GLMs.  In the Newton-

Raphson method, the estimate at the )1( +t th cycle of iteration is, 

( ){ } )ˆ(ˆˆˆ )(1)()()1( tttt U ββHββ
−+ −= , 

where )(ˆ tβ  is the estimated effects at the t th cycle of iteration, )ˆ( )(tU β  and ( ))(ˆ tβH  are, 

respectively, the estimated score and estimated Hessian matrix in which )(ˆ tβ  is used in place 

of β .  This algorithm is repeated until convergence in β  or the log-likelihood.  In the 

Fisher’s scoring method, the estimate at the )1( +t th cycle of iteration is, 

( ){ } )ˆ(ˆˆˆ )(1)()()1( tttt UE ββHββ
−+ −= , 
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where )(ˆ tβ  is the estimated effects at the t th cycle of iteration, )ˆ( )(tU β  and ( ))(ˆ tE βH  are, 

respectively, the estimated score and the estimated value of the expected Hessian matrix. 

Conventionally, either a Newton-Raphson method or a Fisher's scoring method can be 

implemented with iteratively weighted (or reweighted) least squares method (IWLS) that is 

formally similar to the familiar solution for weighted least squares estimates in linear models; 

the Newton-Raphson method and the Fisher’s scoring method coincide when the canonical 

link function is used.  Each iteration step for β̂  in IWLS can be written as, 
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where iμ̂  is the estimated mean, iŴ  is the estimate of the working weight iW  by using )(ˆ tβ  

in place of β , ii
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 where iL  is the component likelihood of individual i  in Newton-

Raphson method, iΔ̂  is the estimate of 
i

i
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working response. 

Some of the exponential families on which GLMs are based include unknown 

dispersion parameter φ .  The scale parameter φ  can be separately estimated from β  after 

computing residuals with β̂ .  There are various ways of estimating φ .  Although this 

parameter can, in principle, be estimated by maximum likelihood as well, it is more common 

to use a “method of moments” estimator.  Unbiased estimator of φ  can be obtained via 

Pearson’s Chi square as, 
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where p  is the number of independent parameters estimated in β  ( 0=p  if β  is known). 
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A1.2. Residuals under the Null Hypothesis in GLMs 

Under the null hypothesis of no target effects (i.e., 0β =t ), fit 0β̂  and cβ̂  as well as φ̂  to 

data.  Then, the residuals can be computed for forming the statistic.  Among several types of 

residuals considered in GLMs including response residuals, working residuals, Pearson 

residuals, Anscombe residuals and deviance residuals, the score-contributed residual is 

suggested to use here, which indicates a subject-specific contribution to the residual score, 

( )iii
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1 1 −= − ,        (A1) 

where )ˆˆ(ˆ 0
1

ccii l βXβIμ += −  and iΔ̂  is an estimate of iΔ  in which 0β̂ , 0  and cβ̂  are used in 

place of 0β , tβ  and cβ , respectively.  When the canonical link is used, 

( )iii a
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φ
r ˆ

)ˆ(
1

−= . 

The product of this residual and the corresponding value(s) of predictor variable(s) forms the 

individual contribution(s) to the first partial derivative of the log likelihood, indicating the 

input of this subject in the corresponding estimating equation with respect to the given 

covariate.  Thus, using this kind of residuals is coherent with the estimating equations. 

As an alternative, other residuals may be also used.  They can be computed as follows, 

respectively (Fox, 2008; Gill, 2001; Lindsey, 1997; Pierce and Schafer, 1986).  Response 

(raw fitted value) residual, 

ii
R

i μyr ˆ−= . 

Working residual, computed from the working response in the final IWLS fitting, 
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Anscombe (Anscombe, 1961) residual, 
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where ( ) ( )∫ −= dzzVzA 3
1

.  Deviance residual can be calculated by the extension to the 

multivariate case (Pregibon, 1981), 

( )
( )ii

j ijij

iD
i

y
d μyr ˆ

ˆ 2
−

−
=
∑ µ

, 

where ( ) ( ){ }φθyφθy ,ˆ;ln,~;ln2 iiiii LLd −= , ( )φθy ,~;ln iiL  is the likelihood of observation iy  

under the saturated model, and ( )φθy ,ˆ;ln iiL  is the likelihood under the fitted model. 

 

Appendix A2: Quasi-likelihood Models 

A quasi-likelihood model (QLM) only specifies the link function and the relationship 

between the first two moments but does not necessarily specify the complete distribution of 

the response variable.  Consider a response variable Y  has expectation µ  and variance 

)()( µφ Va , where φ  is the nuisance scale parameter, and )(⋅a  and )(⋅V  are some known 

functions.  Suppose there is a known function between µ  and a set of predictor variables as, 

βxTl ==ηµ)( , 

where )(µl  is an invertible link function, β  is the effect vector probably consisting of the 

intercept 0β , the target effects tβ  and the covariate effects cβ , and x  is the corresponding 

explanatory variable vector.  The quasi-likelihood function ),( µYQ  is defined by the relation, 
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where )(⋅c  are known functions. 

A2.1. Quasi-score Equations and Parameter Estimation in QLMs 

For a set of independent responses iy  ( Ni ,,2,1 = ), there is the quasi-score function that 

behaves like the score function in GLMs, 
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where the expectation of the second term on the right side of the equal sign is 0.  Setting 

quasi-score functions to zero leads to a set of quasi-likelihood estimating equations.  Then, 

QLMs can be fitted using a straightforward extension of the algorithms used to fit GLMs. 

A2.2. Residuals under the Null Hypothesis in QLMs 

Similar to that in GLMs, the quasi-score residual can be computed by, 

( )ii
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where iµ̂ , i∆̂ , 0β̂  and cβ̂ , as well as φ̂  when necessary, are the quasi-likelihood estimates 

under the null hypothesis of no target effects (i.e., 0β =t ). 

 

Appendix A3: Generalized Estimating Equations Models 
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Generalized estimating equations (GEE) model requires only to specify a functional form for 

relationships between the outcome variable and the explanatory factors and between the mean 

and the variance of the marginal distribution, avoiding the need to model the multivariate 

distribution for data.  Specifically, letting T
KYYY ),,,( 21 =Y  be a group of response 

variables, suppose that (1) ( ) μY == jμE )(  and there is a link function relating the 

expectation of Y  to a linear predictor, 

XββXβXIβημl =++== cctt0)( , 

where β  is the effect vector that consists of 0β , tβ  and cβ  for the intercept, the target effects 

and covariate effects, respectively, and X  is the corresponding incidence matrix; and (2) the 

variance is a function of the mean, )()()( jjjjj VaYVar µφ= , jφ  is the nuisance scale 

parameter, and )(⋅ja  and )(⋅jV  are some known functions.  For convenience, denote in the 

vector form, ( )jφ=φ  and ( ) [ ])( jjaa φ=φ  when necessary. 

The GEE models for diverse scenarios may take the same general form.  For repeated 

measurements, iY  may have the same parameters β , )(⋅a  and )(⋅V , and regressor values x , 

and thus the design matrix ( )TxxxX ,,, = .  In a clustered design or a longitudinal study, 

the components of Y  may share the same β , )(⋅a  and )(⋅V , but have their own regressors 

jx s, and thus ( )TKxxxX ,,, 21 = .  For grouped phenotypes, each jY  has the component-

specific predictor values, functions and parameters including jx , )(⋅ja , )(⋅jV , jφ  and )( jβ , 

and thus resulting in the block effect vector and block incidence matrix, respectively, as 

follows, 
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and 
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In application to detection of overall effects and/or pleiotropic effects on multiple traits, the 

components of Y  may share the same regressor x , but have component-specific parameters )(⋅ja , 

)(⋅jV , jφ  and )(iβ . 

A3.1. GEE and Parameter Estimation in GEE Models 

Considering a set of data ),,,( 21
T
N

TTT yyyy =  that is decomposed into N  strata and the iy s 

are uncorrelated with each other, the estimating function is formed via a set of score or quasi-

score functions, 
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)( iii AαRAΣ =  is a working variance with a given 

correlation structure, [ ])()( ijjjji Vadiag µφ=A , a diagonal matrix with )()( ijjjj Va µφ  as the 

j th diagonal element, and )(αR  is a working correlation matrix that may depend on some 

unknown parameter vector α .  iΣ  needs not to be equal to the true one, although the better it 

hits, the better will be the precision of the estimates.  There are several choices for the 

working correlation matrix.  The variance structure is commonly specified as independence, 

exchangeable, autoregressive, stationary m-dependent, and unstructured.  Parameter estimates 

from the GEE are consistent even when the covariance structure is incorrectly specified and 

the variance function )(⋅V  is not the true one, under mild regularity conditions. 
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The function )(βU  behaves like the derivative of a log-likelihood (i.e., a score 

function).  There is the second derivative as, 
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where I  is a unit matrix and ⊗  represents a Kronecker product.  The estimates of β  can be 

found by solving estimating equation 0β =)(U .  Estimation is typically accomplished 

through a series of iterations between a modified Fisher’s scoring algorithm for β  and 

moment estimation of correlation parameters α  and scale parameter φ .  Given current 

estimates α̂  and φ̂  of the nuisance parameters, the following modified iterative procedure is 

for β , 
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The working correlation matrix )(αR i  and φ  are estimated by the moments method.  Using 

the current values of parameters calculates the current Pearson residuals defined as, 
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The specific estimator for α  depends on the choice of )(αR ; the general approach is by the 

function of, 
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A3.2. Residuals under the Null Hypothesis in GEE Models 
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After fitting the model under the null hypothesis, the residuals can be computed for several 

different purposes, e.g., a repeated measurement study, a longitudinal study, a clustered 

design, and multivariate analysis, 

)ˆ(ˆˆ 1
iii

T
ii μyΣΔr −= − .         (A3) 

where iμ̂ , iΔ̂  and iΣ̂  are, respectively, the GEE estimates of the mean, matrices iΔ  and iΣ  

under the null hypothesis, 0β =t .  When all the components of iy  have the same target 

effect parameter tβ  and the same predictor vector tx  as in a repeated measurement study, the 

residuals can be further averaged over these measurements for a better estimation, 
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where 1  is a vector of which all components are 1 and iK  is the dimensionality of iy . 

 

Appendix A4: Multinomial Logistic Models 

Considering a multinomial response variable, index response categories by K,,2,1  , and 

denote the outcome T
KYYY ),,,( 21 =Y  where jY  is an indicator variable taking value 1 if 

the observed category is j  and 0 otherwise.  Then, ( ) μY == jμE )( , 

( ) ),()1( jjjjj VYVar µµµµ =−= , and ( ) ),(, jijiji VYYCov µµµµ =−= .  A polytomous logit 

model can be formed by nominating one of the response categories as a baseline and then 

formulating a set of 1−K  logits for all other categories relative to the baseline.  Without loss 

of generality, using category K  as the baseline, then, the multinomial density has a 

multivariate exponential form, 
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where 















=

K

j

µ
µ

lnθ , ( )∑ −

=
+=

1

1
1ln)( K

j
jeb θθ , 1)( =φa , and 0),( =φYc .  Suppose the logit 

function to link the expectation to the linear predictor, 
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effects, respectively.  The link can be rewritten in the vector-matrix notation, 
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where I  is a )1()1( −×− KK  unit matrix and ⊗  represents a Kronecker product.  This model 

is analogous to a logistic regression model, except that the probability distribution of the 

response is multinomial instead of binomial and there are 1−K  equations instead of one.  

The polytomous logit model is a special case of GLMs with a canonical link in Appendix A1. 

A4.1. Likelihood and Parameter Estimation in Multinomial Logistic Models 

The log-likelihood for a set of independent observations iy  ( Ni ,,2,1 = ) is, 
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where iX s are the design matrix.  The score and Hessian matrix are, respectively, 
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ii
i X

η
μ

β
μD

∂
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=
∂
∂

= , [ ]),( ikiji V µµ=V  is the variance-covariance matrix whose 

element at row j  and at column k  is ),( ikijV µµ , I  is a )1()1( −×− KK  unit matrix and ⊗  

represents a Kronecker product. 

Solving the score equations leads to the ML estimation.  This requires numerical 

procedures, and Fisher’s scoring or Newton-Raphson often work rather well.  As an 

alternative, the GEE approach in the previous subsection can also be used to fit the 

polytomous logit model (Sutradhar and Kovacevic, 2000).  The polytomous logistic model 

does not utilize the ordering of response categories.  It is applicable to analysis of both 

unordered and ordered categorical outcomes. 

A4.2. Residuals under the Null Hypothesis in Multinomial Logistic Models 

Having fitted parameters to data under the null hypothesis where 0β =)( j
t  ( 1,,2,1 −= Kj  ), 

the residual is the response one calculated by, 

iii μyr ˆ−= ,          (A5) 

where iμ̂  is the estimated mean. 

 

Appendix A5: Proportional Odds Models 

The widely used model for ordinal response is the proportional odds model, often called 

cumulative logits.  The proportional odds model uses logits of cumulative probabilities and 

assumes an identical effect of the predictors for each cumulative probability (McCullagh, 
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1980), thus being a more parsimonious model.  Consider a ordinal response consisting of K  

ordered categories, denoted by K,,2,1  .  Assuming being in a decreasing order of severity 

or certainty, we define, 
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where Y , μ , the expectation of Y , and V , the variance of Y , are defined in Appendix A4, 

respectively, and the lower triangular matrix, 
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The multinomial density has a multivariate exponential form, 
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where 
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jeb θθ , 1)( =φa , and 0),(( 1 =− φZLc .  The link in a 

proportional odds model has the following representation, 
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== )(

01
lnlog β

γ
γ

γη , 1,,2,1 −= Kj  . 

The proportional odds model imposes the restriction that only the intercepts of the regression 

equations differ.  In the vector-matrix form, 

XββXβXIβη =−−= cctt0 , 

where I  is a unit matrix.  The cumulative logits model is a special case of GLMs with a non-

canonical link in Appendix A1. 

A5.1. Likelihood and Parameter Estimation in Proportional Odds Models 

The log-likelihood for a set of independent observations iy  ( Ni ,,2,1 = ) is, 
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where iX s are the design matrix.  It has the score and Hessian matrix, respectively, 

[ ]( )∑ =

−
−−=

N

i ii
T

iijij
T
i diag

a
U

1

1 )()1(
)(

1)( γzLLVX
φ

β γγ , 

and, 

[ ]( ) [ ]
[ ]( ){ }[ ]∑ =

−

−



















⊗−
∂

−∂
−

−−

−=
N

i

ii

T
iijijT

i

iijij
T

iijij
T
i

diag

diagdiag

a
H

1
1

1

)(
)1(

)1()1(

)(
1)(

Iγz
β

LLV
X

XLLVX

φ
β γγ

γγγγ
. 

where I  is a unit matrix and ⊗  represents a Kronecker product.  Fisher’s scoring or Newton-

Raphson iterative procedure can be employed to find the ML estimates. 

A5.2. Residuals under the Null Hypothesis in Proportional Odds Models 

The residual is calculated by, 
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[ ]( ) )ˆ(ˆ)ˆ1(ˆ
1

1
1

ii
T

iijij
T

Kiji diagrr γzLVL1 −−==
−

− γγ , 1,,2,1 −= Kj  ,  (A6) 

where iγ̂  and iV̂  are the estimated mean and the estimated variance under the null hypothesis 

where 0β =t . 

 

Appendix A6: Proportional hazards models 

Hazard rate (or instantaneous risk) is a crucial parameter to characterize survival data.  

Survival models can be viewed as consisting of two components: the underlying hazard 

function describing how the hazard changes over time and the predictor-related structural 

function describing how the hazard varies in response to explanatory variables.  The best 

known proportional hazards regression model assumes the hazard as a product of the time-

related baseline hazard and the covariates-related component.  Typically under such a model, 

the baseline hazard can "cancel out", and the effects of predictor variables can be estimated 

by maximizing the remaining partial likelihood, thus being reported as hazard ratios.  The 

Cox proportional hazards model with stationary coefficients are used here to illustrate the 

proposed method.  The further extensions are straightforward although probably rather 

technical, for example, time-dependent effects (regression coefficients) are allowed in such 

models and parametric proportional hazards models can also be constructed by specifying a 

baseline hazard function such as exponential, Weilbull, Gompenz, log-normal and log-

logistic. 

The Cox proportional hazards model (Cox, 1972) is a semi-parametric model where 

the dependence of time-to-event on explanatory variables is precisely modeled, but the actual 

survival distribution, i.e., the baseline hazard function, is not specified and can take any form.  

Denote by T  a random variable either continuous or discrete representing the time to event or 

the time to lose follow-up.  Let )(tY , )(tO  and )(tX  be, respectively, 10 −  counting, 10 −  
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censoring and covariate processes for a subject at time t .  )()( TtItO ≤=  indicates whether 

the subject is still being followed and thus at risk for event (i.e., under observation), and 

[ ]1)(,)( =≥= tOTtItY  does whether the subject experiences the event at the given time, 

where )(⋅I  is the indicator function whose value is 1 when the argument is true and 0 

otherwise.  )(tX  may be either scalar-valued or vector-valued, and either time-varying or 

time-fixed; the constant vector is considered here as genotype, sex, ethnicity are unchanged 

over time.  Then the proportional hazards model (Cox, 1972) is written as, 

( ) ( ) βxx Tthth += 0ln,ln , 

where ( )x,th  is the hazard rate at time t , ( )th0  is the baseline hazard rate , β  consists of tβ  

and cβ  for the target effects and the covariate effects, respectively, and x  is the predictor 

vector.  The survival function is, 

( ) ( ) ( )[ ] ( )βxxβxx
T

tSduuhtS
tT exp

00 0 ,)(expexp, =



−= ∫ . 

A6.1. Partial Likelihood and Parameter Estimation in Proportional hazards models 

For a set of survival data, of which subject i  ( Ni ,,2,1 = ) has it , )(tyi , )(toi  and ix  for 

the actual observed time (event occurring or censoring), and the realized values of counting, 

censoring and predictor variables, respectively, the partial likelihood can be constructed as, 

( ) ( )
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to
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Although censored individuals are not explicitly used in the likelihood, they are considered 

through the risk set.  Expressed in vector-matrix form, the support is, 

( ) ( )vXβyβ −= T
PLln , 

where vector [ ])( ii ty=y  and vector ( )( )∑ =
==

N

j
T
jiji tov

1
exp)(ln βxv . The score and Hessian 

matrix are, respectively, 
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where ( )TNxxxX ,,, 21 = , ( )TNpppP ,,, 21 = , and 
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Using this score function and Hessian matrix, the partial likelihood can be maximized 

via the Newton-Raphson algorithm.  The estimate at the )1( +t th cycle of iteration is, 

( ){ } )ˆ(ˆˆˆ )(1)()()1( tttt U ββHββ
−+ −= , 

where )(ˆ tβ  is the estimated effects at the t th cycle of iteration, )ˆ( )(tU β  and ( ))(ˆ tβH  are, 

respectively, the estimated score and estimated Hessian matrix in which )(ˆ tβ  is used in place 

of β .  The iteration continues until convergence is reached. 

A6.2. Residuals under the Null Hypothesis in Proportional hazards models 

In Cox proportional hazards models, there is no obvious analog to the usual “observed minus 

predicted” residual used in other regression models.  Several different residuals can be 

computed for a fitted null proportional hazards model assuming no target effects.  The 

martingale residual (Barlow and Prentice, 1988; Therneau et al, 1990), the difference 

between the observation and the cumulative hazard, reflecting excess event occurrence, is 

used in Lee et al. (Lee et al, 2012), 

∫−==∞= it T
iiiiiii

M
i duuyuhtytmmr

0 0 )exp()()()()()( βx . 

However, the martingale residuals are not symmetrically distributed; the upper limit is 1.0 but 

the lower limit is ∞− , potentially heavily skewed towards the “normal” individuals with 

deficient event occurrence.  As an alternative, the score-contributed residual is suggested here, 
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( )yPIr Tˆ−= ,         (A7) 

where I  is a unit matrix and P̂  is the estimated probability matrix under the null hypothesis.  

This residual may be viewed as the difference between the observed frequency and the 

cumulative expected frequency over time for an individual to be a case in the context of time-

matched case-control sampling.  This residual corresponds to Schoenfeld residual 

(Schoenfeld, 1982), representing a decomposition of the first partial derivative of the log 

partial likelihood with respect to the given parameter into the given subject. 

In addition to the martingale and the score residuals, other two residuals, the score 

residual and the deviance residual (Therneau et al, 1990), can be also used.  The deviance 

residual is computed by, 

( ) [ ]{ })(ˆ)(ln)()(ˆ2)(ˆ iiiiiiiiii
D

i tmtytytmtmsignr −+−= , 

where )(ˆ ii tm  is the estimated martingale residual.  The deviance residual is a normalized 

transform of the martingale residual.  The score residual for subject i  and covariate k  is 

computed by, 

( )[ ])(ˆˆ
ii

T tmPIr −= , 

where [ ])(ˆ ii tm  is the vector consisting of )(ˆ ii tm . 

 

Appendix B: Principal Components Analysis for Correcting Population Stratification 

When the assumption of population homogeneity does not hold true, principal components 

analysis (PCA) method (Price et al, 2006) can be used to correct for population structure.  

The PCA-based GMDR proceeds as below (Lou et al, 2012; Niu et al, 2011):  Consider there 

are M  markers and N  unrelated subjects available for principal components analysis.  Let 

T
iMiii mmm ),,,( 21 =m  be the coding vector of marker genotypic values for individual i  

( Ni ,,2,1 = ).  The variance-covariance matrix of marker data, 
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∑−
−−=Σ

N

i
T

ii1
))(( mmmm , 

where m  is the overall mean of im ’s.  Let le  be the eigen vector (factor loading) 

corresponds to the l th largest eigen value of Σ , Nl ,,2,1 = .  Denote l
T

iilt emm )( −= , 

the ancestry of individual i  along the l th component (projecting T
i )( mm −  down to the 

reduced space defined by the l th vector).  The main pattern of population structure can be 

accounted for by the few principal components; as showed in Price et al. (Price et al, 2006), 

results are insensitive to the number of axes of variation used. 

Let G
ig  be the coding genotypic value at loci of interest that takes 1 when the 

multilocus genotype is G  or 0 otherwise, and ir  be the residual, for individual i  

( Ni ,,2,1 = ).  Assuming the population structure can be well represented by the first L  

principal components, the genotypic values and the residual values can be adjusted by fitting 

the following regression models, 

G
i

G
LiL

G
i

G
i

GG
i tttg τχχχχ +++++= 22110 , 

and 

iLiLiii tttr εδδδδ +++++= 22110 . 

The adjusted values for the first L  principal components can be calculated by, 

G
LiL

G
i

G
i

GG
i

G
i tttgg χχχχ ˆˆˆˆˆ 22110 −−−−−=  , 

and 

LiLiiii tttRr δδδδ ˆˆˆˆˆ 22110 −−−−−=  , 

where χ̂ s and δ̂ s are the least squares estimates. 

In the previous report (Chen et al, 2014), we proposed for simplicity of 

implementation to adjust the genealogical effects only on the phenotypes, but not on the 

genetic markers.  The two adjustment strategies coincide under the null hypothesis.  That is, 
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adjustment only on the phenotypes can assure the projected space is the same when there are 

no target effects and thus the resulting GMDR is valid in the sense of giving correct type I 

error rates.  However, as shown as follows, the strategy of adjustment both on the phenotypes 

and on the genetic markers is more theoretically attractive, unbiased and powerful.  Consider 

the following linear model, 

eβXβXy ++= 2211 , 

where y  is the phenotypic vector, 1β  is the target effect vector, 2β  is the covariate effect 

vector (i.e., the effects of the principal components in this context), 1X  and 2X  are the 

corresponding incidence matrixes, respectively, and e  is the residual effects, ( )Ie 2,0~ eσ .  

When using the adjustment strategy on both the sides of the equation for covariates, the 

resulting equation is, 

( )[ ] ( )[ ] eβXXXXXIyXXXXI +−=−
−−

1122222222
TTTT , 

where ( )−22 XXT  is the inverse of matrix 22 XXT  when being full rank, and one of the 

generalized inverses otherwise.  Then it can assure that the sequent estimation stays on the 

same projected space.  For example, the estimation of 1β  is unbiased, 

( ) ( )[ ] ( )[ ] 122221

1

122221111
ˆ βyXXXXIXXXXXXXXXβ =







 −−=

−−− TTTTTTTEE . 

The sum of squares due to regression (SSR) is, 

( )[ ]
( )[ ] ( )[ ] ( )[ ]yXXXXIXXXXXXXXXXXXXXIy

βXXXXXIXβ
TTTTTTTTTT

TTTT

22221

1

1222211112222

11222211
ˆˆ

−−−−

−

−−−=

−
. 

However, when using the adjustment strategy only on the phenotypes, the resulting equation 

is, 

( )[ ] eβXyXXXXI +=−
−

112222
TT  
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Then, the projected space may be changed when 1X  and 2X  are correlated and the null 

hypothesis does not hold true.  For example, the estimation of 1β  is not unbiased, 

( ) ( ) ( )[ ]{ } 122221
1

11
*
1

ˆ βyXXXXIXXXβ ≠−=
−− TTTTEE . 

The SSR is, 

( )[ ] ( ) ( )[ ]yXXXXIXXXXXXXXIyβXXβ TTTTTTTTT
22221

1
1112222

*
111

*
1

ˆˆ −−−
−−= . 

Because, 

( )[ ] ( ) ( ) ( )( ) ( ) 1
111221

1
11122221

1
11

1
11

1

12222111
−−−−−−−

−+=− XXXXXXXXXXXXXXXXXXXXXXXXXX TTTTTTTTTTTTT , 

and ( ) ( )( ) ( ) 1
111221

1
11122221

1
11

−−−−
− XXXXXXXXXXXXXXXX TTTTTTTT  is a non-negative definite matrix, then, 

( )[ ] *
111

*
111222211

ˆˆˆˆ βXXββXXXXXIXβ TTTTTT ≥−
− , 

implying that there is a larger SSR and, correspondingly, a larger statistical power in the 

adjustment strategy on both the phenotypes and the markers. 

 

Appendix C: Software Note 

A GMDR package has been developed based on the open source MDR software originally 

developed by Dr. Jason Moore’s team.  This package is developed in Java, making it 

compatible with various platforms such as MS Windows and Linux.  It has two kinds of user-

friendly interfaces: Graphical User Interface (GUI) and Command Line Interface (CLI).  GUI 

can be run in majority of desktop systems, and CLI can be run in all the popular shell systems.  

GUI offers an integrated environment with a series of self-explanatory and easy-to-follow 

options.  All of the options and the running parameters can be set through typing directly, 

mouse clicking and drag-and-drop actions, as well as the identified interaction models can be 

also visualized and saved in various image file formats (e.g., JPG, PNG, BMP and EPS).  

GUI can create and export the configuration file automatically and thereby reduce the 
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complexity associated with learning the syntax of GMDR, and is particularly beneficial to 

novice users.  CLI provides an alternative means to execute GMDR analysis.  CLI can import 

the configurations that are generated from GUI or edited by users directly.  It is more 

efficient for users to tune up the arguments according to their need and develop their own 

scripts to perform batch processing, particularly for experienced and secondary development 

users to run large-scale data analysis and integrate this software into their analysis protocol.  

As both GUI and CLI share the configuration resources and are capable to import and export 

the configurations, users can switch freely between the two interfaces. 

Presently, diverse analyses such as unrelated-subject design (i.e., the original GMDR) 

(Lou et al, 2007), pedigree-based (Chen et al, 2011a; Lou et al, 2008) and unified analysis for 

unrelated and family samples can be implemented for both quantitative and binary 

phenotypes with and without covariate adjustment by choosing an appropriate combination of 

running options.  GMDR supports both text and binary file formats as in PLINK (Purcell, et 

al. 2007).  The fileset can be converted between text and binary formats.  It is applicable to 

handling genome-wide and other large-scaled data. 

The GMDR software is flexible for further development.  The modules for analyzing 

multiple phenotypes, correlated observations, longitudinal data, categorical and ordinal 

phenotypes, and survival data are under construction and will be added in the future version. 

The software is available at http://www.soph.uab.edu/ssg/software. 

 

Appendix D: An Incomplete Summary of GMDR Applications 

There is an expanding list of applications of GMDR to a number of complex disorders for 

detection of gene-gene and/or gene-environment interactions since the appearance of GMDR.  

They include alcoholism (Du and Wan, 2009), Alzheimer's disease (Lee et al, 2010), asthma 

(Chan et al, 2008; Lee et al, 2008; Sy et al, 2012), blood pressure response to dietary 

http://www.soph.uab.edu/ssg/software
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potassium (Montasser et al, 2010), colorectal cancer (Yu et al, 2012), prostate cancer (Beuten 

et al, 2009), coronary heart disease (Tu et al, 2010), Crohn's disease (Henckaerts et al, 2009), 

major depressive disorder (Lin et al, 2009a; Xiao et al, 2011; Yang et al, 2010), type 1 

diabetes (Zhang et al, 2010), type 2 diabetes (Lin et al, 2009b; Neuman et al, 2010; Wu et al, 

2009), drug responses (Chen et al, 2011b; Xu et al, 2012), eczema (Wang et al, 2012), 

internalizing disorders (Meng et al, 2011), malaria (Atkinson et al, 2011), major mood 

disorders (Pae et al, 2010), nicotine dependence (Bergen et al, 2009; Li et al, 2008), age-

related maculopathy (Jakobsdottir et al, 2008), obesity (Angeli et al, 2011; Ding et al, 2012; 

Pereira et al, 2011; Sungyoung et al, 2010; Zhou et al, 2012), body mass index (Luo et al), 

osteoporosis (Liu et al, 2010), rheumatoid arthritis (Mukherjee et al, 2009), thrombotic stroke 

(Liu et al, 2009), schizophrenia (Gasso et al, 2010), metabolic syndrome in schizophrenic 

patients (Liou et al, 2012), suicide behavior (Tsai et al, 2011), survival time of acute myeloid 

leukemia patients (Lee et al, 2012), age at menarche, age at natural menopause and maximal 

height in women (Zhao et al, 2011).  These support that GMDR is playing an increasingly 

important role in tracking down interacting contributors and mapping complex genotype-

phenotype relationship.  Conceivably, the proposed conceptual framework will pave the way 

toward more tailored and effective analysis and broaden the use of GMDR approach. 
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